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Abstract: This paper investigates the study of the effect of thermal conductivity on MHD flow past an infinite vertical 

plate with Soret and Dufour effects. The governing non-linear Partial Differential Equations are solved numerically by 

implicit finite difference scheme of Crank-Nicolson. Computations are performed for a wide range of the governing flow 

parameters such as thermal Grashof number, solutal Grashof number, magnetic field parameter, Prandtl number, Dufour 

number, Soret number, thermal conductivity and Schmidt number. The effects of these flow parameters on the velocity, 

temperature and concentration are shown graphically. It is observed that the velocity increases with the increase in Gr, Gc, 

Du, Ec, k and λ and it decreases with the increase in M, Sr and b. Temperature decreases with an increase in γ  and Pr and 

concentration decreases with the increase in Sr and γ . Finally, the effects of various parameters on the skin friction 

coefficient, Nusselt number and Sherwood number are shown on Tables. 
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1. Introduction 

Combined heat and mass transfer by free convection in a 

porous medium has attracted considerable attention in the 

last decades, due to it is many important engineering and 

geophysical applications. Such flows have attracted the 

attention of a number of scholars due to their applications 

in many branches of science and technology, such as, in the 

field of agriculture engineering to study the underground 

water resources, seepage of water in river-beds, in 

petroleum technology to study the movement of natural gas, 

oil and water through oil reservoirs, in chemical 

engineering for filtration and purification processes, 

thermal and insulating engineering, modeling of packed 

sphere beds, solar power collector, pollutant dispersion in 

aquifers, cooling of electronic systems, ventilation of 

rooms, crystal growth in liquids, chemical catalytic reactors, 

grain storage devices, petroleum reservoirs, ground 

hydrology, fiber and granular insulation, nuclear waste 

repositories, high-performance building insulation, 

postaccident heat removal from pebble-bed nuclear reactors, 

concepts of aerodynamics heat shielding with transpiration 

cooling, etc. Bejan et al. [11], Ingham et al. [16] and Vafai 

[24]. The convection problem in porous medium has other 

applications in geothermal reservoirs and geothermal 

energy extractions. A comprehensive review of the studies 

of convective heat transfer mechanism through porous 

media has been made by Nield and Bejan, [19]. In view of 

the above mentioned effects, Alam and Rahman, [6] have 

studied Soret and Dufour effects on mixed convection flow 

past a porous flat plate with variable suction. Kafousiasis 

and Williaims [17] examined Soret and Dufour effects on 

mixed free-forced conductive and mass transfer boundary 

layer flow with temperature dependent viscosity. Anghel et 

al [9] investigated the Dufour and Soret effects on free 

convection boundary layer over a vertical surface 

embedded in a porous medium. Postelnica [23] studied 

numerically the influence of a magnetic field on heat and 

mass transfer by natural convection from vertical surfaces 

in porous media considering Soret and Dufour effects. Ajali 

and Uma [5] investigated thermal radiation effect over an 

electrically –conducting, Newtonian fluid in a steady 

laminar magneto hydrodynamic convective flow over a 

porous rotating infinite disk with the consideration of heat 

and mass transfer in the presence of Soret and Dufour 
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numbers. Olarenwaju and Gbadeyan [21] examined the 

effects of Soret, Dufour, chemical reaction, thermal 

radiation and volumetric heat absorption/generation on 

mixed convection stagnation point flow on an isothermal 

vertical plate in a porous media. Gbadeyan et al. [14] 

investigated thermal diffusion and diffusion-thermo effects 

on combined heat and mass transfer on mixed convection 

boundary layer flow over a stretching vertical surface in a 

porous medium filled with a visco elastic fluid in the 

presence of magnetic field. Emmanuel et al. [13] studied 

numerically the effects of thermal diffusion and diffusion-

thermo on combined heat and mass transfer of a steady 

hydromagnetic convective and slip flow due to a rotating 

disk with viscous dissipation and ohmic heating. Anwar et 

al. [10] examined the combined effects of Soret and Dufour 

diffusion and porous impedance on laminar MHD mixed 

convection heat and mass transfer of an electrically-

conducting, Newtonian, Boussinesq fluid from a vertical 

stretching surface in a Darcian porous medium under 

uniform transverse magnetic field. Abdulraheem et al. [1] 

have investigated a numerical solution for double diffusive 

free convective flow over a vertical stretching surface 

embedded in a porous medium in the presence of a 

homogeneous first order chemical reaction, radiation, Soret 

and Dufour effects. Bhupendra et al. [12] studied Soret and 

Dufour effects on unsteady MHD mixed convection flow 

past an infinite radiative vertical porous plate embedded in 

a porous medium in the presence of chemical reaction. 

Alam et al. [7] examined a steady two-dimensional free 

convection and mass transfer flow past a continuously 

moving semi-infinite vertical porous plate in a porous 

medium by taking into account the Dufour and Soret 

effects. Adrian [2] investigated heat and mass transfer 

characteristics of natural convection about a vertical 

surface embedded in a saturated porous medium subjected 

to a chemical reaction by taking into account the diffusion-

thermo (Dufour) and thermal-diffusion (Soret) effects. Very 

recently, Afif [3] presented an analysis of the non-Darcy 

MHD free convective heat and mass transfer past a vertical 

isothermal surface by including the analysis various effects 

such as Soret and Dufour effects, thermal dissipation and 

temperature-dependent viscosity. Olanrewaju [22] studied 

Dufour and Soret effects of a transient free convective flow 

with radiative heat transfer past a flat plate moving through 

a binary mixture. Afify [4] studied similarity solution in 

MHD: effects of thermal diffusion and diffusion-thermo on 

free convective heat and mass transfer over a stretching 

surface considering suction or injection. More recently 

Hayat et al. [15] investigated heat and mass transfer for 

Soret and Dufour’s effect on mixed convection boundary 

layer flow over a stretching vertical surface in a porous 

medium filled with a visco elastic fluid. 
Combined heat and mass transfer problems with Soret 

and Dufour effects are of importance in many processes 

and have received considerable focus in recent years. In 

processes such as drying, evaporation at the surface of 

water body, energy transfer in wet cooling tower and the 

flow in a desert cooler, heat and mass transfer occur 

simultaneously, Vafai [25]. In view of the above studies, the 

present work tends to study the effect of thermal 

conductivity on MHD heat and mass transfer flow past an 

infinite vertical plate taking into account the Dufour and 

Soret effects. 

2. Mathematical Formulation 

An unsteady two-dimensional flow of an incompressible 

and electrically conducting viscous fluid, along an infinite 

vertical porous flat plate embedded in a porous medium is 

considered. The x-axis is taken on the infinite plate, and 

parallel to the free-stream velocity which is vertical and the 

y-axis is taken normal to the plate. A magnetic field 0B of 

uniform strength is applied transversely to the direction of 

the flow. Initially the plate and the fluid are at same 

temperature T∞
in a stationary condition with concentration 

level C∞ at all points. For t > 0, the plate starts moving 

impulsively in its own plane with a velocity
0U , its 

temperature is raised to 
w

T and the concentration level at the 

plate is raised to
wC .The fluid is assumed to have constant 

properties except that the influence of the density variations 

with temperature and concentration, which are considered 

only in the body force term. Under the above assumptions, 

the physical variables are functions of y and t only. 

Assuming that the Boussinesq and boundary-layer 

approximation hold and using the Darcy-Forchheimer 

model, the equations governing the problem are (see Alam 

and Rahman [8]): 
*
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The corresponding initial and boundary conditions are 

prescribed as follows: 
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Here 
*u  and 

*v  are the velocity components along and 

normal to the plate,ν  is the kinematic viscosity, g  is the 

acceleration due to gravity, β  is the coefficient of volume 

expansion, ρ the density, *β  is the volumetric coefficient 

of expansion with concentration, K(T) is the thermal 

conductivity, 
p

C  is the specific heat capacity at constant 

pressure, 
*k  is the permeability of the porous medium, 

M
D  

is the coefficient of mass diffusivity, 0k  is the thermal 

conductivity of the ambient fluid, D is the coefficient of 

diffusivity, 
TD  is the coefficient of temperature diffusivity, 

γ  is the suction parameter, b is the joule heating parameter, 

0
B  is the magnetic field of constant strength. * *T and T ∞

 are 

the temperature of the fluid inside the thermal boundary 

layer, * *C and C ∞
 are the corresponding concentrations. 

On introducing the following non-dimensional quantities: 
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Applying these non-dimensionless quantities (7), the set 

of equations (2), (3), (4), (5) and (6) reduces to the 

following: 
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Where Ec is the Eckert number, Pr is the Prandtl number, 

Sc is the Schmidt number, Sr is the Soret number, Du is the 

Dufour number, M is the Magnetic field parameter, Gr is 

the thermal Grashof number, Gc is the Solutal Grashof 

number, b is the joule heating parameter, λ  is the variable 

thermal conductivity, α is the variable suction parameter 

while u and v are dimensionless velocity components in x- 

and y-dimensionless directions respectively and t is the 

dimensionless time. 

3. Numerical Procedure 

To solve the unsteady coupled non-linear partial 

differential equations, a finite difference technique of 

implicit type namely Crank Nicolson implicit finite 

difference method which is always convergent and stable is 

employed. This method has been used to solve equations (8) 

- (10) subject to the boundary conditions (11). The partial 

differential equations are converted to difference equation. 

The Crank-Nicolson method has been used in several heat 

transfer, radiation and convection problems. The finite 

difference approximations to these equations are as follows: 
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The initial and boundary conditions take the following 

forms: 
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where M corresponds to ∞ . 

Equations (12), (13) and (14) are written in the following 

form: 
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Here the suffix i refers to the space and j refers to the 

time. y∆ and t∆  are the mesh sizes along y – direction 

and time t – direction respectively. Consequently, 

1j jt t t+∆ = − and 1i iy y y+∆ = − . 

The skin friction, Nusselt number and Sherwood number 

are important physical parameters for this type of boundary 

layer flow. From the velocity, the skin friction is given by 
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The rate of heat transfer coefficient, in terms of the 

Nusselt number is given by 
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In view of equation (7), equation (18) reduces to 
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The rate of mass transfer coefficient, which in the 

dimensional form in terms of the Sherwood number, is 

given by 
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where 0Re
x

V x

ν
=  is the Local Reynolds number. 

4. Numerical Solution 

Knowing the values of u, T and C at a time t, we can 

calculate the values at a time t t+ ∆  as follows. We 

substitute 2,3, 4,..., 1i M= −  in equation (12) which 

results in a tri-diagonal system of equations in unknown 

values of u. Using initial and boundary conditions, the 

system can be solved by Gaussian elimination method 

(Carnahan et al (18)). Thus u is known at all values of y  at 

time t t+ ∆ , y  is chosen as min 0y =  and max 3.5y = . 

Then knowing the values of u and applying the same 

procedure and using boundary conditions, we can calculate 

C and T from equations (13) and (14) respectively. This 

procedure is continued to obtain the solution till desired 
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time t. Computations are carried out for water vapour (Pr = 

0.6), for air (Pr = 0.71), for salt water (Pr = 1.0), for 

hydrogen (Sc = 0.22) and methanol (Sc = 1.0). 

5. Results and Discussion 

5.1. Velocity Profiles 

The effects of various thermo physical parameters on the 

fluid velocity are illustrated in figures 1 to 11. Figures 1 

and 2 depict the effect of the solutal and thermal Grashof’s 

numbers Gc and Gr respectively. The velocity profile 

increases with increase in the values of Gr and Gc 

respectively. It is clearly seen in figure 6 that the effect of 

increasing the magnetic field strength on the momentum 

boundary layer thickness is illustrated. Increasing this 

parameter leads to a decrease in the velocity which 

confirmed the fact that the magnetic field results in a 

damping effect on the velocity by creating a drag force that 

opposes the field motion. Figure 5 illustrate the effect of 

variable thermal conductivity ( )Aλ on the velocity profile. 

It is clearly seen that 0λ >  corresponds to assisting flow 

(heated plate). Increase in the mixed convection parameter 

leads to an increase in the fluid velocity. Figure 4 displays 

the velocity profiles across the boundary layer from 

different values of dimensionless viscoelastic parameter K 

and it is observed that increasing K leads to an increase in 

the fluid velocity and thickening the velocity boundary 

layer. In figure 8 it is clearly seen that an increase in the 

value of the Schmidt number leads to a decrease in the 

velocity profile. This means that the larger the value of Sc, 

the thinner the momentum boundary layer size, hence 

decrease in the velocity. 
The Prandtl number Pr, Soret number Sr and Suction 

parameter ( )Vγ
 
has little or no influence on the fluid 

velocity (see figures 10, 9 and 7). It is also interesting to 

note that increase in Dufour number Du and Eckert number 

Ec increases the fluid velocity (see figures 11 and 3). 

 

Fig.1: Velocity profiles for V  = 0.1, Pr= 0.71, Gc = 5, A  = 3, Sc = 

0.22, Ec = 0.1, b = 0.01, Sr =0. 2, K = 1, M = 1, Du = 0.1. 

 

Fig. 2: Velocity profiles for V  = 0.1, Pr= 0.71, Gr = 5, A  = 3, Sc = 

0.22, Ec = 0.1, b = 0.01, Sr =0. 2, K = 1, M = 1, Du = 0.1. 

 

Fig. 3: Velocity profiles for V  = 0.1, Pr= 0.71, Gr = 5, A  = 3, Sc = 

0.22, Gc = 5, b = 0.01, Sr =0. 2, K = 1, M = 1, Du = 0.1. 

 

Fig. 4: Velocity profiles for V  = 0.1, Pr= 0.71, Gr = 5, Gc = 5, A  = 3, 

Sc = 0.22, Ec = 0.1, Sr = 0.2, b = 0.01, M = 1, Du = 0.1. 
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Fig. 5: Velocity profiles for V  = 0.1, Pr= 0.71, Gr = 5, K = 1, Sc = 0.22, 

Ec = 0.1, b = 0.01, Sr =0. 2, M = 1, Du = 0.1, Gc = 5. 

 

Fig. 6: Velocity profiles for V  = 0.1, Pr= 0.71, Gr = 5, A  = 3, Sc = 0.22, 

Ec = 0.1, b = 0.01, Sr =0. 2, K = 1, Gc = 5, Du = 0.1. 

 

Fig. 7: Velocity profiles for Pr= 0.71, Gr = 5, A  = 3, Sc = 0.22, Ec = 0.1, 

b = 0.01, Sr =0. 2, K = 1, M = 1, Du = 0.1, Gc = 5. 

 

Fig. 8: Velocity profiles for V  = 0.1, Pr= 0.71, Gr = 5, A  = 3, Ec = 0.1, 

b = 0.01, Sr =0. 2, K = 1, M = 1, Du = 0.1,Gc = 5. 

 

Fig. 9: Velocity profiles for V  = 0.1, Pr= 0.71, Gr = 5, A  = 3, Sc = 0.22, 

Ec = 0.1, b = 0.01, K = 1, M = 1, Du = 0.1, Gc = 5. 

 

Fig. 10: Velocity profiles for V  = 0.1, Gr = 5, A  = 3, Sc = 0.22, Ec = 0.1, 

b = 0.01, Sr =0. 2, K = 1, M = 1, Du = 0.1, Gc = 5. 
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Fig. 11: Velocity profiles for V  = 0.1, Pr= 0.71, Gr = 5, A  = 3, Sc = 0.22, 

Ec = 0.1, b = 0.01, Sr =0. 2, K = 1, M = 1, Gc = 5.5.2. Temperature 

Profiles 

The influences of various embedded parameters on the 

fluid temperature are illustrated in figures 12 to 17. Figure 

12 gives the variations of variable thermal conductivity 

λ on the temperature. Increasing λ leads to an increase in 

the temperature. Figure 13 shows the solution of 

temperature profiles across the boundary layer thickeness 

for different values of suction parameter γ . Increase in this 

parameter leads to a decrease in the temperature profile. It 

is clearly seen in figure 14 the effect of Prandtl number Pr 

on the temperature. The thermal boundary layer thikceness 

is found to increase upon increasing the prandtl number. 

However, figure 15 and 17 gives the effects of Dufour 

number Du and Eckert number Ec on temperature profiles. 

Increasing these parameters leads to an increase in the 

thermal boundary layer thickeness. Similarly, in figure 16, 

increase in Joule heating parameter b decreases the thermal 

boundary layer. 

 

Fig. 12: Temperature profiles for V 0.1,=  Gr = 5 , Gc = 5, Du = 2, Sc = 

0.22, Ec = 2, K = 3, M = 1, b = 1, Pr = 0.71, Sr = 0.2. 

 

Fig. 13: Temperature profiles for Gr = 5 , Gc = 5, Du = 2, Sc = 0.22, Ec 
= 2, K = 3, M = 1, b = 1, Pr = 0.71, Sr = 0.2, A = 1. 

 

Fig. 14: Temperature profiles for V 0.1,=  Gr = 5 , Gc = 5, Du = 2, Sc = 

0.22, Ec = 2, K = 3, M = 1, b = 1, Sr = 0.2, A = 1. 

 

Fig. 15: Temperature profiles forV 0.1,=  Gr = 5 , Gc = 5, Sc = 0.22, Ec 

= 2, K = 3, M = 1, b = 1, Pr = 0.71, Sr = 0.2, A = 1. 

 

Fig. 16: Temperature profiles for V 0.1,=  Gr = 5 , Gc = 5, Sc = 0.22, Ec 

= 2, K = 3, M = 1, Pr = 0.71, Sr = 0.2, A = 1, Du = 2. 
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Fig. 17: Temperature profiles for V 0.1,=  Gr = 5 , Gc = 5, Du = 2, Sc = 

0.22, K = 3, M = 1, b = 1, Pr = 0.71, Sr = 0.2, A = 1.5.3. Concentration 

Profiles 

The influences of various embedded thermophysical 

parameters on the fluid concentration had been illustrated 

in figures 18 to 21. Figure 18 reflects that with increase in 

Sc the fluid concentratiom increases. Figure 19 is the graph 

of concentration profile against spanwise co-ordinate y for 

diifferent values of Soret numbers. It is note worthy that 

increase in this parameter decreases the concentration 

bounary layer thickenes. It is clearly seen that for a 

destructive suction parameter γ  the concentration 

boundary layer thickeness decreases ( see figure 21 ). The 

order of the reaction Gr has little effects on the 

concentration boundary layer thickeness. Increase in Gr 

leads to small decrease in the cocentration profile across 

the boundary layer ( see figure 20). 

 

Fig. 18: Concentration profiles for 0.2,V =  Gr = 5 , Gc = 5, Ec = 1, b = 

0.1, K = 3, M = 1, Du = 3, Sr = 0.1, 1,A =  Pr = 0.71. 

 

Fig. 19: Concentration profiles for 0.2,V =  Gr = 5 , Gc = 5, Ec = 1, b = 

0.1, K = 3, M = 1, Du = 3, Sc = 0.22, 1,A =  Pr = 0.71. 

 

Fig. 20: Concentration profiles for 0.2,V =  Sc = 0.22 , Gc = 5, Ec = 1, 

b = 0.1, K = 3, M = 1, Du = 3, Sr = 0.1, 1,A =  Pr = 0.71. 

 

Fig. 21: Concentration profiles for Gr = 5 , Gc = 5, Ec = 1, b = 0.1, K = 

3, M = 1, Du = 3, Sr = 0.1, 1,A =  Pr = 0.71, Sc = 0.22. 

The effects of various governing parameters on the skin 

friction, Nusselt number and Sherwood number are shown 

in tables 1 to 3, it is observed that as Gr, Gc, Pr, K, Ec and 

Du increases, the skin friction coefficient increases, where 

as the skin friction coefficient decreases as M decreases. 
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From table 2, it is noticed that the Nusselt number increases 

as Pr and Ec are increased, while as the joule heating 

parameter b increases, the Nusselt number decreases. From 

table 3, it is found that as Sc, Sr and suction parameter 

increases, the Sherwood number decreases. 

Table 1: Effect of Gr, Gc, Pr, M, K, Ec and Du on Skin friction ( )τ . 

Gr Gc Pr M K Ec Du τ  

5 5 0.71 0.5 1.0 0.1 2.0 0.0638 

10 5 0.71 0.5 1.0 0.1 2.0 0.0868 

5 10 0.71 0.5 1.0 0.1 2.0 0.0653 

5 5 1.0 0.5 1.0 0.1 2.0 0.1071 

5 5 0.71 1.0 1.0 0.1 2.0 0.0601 

5 5 0.71 0.5 2.0 0.1 2.0 0.0686 

5 5 0.71 0.5 1.0 0.2 2.0 0.0639 

5 5 0.71 0.5 1.0 0.1 3.0 0.0728 

(A = 1, V = 0.2, Sc = 0.22, Sr = 0.2, b = 0.01) 

Table 2: Effect of Gr, Pr, Du, Ec and b on Nusselt number (Nu). 

Pr Du b Ec Gr Nu 

0.71 2.0 0.01 0.1 5 0.0759 

0.71 2.0 0.01 0.1 10 0.0868 

0.71 3.0 0.01 0.1 5 0.0758 

0.71 2.0 0.01 0.2 5 0.1020 

1.0 2.0 0.01 0.1 5 0.1071 

0.71 2.0 0.02 0.1 5 0.0587 

(Gc = 5, A = 1, M = 0.5, k = 1, Sr = 0.2, Sc = 0.22, V = 0.2) 

Table 3: Effect of Gr, Sc, Sr, Ec and V on Sherwood number (Sh). 

Gr Sc Sr Ec V Sh 

5 0.22 0.2 0.1 0.2 0.0126 

10 0.22 0.2 0.1 0.2 0.0117 

5 0.3 0.2 0.1 0.2 0.0124 

5 0.22 0.3 0.1 0.2 0.0115 

5 0.22 0.2 0.2 0.2 0.0117 

5 0.22 0.2 0.1 0.6 0.0116 

(Pr, = 0.71, Ec = 0.1, M = 0.5, A = 1, K = 1, Du = 2, b = 0.01, Gc = 5) 

6. Conclusions 

In this paper we have studied numerically the effect of 

thermal conductivity on MHD heat and mass transfer flow 

past an infinite vertical plate with Soret and Dufour effects. 

The non-dimensional governing equations are solved with 

the help of implicit finite difference method of Crank-

Nicolson type. The conclusions of the study are as follows: 

1. The velocity increases with the increase in thermal 

Grashof number and solutal Grashof number. 

2. The velocity decreases with an increase in the 

magnetic parameter. 

3. The velocity as well as the temperature increases 

with an increase in Dufour number, Eckert number 

and thermal conductivity. 

4. Increasing the suction parameter reduces velocity, 

temperature and concentration. 

5. The velocity as well as the concentration decreases 

with an increase in Soret number. 

6. Increasing the Prandtl number substantially 

decreases the translational velocity and increases 

the temperature profile. 

7. An increase in the Schmidt number leads to 

increase in the concentration. 

8. Increasing the joule heating parameter decreases the 

translational velocity. 

9. The velocity increases with an increase in the 

permeability of the porous medium parameter. 

Nomenclature 

C – Concentration 

pC – Specific heat at constant pressure 

D - Mass diffusivity 

MD – Coefficient of Mass diffusivity 

TD - Coefficient of temperature diffusivity 

Du – Dufour number 

g – Acceleration due to gravity 

Gr – Grashof number 

Gc – Solutal Grashof number 

K – Permeability of the porous medium 

Nu – Nusselt number 

Pr – Prandtl number 

Sc – Schmidt number 

Sr – Soret number 

T – Temperature 

u, v – velocities in the x and y-direction respectively 

x, y – Cartesian coordinates along the plate and normal to 

it, respectively 

ρ  – Density of the fluid 

oB - Magnetic field of constant strength 

Ec – Eckert number 

M – Magnetic field parameter 

b – Joule heating parameter  
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Greek Letters 

β* - coefficient of expansion with concentration 

β - Coefficient of thermal expansion 

µ -coefficient of viscosity 

ρ- Density of fluid 

θ- dimensionless temperature 

υ- Kinematic viscosity 

α - Chemical reaction parameter 

γ - Suction parameter 

λ - Variable thermal conductivity 

Subscripts 

w - condition at wall 

∞  - condition at infinity 

 

References 

[1] Abdulraheem, M. A., Mansour, M. A. and Chamkha, A. J., 
(2011). Effects of Soret and Dufour numbers on free 
convection over Isothermal and Adiabatic stretching 
surfaces embedded in porous media. Journal of porous 
media, DOI: 10, 1615/ Journal Porous Media, 14(1), pp. 67-
72. 

[2] Adrian P., (2007). Influence of chemical reaction on heat 
and mass transfer by natural convection from vertical 
surfaces in porous media considering Soret and Dufour 
effects. Heat Mass Transfer, 43: pp. 595-602. 

[3] Afif A., (2006). Effects of Thermal diffusion and diffusion 
Thermo on non-Darcy MHD free convective flow and mass 
transfer past a vertical isothermal isothermal surface 
embedded in a porous medium with thermal dispersion and 
temperature dependent viscosity. Applied Math Model. 

[4] Afify, A.A., (2009). Similarity solution in MHD: Effects of 
thermal-diffusion and diffusion-thermo on free convective 
heat and mass transfer over a stretching surface considering 
suction or injection. Communication in Non-Linear Science 
Numerical Simulation, 14: pp. 2202-2214. 

[5] Ajali, D. S. P., and Uma, D. R. (2010). Soret and Dufour 
effects on MHD slip flow with thermal radiation over a 
porous rotating infinite disk. Communications in Non 
Linear Science and Numerical Simulation, 16(4), pp. 1917-
1930. 

[6] Alam, M. S., and Rahman, M. M., (2006). Dufour and Soret 
effects on mixed convection flow past a vertical porous 
plate with variable porous with variable suction. Non-linear 
Analysis: Modeling and control, 11(10), pp. 3-12. 

[7] Alam, M.S., Ferdows, M., Ota, M., and Maleque, M.A. 
(2006). Dufour and Soret effects on Steady Free Convection 
and Mass transfer Flow past a semi-infinite Vertical Porous 
Plate in a Porous Medium. International Journal of Applied 
Mechanics and Engineering, 11(3), pp.535-545. 

[8] Alam, M. S. and Rahman, M. M. (1992). Dufour and Soret 
effects on MHD free convective and mass transfer flow past 
a vertical flat plate embedded in a porous medium. Journal 
of Naval Architecture and Marine Engineering. 2(1): pp. 
369-374. 

[9] Anghel, M., Takher, H. S. and Pop, I., (2000). Dufour and 
Soret effects on free convection boundary layer over a 
vertical surface embedded in a porous medium. Studia 
Universitatis Basas-BolyalMathematica, XLV (4), pp. 11-21. 

[10] Anwar, B.O., Bakier, A.Y.,and Prasad V.R., (2009). 
Numerical study of free convection magneto hydrodynamic 
heat and mass transfer from a stretching surface to a 
saturated porous medium with Soret and Dufour effects. 
Computational Material Science 46, pp. 57-65. 

[11] Bejan, A., Dincer, I., Lorente, S., Miguel, A. F. and Reis, A. 
H. (2004). Porous and Complex Flow Structures in Modern 
Technologies.Springer. New York, NY. 

[12] Bhupendra, K. S., Kailash, Y.Nidhish, K., Mishra, R. C., and 
Chaudhary, R. C. (2012). Soret and Dufour Effects on 
Unsteady MHD Mixed Convection Flow past a Radiative 
Vertical Porous Plate Embedded in a Porous Medium with 
Chemical Reaction. Applied Mathematics, 3, pp. 717-723 
doi: 10.4236/am. 

[13] Emmanuel, O, Jonathan, S, .and Robert, H., (2011). 
Thermal-diffusion and diffusion-thermo effects on 
combined Heat and Mass transfer of a steady MHD hydro 
convective and slip flow due to a rotating disk with viscous 
dissipation and ohmic heating. Global Journal of Science 
Frontier Research, International Communications in Heat 
and Mass Transfer, 35: pp. 908-915. 

[14] Gbadeyan, J. A., Idowu, A. S., Ogunsola, A. W., Agbola, O. 
O., and Olanrewaju, P. O. (2011). Heat and Mass transfer for 
Soret and Dufour’s effect on mixed convection boundary 
layer flow over a stretching vertical surface in a porous 
medium filled with a visco elastic fluid in the presence of a 
magnetic field. Global Journal of Science Frontier Research. 
11(8), pp. 97-114. 

[15] Hayat, T., Mustafa, M. and Pop, I., (2010). Heat and Mass 
transfer for Soret and Dufour’s effect on mixed convection 
boundary layer flow over a stretching vertical surface in a 
porous medium filled with a visco elastic fluid. 
Communications in Non Linear Science and Numerical 
Simulation. 15, pp.1183-1196. 

[16] Ingham, D. B. and Pop, I., (1998). Transport phenomena in 
porous media. Vol. II. Pergamon: Oxford, UK. 

[17] Kafousiasis, N. G., and Williams, E. M. (1995). Thermal-
diffusion and diffusion-Thermo effects on mixed free-forced 
convective and Mass transfer boundary layer flow with 
temperature dependent Viscosity. International Journal of 
Engineering Science, 33, pp. 1369-1384. 

[18] Carnahan, H., Luther, H. A., and Wilkes, J.O., (1969). 
Applied Numerical Methoda, John Willey, newYork. 

[19] Nield, D. A. and Bejan, A., (1998). Convection in Porous 
media, Second edition, Springer, New York. 

[20] Olarenwaju, P. O., and Gbadeyan, J.A. (2011). Effects of 
Soret, Dufour, and Chemical reaction, Thermal Radiation 
and Volumetric Heat Generation / Absorption on mixed 
convection stagnation point flow on an Isothermal Vertical 
plate in porous media. Pacific Journal of Science and 
Technology. 12(2): pp. 234-245. 

[21] Olanrewaju, P. O., (2010). Dufour and Soret Effects of a 
Transient free convective flow with Radiative heat transfer 
past a flat plate moving through a binary mixture. Pacific 
Journal of Science and Technology, 11(1): pp. 673-685. 



38  Halima Usman et al.:  Effect of Thermal Conductivity on Mhd Heat and Mass Transfer:  

Flow past an Infinite Vertical Plate with Soret and Dufour Effects 

[22] Postelnica, A. (2007). Influence of a magnetic field on Heat 
and Mass transfer by natural convection from vertical 
surfaces in porous media considering Soret and Dufour 
effects. International Journal of Heat Mass transfer, 43, pp. 
595-602. 

[23] Vafai, K. (2000). Hand book of porous media, second 
edition. Taylor and Francis: New York. 

[24] Vafai, K. (2005). Hand book of porous media, second 
edition. Taylor and Francis: New York. 

 

 


