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Abstract: Some aspect of the motion of gas or vast-number-of-particles distributed in cosmic space under action of the 

gravitational force may be treated as a fluid dynamic motion without pressure. Generalized Integral representation Method 

(GIRM) is applied to fluid dynamic motion of gas or particles to obtain the accurate numerical solutions. In the present theory, 

the relativistic effects are neglected. The numerical results by GIRM are compared with the solutions by Finite Difference 

Method (FDM). Spreading and merging of gas or particles and effects of initial velocity distribution are studied numerically. 

GIRM solutions give reasonable and accurate solutions. 
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1. Introduction 

In the process of the star formation in early cosmos, the 

vast number of particles were distributed in the cosmic space 

almost uniformly, and the stars were formed under the action 

of the gravitational force [1]. Some aspect of the motion of 

particles may be treated as a fluid dynamic motion without 

pressure [2,3]. The fluid dynamic approach may simplify the 

theory and numerical simulation. In the present theory, the 

relativistic effects are neglected, since it is not so important in 

the following studies. General integral representation method 

(GIRM) was applied to the numerical calculations below. 

Spreading and merging of gas or particles and effects of 

initial velocity distribution are studied numerically. The 

numerical results by GIRM are compared with the solutions 

by Finite Difference Method (FDM). GIRM solutions give 

reasonable and accurate solutions. 

2. One-Dimensional Fluid Motion 

without Pressure 

Some aspect of motion of gas or vast number of particles 

distributed in space under the action of the gravitational force 

may be treated as a fluid dynamic motion without pressure 

[2,3]. If x  and t  refer to the coordinates and time, the 

fluid motion is expressed as 
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where ρ , ν , u  and Π  is the mass density, kinematic 

viscosity, velocity and gravitational potential (Appendix A). 

G  is the gravitational constant. 

We introduce Gaussian type Generalized Fundamental 

Solution (GFM) ),(
~ ξxG  with scale γ  [4,5]:  
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First, we obtain an integral representation of the equation 

of continuity given by Eq. (1). For the purpose, we notice 
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Multiplying ),(
~ ξxG  on the both sides of Eq. (1) and 

integrating in region Lx <<0 , we obtain 
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If we define ),(
~

1 ξδ x  as 
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and rewrite Eq. (6), then, we have 
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Exchanging x  and ξ  in Eq. (8), we obtain a generalized 

integral representation:  
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Now, we obtain an integral representation of the equation 

of motion given by Eq. (2). For the purpose, we notice 
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Multiplying ),(
~ ξxG  on the both sides of Eq. (2), we obtain 
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Exchanging x  and ξ  in Eq. (13), we obtain a generalized 
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integral representation of Eq. (2):  
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),( txΠ  and xtx ∂Π∂ ),(  are obtained by Eqs. (A24a) and 

(A24b) in Appendix A, repectively.  

Then, we can obtain ),( txρ  and ),( txu  numerically, if 

we use the following process:  

),( txρ  and ),( txu  are known →  ttx ∂∂ ),(ρ  

from Eq. (9) and ttxu ∂∂ ),(  from Eq. (14) →  

),( dttx +ρ  from ttx ∂∂ ),(ρ  and ),( dttxu +  and 

ttxu ∂∂ ),(  →  repeat 

(15) 

3. Numerical Results in One-Dimension 

3.1. Zero Initial Velocity 

First, we study the case where the initial velocity is zero: 

0)0,( =xu , Lx ≤≤0 ,            (16) 

where the infinite space is approximated by a computational 

region Lx <<0 . In this case, the widely distributed fluid 

continues to concentrate because of the gravitational 

attraction. This may correspond to aggregation of particles or 

gas in cosmic space. The initial conditions of the initial 

density are exponential, trapezoidal and rectangular 

distributions:  
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Rectangular distribution: 
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The boundary conditions are given by 
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where the infinite time span is approximated by T . 

In the present calculations, the explicit time evolution is 

used:  

dt
t

tx
txdttx

∂
∂+=+ ),(

),(),(
ρρρ ,         (22) 

dt
t

txu
txudttxu

∂
∂+=+ ),(

),(),( .      (23) 

In FDM (Finite Difference Method) calculations, the 

central difference is used for the derivatives of unknown 
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In GIRM (Generalized Integral Representation Method) 

calculations, the following approximations are used for the 

weighted integral of unknown ),( txf : 
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3.1.1. Without Pressure and without Viscosity 

The parameters for numerical calculations are as follows: 

4=L ; 321,16181,41,21=M ; MLdx = ; dx=γ ; 

0025.0=dt ; dtT 3000= ; 0015.0=G ; 0=ν ; 

0008.0,0004.0,0002.0,0=α , 

(26) 

where M , dx , γ , dt  and α  are the number of 

division of region Lx <<0 , length of element, scale of G
~

, 

time interval and artificial damping coefficient. The 

numerical solution is obtained for Tt ≤≤0 . The artificial 

damping is given by adding 22 x∂∂ ρα  and 22 xu ∂∂α  to 
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ρ  and u , respectively, at every step of time evolution [6].  

Distributions of density ρ  and velocity u  due to the 

initial trapezoidal distribution of ρ  are shown in Figs. 1a 

and 1b, respectively. Those due to the initial rectangular 

distribution of ρ  are shown in Figs. 2a and 2b, respectively. 

Effects of artificial damping α on density ρ and velocity u 

due to initial rectangular distribution of ρ are shown in Figs. 

3a and 3b, respectively. FDM and GIRM give similar 

numerical results. However, if we observe the tendency of 

density ρ as M  increases, GIRM calculations give more 

reasonable shape of density distribution. This suggests the 

accuracy of GIRM results is higher than that of FDM results.  

3.1.2. Without pressure and with Viscosity 

The parameters for numerical calculations are as follows:  

4=L ; 41=M ; MLdx = ; dx=γ ; 0025.0=dt ; 

dtT 5000,4000,3500= ; 002.0,0015.0,001.0=G ; 

01.0=ν ; 0=α , 

(27) 

where ν  is kinematic viscosity.  

Effects of gravity G on density ρ and velocity u in case of 

exponential initial distribution of ρ are shown in Figs. 4a and 

4b. Comparisons among various distributions are given in 

Figs. 5a and 5b. FDM and GIRM give similar numerical 

results. However, GIRM calculations give sharper 

concentration of density ρ. This suggests the accuracy of 

GIRM results is higher than those of FDM results.  

3.1.3. Merge of Multiple Lumps of Gas or Particles 

We study a case where multiple lump of gas or particles 

exist at time 0=t : 
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where iM , iξ  and iδ  are mass, location and scale of a 

lump of gas or particles. The lumps separated initially 

shorten the mutual distances and merge into a lump under the 

gravitational force.  

The parameters for numerical calculations are as follows:  

4=L ; 81=M ; MLdx = ; dx=γ ; 0025.0=dt ; 

dtT 30000= ; 001.0=G ; 03.0=ν ; 0002.0=ρα ; 

0=velα ; 3=N ; 2.00 =M ; 1.01 =M ; 15.02 =M ; 

L25.00 =ξ ; L6.01 =ξ ; L75.02 =ξ ; 

(29) 

LL 05.0,025.00 =δ ; LL 05.0,025.01 =δ ; 

LL 05.0,025.02 =δ ; 

Numerical results are shown in Figs. 6 and 7. In Figs. 6 

and 7, three lumps of gas or particles at 0=t  merge into 

two and one lumps under gravitational force, respectively. If 

we continue the calculation, the two lumps at 90=t  in Fig. 

6 will merge into one lump.  

3.2. Non-Zero Initial Velocity 

Now, we study the case where the initial velocity is not 

zero:  
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Half of the first term on the right hand side is called Sigmoid 

function. Sigmoid function is zero at Lx 5.0= , and it tends 

to zero and one when x  tends to ∞+  and ∞− , 

respectively. The initial velocity distribution like this may 

correspond to the velocity distribution after big bang of 

cosmos or explosion of a star. However, in one- and 

two-dimensional gravity fields, we need infinite energy to 

move a particle from finite position to infinity. Hence, the 

fluid can’t expand to infinity against gravity. This is quite 

different from three-dimensional case.  

The initial density distribution is an exponential one: 
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The parameters for numerical calculations are as follows: 

14=L ; 640,160,80=M ; MLdx = ; dx=γ ; 

0025.0=dt ; dtT 2000= ; 

04.0,02.0,01.0,0=G ; 02.0,0=ν ; 

0048.0,0032.0,0016.0,0008.0,0=α .          (32) 

3.2.1. Case When Initial Velocity Distribution is Mild 

( 05.0=λ ) 

GIRM results in case of mild initial velocity distribution 

( 05.0=λ ) are shown in Fig. 8. The initial velocity 

distribution is shown in, for example, Fig. 8(a). In case of 

mild initial velocity distribution, the fluid spreads to infinity 

when G  is zero. However, the fluid continue to concentrate 

as far as the calculation converges when G  is positive. 

Finally, the calculation diverges before the fluid region 

comes back completely to the origin. 
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Figure 1a. Density ρ due to Trapezoidal initial distribution of ρ. 
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Figure 1b. Velocity u due to Trapezoidal initial distribution of ρ. 
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Figure 2a. Density ρ due to Rectangular initial distribution of ρ. 
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Figure 2b. Velocity u due to Rectangular initial distribution of ρ. 



 Applied and Computational Mathematics 2015; 4(3-1): 15-39 23 

 

 

Figure 3a. Effects of artificial damping α on density ρ due to initial rectangular distribution of ρ. 
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Figure 3b. Effects of artificial damping α on velocity u due to initial rectangular distribution of ρ. 



 Applied and Computational Mathematics 2015; 4(3-1): 15-39 25 

 

 

Figure 4a. Effects of gravity G on density ρ in case of exponential initial distribution of ρ. 

3.2.2. Case When Initial Velocity Distribution is Moderate 

( 01.0=λ ) 

GIRM results in case of moderate initial velocity 

distribution ( 01.0=λ ) are shown in Fig. 9. The initial 

velocity distribution is shown in, for example, Fig. 9(a). In 

case of moderate initial velocity distribution, the fluid 

spreads first and then shrinks backward. Finally, the 

calculation diverges before the fluid region comes back to the 

origin.  

3.2.3. Case When Initial Velocity Distribution is Radical 

( 002.0=λ ) 

GIRM results in case of radical initial velocity distribution 

( 002.0=λ ) are shown in Fig. 10. The initial velocity 

distribution is shown in, for example, Fig. 10(a). In case of 

radical initial velocity distribution, the fluid spreads first and 

then shrinks backward rapidly. Finally, the calculation 

diverges before the fluid region comes back to the origin. 

4. Nd -Dimensional Fluid Motion without 

Pressure 

If ix , ),,2,1( dNi ⋯=  and t  refer to the coordinates 

and time, the fluid motion in dN -dimension is expressed as 

0=
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Figure 4b. Effect of gravity G on velocity u in case of exponential initial distribution of ρ. 

The summation convention is used for the repeated indices, 

that is, 222

2

22

1

22

Nii xxxxx ∂∂++∂∂+∂∂=∂∂∂ ⋯ . iu , 

),,2,1( dNi ⋯=  refers to the velocity vector. ρ , ν  and 

Π  is the density, kinematic viscosity and gravitational 

potential (Appendix A). G  is the gravitational constant. 

Since it’s not difficult to obtain two-dimensional expressions 

from three-dimensional ones, we develop theory using 

three-dimensional expressions below.  

We rewrite the basic equations Eq. (34) as follows:  

Non-uniformity equation:  

j

i
ji

x

u

∂
∂=θ .                  (36) 

Constitutive equation:  
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Equilibrium equation:  
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We introduce Gaussian type Generalized Fundamental 

Solution (GFM) ),(
~

ξxG  with scale iγ  , ),,2,1( dNi ⋯=  

[4,5]:  

∏
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First, we obtain an integral representation of the equation 

of continuity given by Eq. (33). For the purpose, we notice 
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Figure 5a. Comparisons of density ρ among various initial distributions of ρ. 
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Multiplying ),(
~

ξxG  on the both sides of Eq. (33) and 

integrating in region V , we obtain 
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where xS  and inx  are the boundary surface of V  and the 

unit outward normal to xS , respectively. If we rewrite Eq. 

(42), then, we have 
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Exchanging x  and ξ  in Eq. (43), we obtain a generalized 

integral representation for Eq. (33):  
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Now, we obtain an integral representation of the equation 

of motion given by Eq. (34). From Eq. (41), we have 

),(
~

),(
),(

~
),(

),(
~),(

ξxx
ξxx

ξx
x

ji

j

i

j

i tu
x

Gtu
G

x

tu δ−
∂

∂=
∂

∂
.  (45) 



28 Hiroshi Isshiki et al.:  Application of Generalized Integral Representation (GIRM) Method to Fluid Dynamic Motion of  

Gas or Particles in Cosmic Space Driven by Gravitational Force 

 

 

Figure 5b. Comparisons of velocity u among various initial distributions of ρ. 

 

Figure 6. Merge of three lumps of gas or particles under gravity (GIRM, δ0=δ1=δ2=0.1). 

 

Figure 7. Merge of three lumps of gas or particles under gravity (GIRM, δ0=δ1=δ2=0.2). 
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Rewriting Eq. (46), we have 
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Exchanging x  and ξ  in Eq. (47), we obtain a generalized 

integral representation for Eq. (36):  
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The generalized integral representation of Eq. (38) is 

obtained similarly. From Eq. (41), we have 
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Multiplying ),(
~

ξxG  on the both sides of Eq. (38) and 

integrating in region V , we obtain

 

Figure 8. GIRM results (Mild initial velocity distribution). 
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Figure 9. GIRM results (Moderate initial velocity distribution) 

Rewriting Eq. (50), we have 
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Exchanging x  and ξ  in Eq. (51), we obtain a generalized integral representation of Eq. (38):  
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Figure 10. GIRM results (Radical initial velocity distribution). 

),( txΠ  and ixt ∂Π∂ ),(x  are obtained by Eqs. (A17) or 

(A10) in Appendix A in two- or three-dimension, 

respectively.  

Then, we can obtain ),( txρ  and ),( tui x  numerically, if 

we use the following process:  

),( txρ  and ),( tui x  are known →  [ ttx ∂∂ ),(ρ  

from Eq. (44)] and [ ),( tji xθ  from Eq. (48) →  

),( tq ji x  from (37) →  ttui ∂∂ ),(x  from (52)]  

→ ),( txρ from ttx ∂∂ ),(ρ  and ),( dttui +x   

from ttui ∂∂ ),(x  →  repeat.                  (53) 

5. Numerical Results in Two-Dimension 

5.1. Zero Initial Velocity 

In the present calculations, the explicit time evolution is 

used:  
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In FDM (Finite Difference Method) calculations, the 

central difference is used for the derivatives of unknown 

function ),( txf : 
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In GIRM (Generalized Integral Representation Method) 

calculations, the following approximations are used for the 

weighted integral of unknown function ),( txf : 
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Eq. (56e) is very important to reduce the computational time. 

5.1. Zero Initial Velocity 

First, we study the case where the initial velocity is zero: 

0)0,,()0,( == yxuu x , LyLLxL ≤≤−≤≤− & ,   (57) 

where the infinite space is approximated by a computational 

region LyLLxL ≤≤−≤≤− & . In this case, the widely 

distributed fluid continues to concentrate because of the 

gravitational attraction. This may correspond to aggregation 

of particles or gas in space. 

5.1.1. Single Lump of Gas or Particles 

Let’s assume a single lump of gas or particles. We consider 

two kinds of initial density distributions. 

Exponential distribution: 
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Rectangular distribution: 
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An initial filter to reduce the numerical noise due to the 

discontinuity of the initial density distribution is defined as 
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The parameters for numerical calculations are as follows: 

4== BL ; 41,21== NM ; MLdx = ; NLdy = ; 

dx=1γ ; dy=2γ ; 0025.0=dt ; dtdtT 600,400= ; 

1.0=G ; 0=ν ; 0=ρα ; 0=velα ; 

offon,_ =fltini ;                           (61) 
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Figure 11. Convergence tendency of FDM calculation (Exponential distribution) 

Convergence tendency of FDM and GIRM solutions is 

shown in Figs. 11 and 12, respectively. Effects of the initial 

filter are shown in Figs. 13, 14, 15 and 16. We study the 

performance of the initial filter given by Eq. (60). The initial 

filter was applied to the rectangular density distribution given 

by Eq. (59). The results are shown in Figs. 13 and 14 in case 

when M=N=21 and in Figs. 15 and 16 in case when M=N=41. 

When the filters are applied to GIRM, the numerical noise 

due to discontinuity of initial density distribution is reduced 

sufficiently without damaging the accuracy. 

5.1.2. Merge of Multiple Lumps of Gas or Particles 

Let’s assume multiple lumps of gas or particles. We 

consider the following initial density distribution: 
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The parameters for numerical calculations are as follows: 
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Figure 12. Convergence tendency of GIRM calculation (Exponential distribution) 

8== BL ; 41== NM ; MLdx = ; NLdy = ; 

dx5.01 =γ ; dy5.02 =γ ; 0025.0=dt ; dtT 2000= ; 

1.0=G ; 2=ν ; 016.0=ρα ; 016.0=velα ; 

off_ =fltini ;                              (63)  

In this examples, we used dx5.01 =γ  and dy5.02 =γ  

instead of dx=1γ  and dy=2γ , since the former choice 

gave slightly reasonable results than the latter choice. 

Numerical results are shown in Fig. 17. In Fig. 17, two 

lumps of gas or particles at 0=t  merge into one lump 

under gravitational force. 

5.2. Non-Zero Initial Velocity 

Now, we study the case where the initial velocity is not 

zero: 
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LyLLxL ≤≤−≤≤− & ,    (64) 

where 
22

yxr += . The infinite space is approximated by 

LyLLxL ≤≤−≤≤− & . 

The initial density distribution is given by 
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The parameters for numerical calculations are as follows: 

4== BL ; 21== NM ; MLdx 2= ; NBdy 2= ; 

dx6.01 =γ ; dy6.02 =γ ; 0025.0=dt ; dtT 5000= ; 

45.0,3.0,15.0=G ; 01.0=ν ; ,0=ρα ; ,0=velα ; 

off_ =fltini ;                              (66) 

In this examples, we used dx6.01 =γ  and dy6.02 =γ  

instead of dx=1γ  and dy=2γ , since the former choice 

gave slightly reasonable results than the latter choice. 

The numerical results are given in Figs. 18, 19 and 20 for 

G=0.15, G=0.3 and G=0.45, respectively. In two-dimensional 

gravity field too, we need infinite energy to move a particle 

from finite position to infinity as in one-dimensional gravity 

field. Hence, the fluid can’t expand to infinity against gravity. 

This is quite different from three-dimensional case. As is 

shown in the numerical examples, the fluid tries to spread 

first and then comes back to the origin. As the gravity 

increases, the fluid comes back rapidly. In Fig. 20, density 

),0,( txρ  at 5.12=t  includes a spurious oscillation. If 

21=M  and 21=N  are increased to 41=M  and 

41=N , the spurious oscillation is reduced. 
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Figure 13. Effects of initial filter on density ρ on y=0 (Rectangular distribution). 

 

Figure 14. Effects of initial filter on velocity u on y=0 (Rectangular distribution). 
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Figure 15. Effects of initial filter on density ρ on y=0 (Rectangular distribution). 

 

Figure 16. Effects of initial filter on velocity u on y=0 (Rectangular distribution). 

 

Figure 17. Merge of two lumps of gas or particles (GIRM results). 
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Figure 18. Spreading and coming back of fluid (G=0.015, GIRM results). 

 

Figure 19. Spreading and coming back of fluid (G=0.03, GIRM results). 

 

Figure 20. Spreading and coming back of fluid (G=0.045, GIRM results). 

6. Conclusions 

In the present paper, application of Generalized Integral 

Representation Method (GIRM) to fluid dynamic motion of 

gas or particles in cosmic space was discussed. Spreading 

and merging or gas or particles under gravitational force was 

discussed through numerical calculations, and interesting 

results were obtained. Using one- and two-dimensional 

theory, merging of lumps of gas or particles was discussed. 

The effects of initial velocity field were also discussed. In 

contrast to three-dimensional theory, the fluid can’t spread to 

infinity in one- and two-dimensional theory. This means the 

importance of three-dimensional theory. Merging and 

spreading of gas or particles may be treated by the fluid 

dynamic approach, though we may need very big 

computational power and vast amount of time to obtain 

realistic numerical results in three-dimensional space. 

In the present theory, although viscosity was included, 

pressure was neglected. For further discussion, introduction 

of pressure and change of internal state of substance would 

be necessary. We studied one- and two-dimensional problems 

in the present paper. However, the real cosmic space is three 

dimensional. Before challenging three dimensional 

calculations, we need to study more to improve accuracy, 

stability and to reduce computational time [7]. 

Appendix A. Gravitational Potential 

A.1. Newton’s law in three-dimensional space: 

Force 12F  acting on particles 1 and 2 with mass 1m  and 

2m , respectively, is given by 

||

)(

21

2121
12

xx

xx
F

−
−−= mm

G ,            (A1) 

where 1x  and 2x  are the position vectors of the particles 1 

and 2, respectively, and 
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21

2

21

2

2121 )()()(|| zzyyxx −+−+−=− xx .  (A2) 

The force field UF  of a unit mass at the origin of the 

coordinates is given by 

3

21

21

||

)(

xx

xx
F

−
−−= GU .            (A3) 

The potential UΠ  of three-dimensional gravitational field of 

a unit mass at the origin of the coordinates is defined as 

UU Π−∇=F .              (A4) 

Hence, we obtain 
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where r  is 
222|| zyx ++=x , and UΠ  is assumed to 

tend to 0  as r  tends to infinity.  

If we use Gauss integral theorem 
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we have for the gravitational potential UΠ  of a unit mass 

given by Eq. (A5) satisfies 
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Hence, the potential ρΠ  of the density distribution ρ : 

x
xx

x ′
′−

′
−=Π ∫∫∫ dG

||

)(ρ
ρ            (A8) 

satisfies 

ρπρ G42 =Π∇ .              (A9) 

The potential iΠ  and the force field iF  at ixx =  due to 

mass jm  ( 1,,1,1,,2,1,0 −+−= Niij ⋯⋯ ) are given by 
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where 

222
)()()(|| jijijiji zzyyxx −+−+−=− xx .  (A11) 

A.2. Newton’s Law in Two-Dimensional Space 

The potential UΠ  of two-dimensional gravitational field 

of a unit mass at the origin of the coordinates is defined as 
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Since 
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where 
22|| yxr +== x , the potential of two-dimensional 

gravitational field due to a unit mass at the origin of 

coordinates is given by 

rGU ln2=Π .              (A14) 

Hence, the potential ρΠ  of the density distribution ρ  

∫∫ ′′−′=Π xxxx dG ||ln)(2 ρρ          (A15) 

satisfies 

ρπρ G42 =Π∇ .             (A16) 

The potential iΠ  and the force field iF  at ixx =  due to 

mass jm  ( 1,,1,1,,2,1,0 −+−= Niij ⋯⋯ ) are given by 
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where 

22
)()(|| jijiji yyxx −+−=− xx .      (A18) 

A.3. Newton’s Law in One-Dimensional Space 

The potential UΠ  of one-dimensional gravitational field 

of a unit mass at the origin of the coordinates is defined as 
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the potential of one-dimensional gravitational field due to a 

unit mass at the origin of coordinates is given by 

||2 xGU π=Π .              (A21) 

Hence, the potential ρΠ  of the density distribution ρ : 

∫∫ ′′−′=Π xdxxxG ||)(2 ρπρ         (A22) 

satisfies 
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The potential iΠ  and the force field iF  at ixx =  due to 

mass jm  ( 1,,1,1,,2,1,0 −+−= Niij ⋯⋯ ) are given by 
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