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Abstract: The present study involves a numerical investigation of laminar boundary layer flow over a flat plate, controlled by 
the Prandtl equations. The flow is governed by a dimensionless third-order system of nonlinear ordinary differential equations. 
The finite difference method is employed to solve the system, which serves as an approximation technique. The study explores 
the properties of the finite difference method and discusses its efficacy in solving the boundary layer flow problem. Additionally, 
we discuss an inverse problem related to the Falkner-Skan equation, aiming to obtain precise values for the second derivative's 
initial value. This inverse problem is successfully resolved using an appropriate initial value procedure. The results obtained 
from the finite difference method and the inverse problem resolution is compared with those from cubic spline interpolation, 
proposed by Alavi and Aminikhan. By doing so, the reliability and accuracy of present approach is demonstrated. Overall, this 
study contributes to a better understanding of boundary layer flow and presents a viable numerical technique for tackling similar 
fluid dynamics problems. The findings shed light on the significance of choosing appropriate numerical methods for solving 
complex systems of equations in fluid mechanics. 
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1. Introduction 

Finite difference approximation is the easiest and most 
ancient approach for the solution of different equations. Most 
physical and engineering procedures are expressed in terms of 
boundary value problem. When boundary value problem 
cannot be resolved analytically then numerical schemes are 
applied such as Rung Kutta method, Euler method and Finite 
difference method. The emergence of finite difference method 
in numerical analysis started in the early 1950's. The finite 
difference methods theoretical result has been attained in 
terms of accuracy balance and convergence for Sturn 
Liouville differential equation. Mukhtarov et al. [1] applied 
numerical scheme to find the numerical solution of Sturn 
Liouville differential equation. Finite difference method is 
based on the differential quotient that is used as substitute for 
derivative in a given equation. Their comparison between the 

numerical and exact solutions provides an accurate numerical 
result with the theoretical findings. Pandey, [2] discussed the 
accuracy and uniqueness of the seventh order boundary value 
problem through the finite difference method. Bhagyamma et 
al., [3] presented a novel approach combining modified 
decomposition method and finite difference scheme to obtain 
solution of singular point boundary value problem. 

The Falkner-Skan equation, introduced in 1931, is significant 
in fluid mechanics, especially in the bounded viscous flow 
problems deduced from Navier-Stokes two-dimensional 
incompressible fluid equation for one-sided flow using the 
same analysis and its solution defines the type of outer laminar 
boundary layer in the presence of a nonconductive pressure 
gradient of the stream wise flow. Regardless of the difficulties 
of Falkner-Skan equation, it may be necessary to solve them; 
these problems are not linear and are generally of the 
third-degree. Analytical solutions on the Falkner-Skan scale 
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with special cases, indicating the existence of a solution and the 
difference or availability of a numerical solution to a particular 
boundary layer condition are discussed by Duque-Daza et al. 
[4]. Some studies contain the solution to the Falkner-Skan 
equation as well as its uniqueness and have discussed the result 
in absence of upper and lower boundary. According to 
Duque-Daza et al. [4], wall shear pressure has no dimension. 
The flow over a flat plate is described by the Prandtl equation, 
which is solved using the finite difference approach. The 
practical work of Ludwig Prandtl was successful in 1904. He 
setup a result that, in many systems the effect of viscosity is 
limited by weakness. The region nearest to the body and rest 
part of the flow area, which can be a good measure, is handled 
as inviscid, so it can be calculated as a potential flow theory. He 
suggested that when an overflowing low-viscosity liquid enters 
a thin layer, the flow field is not audible both inside and beyond 
the layer boundary and outside the boundary layer. The 
presence of an object near the wall causes a viscous affect, 
which increases the velocity of the boundary layer, merging 
forms. As it approaches the wall, the speed tends to zero due to 
the slick surface, and from a distance on the wall, it is adapted to 
the external velocity the slip velocity of wall smoothness in this 
model is dictated by the external speed which would be given 
by a theory of potential flow. Alavi and Aminikhah [5] studied 
the problem of boundary layer flow over a flat plate by 
orthogonal cubic spline basis functions and examined the 
behavior of wall temperature and the free stream difference 
with heat conduction. 

In mathematics, significant attention has been directed 
towards two-point boundary value problems due to their crucial 
relevance across various scientific and engineering domains. 
These problems frequently arise in fields such as optimal 
control, fluid mechanics, quantum mechanics and geophysics. 
Numerous logical and computational approaches have been 
explored in the literature to address differential equations. Some 
of these techniques include the differential transform method, 
Bernoulli polynomials, Runge-Kutta 4th order method and 
cubic spline method. Shalini & Sathyavathy [6] analyzed the 
second order boundary value sine wave problem using Laplace 
transform and finite difference methods. They concluded that 
the wave elongation enhances the convergence of results when 
compared to closed-form solutions obtained through explicit 
methods. Ahmad et al. [7] discussed the classical 
approximation technique to analyze the velocity profile linked 
with the Falkner-Skan boundary layer problem, focused on 
solving the boundary layer equation for a model scenario with a 
significant region of strong reverse flow. The problem delves 
into the behavior of a viscous fluid flowing over a semi-infinite 
flat plate against an adverse pressure gradient. The investigation 

optimizes dimensionless velocity profiles for reverse wedge 
flow, showcasing the results graphically across varying values 
of the wedge angle parameter � (from 0 to 2.5). The solution is 
determined using the weighted residual method (WRM), and a 
comparison is drawn between WRM and the homotopy 
perturbation method specifically for � � 0. 

Addressing the nonlinear Falkner-Skan boundary-value 
problem involves resolving nonlinear differential equations 
particularly, finding the solutions that characterize boundary 
layer flows along a wedge. Asaithambi [8] aimed to reveal the 
underlying mathematical insights governing this challenging 
fluid dynamics problem. Kokurin et al. [9] used 
finite-difference method for tackling fractional differential 
equations of order 1/2. These equations involve derivatives of 
non-integer order, which are fundamental in describing various 
complex phenomena. The effort focused on developing 
numerical techniques that could efficiently handle these unique 
equations, contributing to the computational tools available for 
solving fractional-order problems. Sharma et al. [10] employed 
finite difference approach to investigate the numerical aspects 
of fractional boundary layer flow over a stretching sheet with 
varying thickness. The focus is on understanding the behavior 
of fluid flow within this complex system, where the sheet is 
elongated and its thickness changes. Sharma et al. [10] applied 
numerical technique to analyze the intricate characteristics of 
the flow induced by both forced and free convective boundary 
layer flows of a magnetic fluid over a flat plate focused towards 
the understanding of fractional-order phenomena in boundary 
layers. Tzirtzilakis et al. [11] considered the influence of a 
localized magnetic field on the fluid flow, aiming to 
comprehend the interplay between magnetic effects and 
convective flows. Xie et al. [12] worked over the problem 
involving high-order compact finite difference schemes for 
addressing systems of third-order boundary value problems. 
Their focus was on devising numerical methods that offer 
enhanced accuracy and efficiency in solving complex equations 
of this nature and aimed for advancing computational tools that 
can contribute to the realm of solving intricate boundary value 
problems with higher-order systems. 

This study replicates the work conducted by Alavi and 
Aminikhah [5] utilizing the cubic spline method to investigate 
the solution of Falkner–Skan boundary-layer problem. 
However, we approach the same problem using the finite 
difference method and subsequently compare our results with 
those obtained through the cubic spline method. Through this 
comparative analysis, we aim to offer insight into the accuracy 
and effectiveness of the finite difference approach in relation 
to the cubic spline method for this particular problem. 

 

Figure 1. Two-Dimensional boundary layer formulation. 
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2. Flow Analysis and Mathematical 

Formulation 

Assume that we have a flow occurring over a flat plat, as 
illustrated in Figure 1. This flow possesses certain unchanging 
attributes, such as being incompressible and maintaining 
consistent characteristics throughout the process. Additionally, 
there are no external forces acting on the flow. This specific 
setup gives rise to a set of equations that plays a crucial role in 
describing the behavior of this type of flow. 

The boundary layer equations [13-19] of conservation of 
mass, conservation of linear momentum are 
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Here 
  represents the velocity component in the 
horizontal �  direction, �  symbolizes the velocity 
component in the vertical � direction. � stands for pressure, 
which indicates the force exerted by the fluid on its 
surroundings. �  denotes density, �  represents kinematic 
viscosity. 

Suppose the wall is impenetrable. In this situation, the 
velocity of the fluid must satisfy two conditions: firstly, it 
should have no velocity perpendicular to the surface (zero 
transverse velocity) at the surface itself, and secondly, it 
should adhere to the no-slip rule, which means the horizontal 
velocity at the surface 
 is zero. As we move away from the 
surface within the boundary layer, the velocity of the fluid 
needs to approach the upstream velocity 
�(�)  while 
considering the thickness of the boundary layer �. Given that 
the pressure is assumed to stay constant within the boundary 
layer, the equation (3) can't be used in this case. Instead, 
equation (2) yields. 
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2.1. Similarity Transformation 

Similarity transformations [20-26] are commonly used to 
analyze and solve certain types of flow problems. These 
transformations help to simplify the governing equations of 
fluid motion, making them more amenable for analysis or 
numerical solution. One of the most well-known applications 
of similarity transformations in fluid dynamics is in boundary 
layer theory [27-33]. In the present case we consider the 
similarity function as 

� =	√���( )�!"#
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2.2. Von Mises Transformation 

For Von Mises transformation consider the relations 
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The velocity components (
, �) from stream function � 
are 
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Using Von Mises transformation, we get 
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The flow outside the boundary layer can be considered as 
inviscid. 

From Bernoulli’s equation we have 

�� + 4�/�
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So 
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inside the boundary layer whatever pressure gradient will be 
there that will be equal to the outside pressure gradient so 
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For these values Eq. (4) now gets the form 

�---( ) + ()

* �( )�-( ) + 561 − �-*8 = 0,      (17) 

This 3rd order nonlinear ordinary differential equation is 
known as Falkner-Skan equation. Its boundary conditions are 

�(0) = �-(0) = 0, lim%→� �-( ) = 1,          (18) 

Eq. (17) is the well-known Falker-Skan Equation where 
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�� � defines the shape of the velocity profile. 

2.3. Energy Equation 

For energy equation, as a special case consider surface or 
the wall having a uniform temperature, so temperature will 
remain constant [34-40]. Then 
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With boundary conditions 

?�@, 0) = ?A , ?(�,∞) = ?�,          (20) 

In the above equation ?A and ?� denotes the wall and the 
external temperature. 

The exact solution of the energy equation would be of the 
form 

? =	?A + C(?�−?A),         (21) 

Applying the Von Mises transformation over Eq. (19) gives 

C--( ) + ()

* 	DE�-( )C-( ) − F	DE�-( )C( ) = 0,    (22) 

with boundary conditions 

C(0) = 1, lim%→� C( ) = 0,             (23) 

where DE = �
G  is the dimensionless Prandtl number. The 

function C( ) defines shape of temperature profiles [41-44]. 

3. Finite Difference Method Solution 

The finite difference method is presented in this section 
before being utilized to resolve the mentioned boundary layer 
problems. By replacing the derivatives in the differential 
equation with their approximations, which are the 
approximate finite difference values, one may solve a 
two-point boundary value problem using the finite difference 
approach. Specifically, third order boundary value problems 
(BVPs) on the interval by assuming 

�---(�) = 
H�, �(�), �-(�), �--(�)I, J = H�K, �LI    (24) 

subject to the boundary conditions 

�(�K) =  K, �-(�K) = CK, �-(�) = MK,        (25) 

In order to solve a boundary value problem, we segment the 
range [ �K, �L ] into equal subintervals of width ℎ . Each 
subinterval has neighboring points, and the prime notation 
signifies differentiation with respect to � . Constants 
դK, CK, OFP	MK are given. we convert the continuous problem 

into discrete steps, allowing us to apply boundary conditions 

and approximate the solution point by point. So that, 

�Q= �0 + Qℎ, Q = 1, 2, 3,…, N.           (26) 

The corresponding values of �(�)  at each point are 
obtained by, 

�(�R) = �R = �(�R + Qℎ),            (27) 

Using Taylor series expansion second order central 
difference formula 

�-(�) = ST"#,ST+#
*U + V(ℎ),         (28) 

�--(�) = ST+#,*ST)ST"#
U� + V(ℎ*),          (29) 
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Rearranging the central difference formulas mentioned 
in equations (28) to (30) and substituting them into equation 
(22), we simplify equation (22) into a set of linear equations. 
To solve this set of equations, we apply the finite difference 
method while considering the boundary conditions 
provided by equation (23). By using smaller sub-intervals, 
the solution can be improved to achieve the desired level of 
accuracy. 

4. Result and Discussion 

The flow of fluid over a flat plate is analyzed working with 
the Von Mises Transformation. This method involves solving 
a set of mathematical equations that describe the behavior of 
the flow. To solve these equations, we have used the numeical 
technique called finite difference method (FDM), which is a 
way to approximate the solutions. When we change the values 
of certain parameters, like DE, the behavior of the fluid flow 
changes as well. We've conducted different cases by varying 
these parameters and obtained numerical values and graphs as 
results. The focus was to compare these results with the 
outcomes of cubic spline interpolation, which is another 
mathematical technique used for approximating curves. We've 
organized our findings into different tables and figures to 
make it easier to understand the comparisons; 

Table 1, Table 2, Table 3, and Table 4 represents a 
comparison of special cases of present solutions with already 
available work of Alavi and Aminikhah [5]. In these tables, 
we've set specific values for the parameters F and DE to be 
0.5, and the parameter � is taken as variable varying from 0 
to 1. For each case, we've calculated and displayed values for 
different functional values of �(η), �'(η), θ(η)	and	θ'(η).	The 
comparison of these results with the outcomes from cubic 
spline interpolation in [5] are in good agreement. 

Table 1. Comparison of �( ) for different � using n=0.5, Pr=0.5. 

η 
] = ^  ] = ^. _  ] = `  

Present cubic spline method [5] Present cubic spline method [5] Present cubic spline method [5] 

0 0 0 0 0 0 0 
1 0.028872 0.028867 0.072185 0.072145 0.025200 0.025207 
2 0.115124 0.115110 0.264830 0.264860 0.095132 0.095211 
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η 
] � ^  ] � ^. _  ] � `  

Present cubic spline method [5] Present cubic spline method [5] Present cubic spline method [5] 

3 0.258010 0.258010 0.545280 0.545370 0.335671 0.335692 
4 0.455450 0.455460 0.884880 0.884720 0.664761 0.664815 
5 0.703470 0.703420 1.261214 1.261409 1.042231 1.042241 
6 0.996320 0.996390 1.658735 1.658799 1.240931 1.240946 
7 1.326840 1.326940 2.067033 2.067112 1.443381 1.443450 
8 1.687110 1.687240 2.273242 2.273265 1.648123 1.648175 
9 2.069110 2.069270 2.480327 2.480343 1.854477 1.854509 
10 2.465810 2.465900 2.687951 2.68761 1.992539 1.992566 

Table 2. Comparison of �′� � for different � using n=0.5, Pr=0.5. 

η 
] � ^  ] � ^. _  ] � `  

Present cubic spline method [5] Present cubic spline method [5] Present cubic spline method [5] 

0 0 0 0 0 0 0 
1 0.1383 0.1384 0.2763 0.2764 0.2352 0.2353 
2 0.2756 0.2756 0.5006 0.5008 0.4284 0.4284 
3 0.4096 0.4098 0.6741 0.6741 0.7031 0.7035 
4 0.5364 0.5365 0.8005 0.8006 0.8608 0.8609 
5 0.6517 0.6519 0.8863 0.8865 0.9416 0.9417 
6 0.7513 0.7518 0.9400 0.9400 0.9638 0.9639 
7 0.8322 0.8323 0.9709 0.9711 0.9782 0.9784 
8 0.8937 0.8939 0.9871 0.9873 0.9873 0.9876 
9 0.9370 0.9374 0.9917 0.9919 0.9929 0.9929 
10 0.9652 0.9653 0.9948 0.9948 0.9952 0.9956 

Table 3. Comparison of C� � for different � using n=0.5, Pr=0.5. 

η 
] � ^  ] � ^. _  ] � `  

Present cubic spline method [5] Present cubic spline method [5] Present cubic spline method [5] 

0 1.0000 1.0000 1.0000 1.0000 1.000 1.0000 
1 0.8505 0.8506 0.8188 0.8189 0.8879 0.8879 
2 0.7066 0.7068 0.6446 0.6447 0.7784 0.7785 
3 0.5726 0.5726 0.4910 0.4912 0.5750 0.5753 
4 0.4522 0.4523 0.3607 0.3609 0.4018 0.4019 
5 0.3475 0.3476 0.2551 0.2552 0.2648 0.2649 
6 0.2596 0.2598 0.1734 0.1735 0.2100 0.2102 
7 0.1884 0.1886 0.1132 0.1133 0.1639 0.1639 
8 0.1326 0.1327 0.0708 0.0709 0.1258 0.1259 
9 0.0905 0.0906 0.0551 0.0551 0.0950 0.0952 
10 0.0598 0.0599 0.0424 0.0426 0.0780 0.0781 

Table 4. Comparison of C′� � for different � using n=0.5, Pr=0.5. 

η 
] � ^  ] � ^. _  ] � `  

Present cubic spline method [5] Present cubic spline method [5] Present cubic spline method [5] 

0 -0.3610 -0.3610 -0.4445 -0.4445 -0.5400 -0.5400 
1 -0.2708 -0.2707 -0.4303 -0.4301 -0.5337 -0.5336 
2 -0.1518 -0.1517 -0.3934 -0.3933 -0.4554 -0.4553 
3 -0.0864 -0.0863 -0.3419 -0.3419 -0.3734 -0.3732 
4 -0.0426 -0.0425 -0.2833 -0.2831 -0.2846 -0.2845 
5 -0.0181 -0.0180 -0.2241 -0.2240 -0.2416 -0.2415 
6 -0.0086 -0.0084 -0.1690 -0.1690 -0.2014 -0.2012 
7 -0.0028 -0.0025 -0.1216 -0.1215 -0.1646 -0.1645 
8 -0.0015 -0.0014 -0.0834 -0.0831 -0.1320 -0.1320 
9 -0.0004 -0.0001 -0.0678 -0.0677 -0.1128 -0.1126 
10 -0.0001 0.0000 -0.0545 -0.0543 -0.0954 -0.0953 

 

Figure 2 shows the velocity gradient �′′� � for different 
values of �. The graph indicates a good agreement for the 
present solutions with the already available solutions in [5]. 
Figure 3 represents the velocity profile �′� � for different 
values of �. The graph indicates that an increase in the 
parameter � the velocity profile increases. Figure 4 shows 
this behavior of temperature profile C� �  for different 
values of the Prandtl numbers Pr while keeping β=0. From 

figure it is noted that by increasing the Prandtl numbers Pr 
the temperature profile C� � decreases. Figure 5 shows 
this behavior of temperature profile C� �  for different 
values of the Prandtl numbers Pr while keeping β=1. From 
figure it is again noted that by increasing the Prandtl 
numbers Pr the temperature profile C� � decreases. It is 
also noted that the thermal boundary layer thickness [41-44] 
reduces quickly for β=0 as compared to when β=1. Figure 6 
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represent the temperature gradient C′� �  for different 
values of Prandtl numbers Pr when β=0 Figure 7 represent 
the temperature gradient C′� �  for different values of 
Prandtl numbers Pr when β=1. From these two figures it is 

the change in temperature gradient C′� � with respect to 
the Prandtl numbers Pr is higher for β=0 as compared to 
when β=1. 

 

Figure 2. Comparison of �--� � �VE	PQ��aEaFb	�Oc
ad	V�	�. 

 

Figure 3. Comparison of �-� � �VE	PQ��aEaFb	�Oc
ad	V�	�. 
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Figure 4. Comparison of C� � �VE	PQ��aEaFb	�Oc
ad	V�	DE when � � 0. 

 

Figure 5. Comparison of C� � �VE	PQ��aEaFb	�Oc
ad	V�	DE when � � 1. 
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Figure 6. Comparison of C′� � �VE	PQ��aEaFb	�Oc
ad	V�	DE when � � 0. 

 

Figure 7. Comparison of C′� � �VE	PQ��aEaFb	�Oc
ad	V�	DE when � � 1. 

5. Conclusion 

In this paper, we addressed the problem of laminar 
boundary layer flow over a flat plate, which can be described 
by a third-order system of nonlinear ordinary differential 
equations. The Finite Difference Method was used to 

numerically solve this problem. The paper also discussed the 
improvement of the initial values for the Falkner-Skan second 
derivative equations to achieve more accurate results. We 
compared numerical results obtained through the Finite 
Difference Method with those obtained using the cubic spline 
interpolation approach. The presented method was found to 
provide satisfactory and accurate solutions for the laminar 
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boundary layer flow problem. Overall, the paper highlights the 
application of the Finite Difference Method to solve the 
laminar boundary layer flow problem and demonstrates its 
accuracy by comparing it with the results obtained through the 
cubic spline approach. 
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