Applied and Computational Mathematics
2015; 4(3-1): 15-39

Published online February 10, 2015 (http://www.sciencepublishinggroup.com/j/acm)

doi: 10.11648/j.acm.s.2015040301.12
ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online)

(N} J' w. |-
otlencerl

Science Publishing Group

Application of generalized integral representation (GIRM)
method to fluid dynamic motion of gas or particles in
cosmic space driven by gravitational force

Hiroshi Isshikil, Toshio Takiyaz, Hideyuki Niizato’

'IMA, Institute of Mathematical Analysis, Osaka, Japan
Hitachi Zosen Corporation, Osaka, Japan

Email address:

isshiki@dab.hi-ho.ne.jp (H. Isshiki), takiya@hitachizosen.co.jp (T. Takiya), niizato@hitachizosen.co.jp (H. Niizato)

To cite this article:

Hiroshi Isshiki, Toshio Takiya, Hideyuki Niizato. Application of Generalized Integral Representation (GIRM) Method to Fluid Dynamic
Motion of Gas or Particles in Cosmic Space Driven by Gravitational Force. Applied and Computational Mathematics. Special Issue: Integral
Representation Method and its Generalization. Vol. 4, No. 3-1, 2015, pp. 15-39. doi: 10.11648/j.acm.s.2015040301.12

Abstract: Some aspect of the motion of gas or vast-number-of-particles distributed in cosmic space under action of the
gravitational force may be treated as a fluid dynamic motion without pressure. Generalized Integral representation Method
(GIRM) is applied to fluid dynamic motion of gas or particles to obtain the accurate numerical solutions. In the present theory,
the relativistic effects are neglected. The numerical results by GIRM are compared with the solutions by Finite Difference
Method (FDM). Spreading and merging of gas or particles and effects of initial velocity distribution are studied numerically.

GIRM solutions give reasonable and accurate solutions.
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1. Introduction

In the process of the star formation in early cosmos, the
vast number of particles were distributed in the cosmic space
almost uniformly, and the stars were formed under the action
of the gravitational force [1]. Some aspect of the motion of
particles may be treated as a fluid dynamic motion without
pressure [2,3]. The fluid dynamic approach may simplify the
theory and numerical simulation. In the present theory, the
relativistic effects are neglected, since it is not so important in
the following studies. General integral representation method
(GIRM) was applied to the numerical calculations below.
Spreading and merging of gas or particles and effects of
initial velocity distribution are studied numerically. The
numerical results by GIRM are compared with the solutions
by Finite Difference Method (FDM). GIRM solutions give
reasonable and accurate solutions.

2. One-Dimensional Fluid Motion
without Pressure

Some aspect of motion of gas or vast number of particles
distributed in space under the action of the gravitational force

may be treated as a fluid dynamic motion without pressure
[2,3]. If x and ¢ refer to the coordinates and time, the
fluid motion is expressed as
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where p, Vv, u and M is the mass density, kinematic
viscosity, velocity and gravitational potential (Appendix A).
G s the gravitational constant.

We introduce Gaussian type Generalized Fundamental

Solution (GFM) (N;(x,g‘) with scale y [4,5]:
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First, we obtain an integral representation of the equation
of continuity given by Eq. (1). For the purpose, we notice

0p(x.u(x,1) = (. 6) = 0p(x,)u(x,))G(x,&)
Ox ’ Ox
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Multiplying (N;(x,{) on the both sides of Eq. (1) and
integrating in region 0 <x <L , we obtain
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If we define Sl(x, &) as

20D = 5 x.6) ™
X

and rewrite Eq. (6), then, we have

[ 6. {)%dx = [ px.u(x.0) (x, E)dx
~ x=L ’ (8)
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Exchanging x and & in Eq. (8), we obtain a generalized
integral representation:
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Now, we obtain an integral representation of the equation
of motion given by Eq. (2). For the purpose, we notice
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Multiplying é(x,{) on the both sides of Eq. (2), we obtain
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and rewrite Eq. (11), then, we have
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Exchanging x and ¢ in Eq. (13), we obtain a generalized
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integral representation of Eq. (2):
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M(x,t) and AM(x,t)/dx are obtained by Egs. (A24a) and
(A24b) in Appendix A, repectively.

Then, we can obtain po(x,f) and u(x,?) numerically, if
we use the following process:

p(x,t) and u(x,t) areknown — 0p(x,t)/0t
from Eq. (9) and 0u(x,#)/0¢ from Eq. (14) —
p(x,t+dt) from 0p(x,t)/0t and u(x,t+dt) and
Ou(x,t)/0t

(15)

— repeat

3. Numerical Results in One-Dimension
3.1. Zero Initial Velocity

First, we study the case where the initial velocity is zero:

u(x,0)=0, 0<sx<L, (16)

where the infinite space is approximated by a computational
region 0<x<L. In this case, the widely distributed fluid
continues to concentrate because of the gravitational
attraction. This may correspond to aggregation of particles or
gas in cosmic space. The initial conditions of the initial
density are exponential, trapezoidal and rectangular
distributions:
Exponential distribution:

2
x—=0.5L
x,0) =exp| — 0<x<L. 17
p(x,0) p[[o.uj] (a7
Trapezoidal distribution:
0+0.025 0<x<0.25L
1+%(x 0.35L)+0.025 0.25L<x<0.35L
0(x,0)={1+0.025 035L<x<0.65L. (18)

10(

1- 7 X— 065L)+0025 0.65L<x<0.75L

0+0.025 0.75L<x<L

Rectangular distribution:

0+0.5 0=<x<0.25L
p(x,0)={1+0.5 0.25L<x<0.75L . (19)
0+0.5 0.75L<x<L
The boundary conditions are given by
@w at x=0,L for 0</<T, (20)
X
B~ g x=0,L for 0<t<T, @1
2

where the infinite time span is approximated by 7 .
In the present calculations, the explicit time evolution is
used:

ap(x D

p(x.t+dt) = plx,t) +=——= (22)

u(x,t +dt) =u(x,t)+

ux.1) 23)
ot

In FDM (Finite Difference Method) calculations, the
central difference is used for the derivatives of unknown

f(x,0):

%:ﬁ(f(x+dx,t)—f(x—dx,t)), (24a)
62/; (D) ( f(x+dxt)=2f(x,0) + f(x—dx,0)). (24b)
X

In GIRM (Generalized Integral Representation Method)
calculations, the following approximations are used for the
weighted integral of unknown f(x,?) :

sag=b 3 =& = +05)d, (120, M 1) (253)
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3.1.1. Without Pressure and without Viscosity
The parameters for numerical calculations are as follows:

L=4; M=21,41,81161,321; dx=L/M ; y=dx;

dt =0.0025; T =3000dt; G=0.0015; v=0; (26)
a =0, 0.0002, 0.0004, 0.0008 |
where M , dx, ), dt and a are the number of

division of region 0 <x <L, length of element, scale of G s
time interval and artificial damping coefficient. The
numerical solution is obtained for 0<z<7T . The artificial

damping is given by adding@d*p/dx> and ad’u/ox* to
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p and u, respectively, at every step of time evolution [6].
Distributions of density © and velocity u# due to the
initial trapezoidal distribution of p© are shown in Figs. la

and 1b, respectively. Those due to the initial rectangular
distribution of o are shown in Figs. 2a and 2b, respectively.
Effects of artificial damping a on density p and velocity u
due to initial rectangular distribution of p are shown in Figs.
3a and 3b, respectively. FDM and GIRM give similar
numerical results. However, if we observe the tendency of
density p as M increases, GIRM calculations give more
reasonable shape of density distribution. This suggests the
accuracy of GIRM results is higher than that of FDM results.

3.1.2. Without pressure and with Viscosity
The parameters for numerical calculations are as follows:

L=4; M=41; dx=L/M; y=dx; dt=0.0025;

T =3500, 4000, 50004t ; G =0.001,0.0015,0.002; (27)

v=0.01; a=0,

where V is kinematic viscosity.

Effects of gravity G on density p and velocity u in case of
exponential initial distribution of p are shown in Figs. 4a and
4b. Comparisons among various distributions are given in
Figs. 5a and 5b. FDM and GIRM give similar numerical
results. However, GIRM calculations give sharper
concentration of density p. This suggests the accuracy of
GIRM results is higher than those of FDM results.

3.1.3. Merge of Multiple Lumps of Gas or Particles
We study a case where multiple lump of gas or particles
existattime #=0:

N-1 x_gt» 2

P(x,0) =" M, exp| - T‘ , 0sx<L, (29)
i=0 (d

where M,, & and J, are mass, location and scale of a

lump of gas or particles. The lumps separated initially
shorten the mutual distances and merge into a lump under the
gravitational force.

The parameters for numerical calculations are as follows:

L=4; M=81; de=L/M; y=dx; dr=0.0025;

7=30000dr; G=0.001; v=0.03; a,=0.0002;
(29)

a,=0; N=3; My=02; M, =01; M,=0.15;

& =025L; &=0.6L; &=075L;

3,=0.025L,0.05L; 3 =0.025L,0.05L ;
3, =0.025L,0.05L ;

Numerical results are shown in Figs. 6 and 7. In Figs. 6
and 7, three lumps of gas or particles at =0 merge into
two and one lumps under gravitational force, respectively. If
we continue the calculation, the two lumps at =90 in Fig.
6 will merge into one lump.

3.2. Non-Zero Initial Velocity

Now, we study the case where the initial velocity is not
Zero:

u(x,0) = 2 -1
1+exp(_x—0.5Lj , 0sx<L. (30)

AL

Half of the first term on the right hand side is called Sigmoid
function. Sigmoid function is zero at x =0.5L , and it tends
to zero and one when X tends to +0 and —o0
respectively. The initial velocity distribution like this may
correspond to the velocity distribution after big bang of
cosmos or explosion of a star. However, in one- and
two-dimensional gravity fields, we need infinite energy to
move a particle from finite position to infinity. Hence, the
fluid can’t expand to infinity against gravity. This is quite
different from three-dimensional case.
The initial density distribution is an exponential one:

p(x,0)=exp(—(%j ] 0<x<L. (31)

The parameters for numerical calculations are as follows:

L=14; M =80,160,640: dx=L/M :; y=dx;
dt =0.0025; T =2000d! ;

G=0,0.01,0.02,0.04; v=0,0.02;
a =0,0.0008,0.0016,0.0032,0.0048 (32)

3.2.1. Case When Initial Velocity Distribution is Mild
(A=0.05)

GIRM results in case of mild initial velocity distribution
(A=0.05) are shown in Fig. 8. The initial velocity
distribution is shown in, for example, Fig. 8(a). In case of
mild initial velocity distribution, the fluid spreads to infinity
when G is zero. However, the fluid continue to concentrate
as far as the calculation converges when G 1is positive.
Finally, the calculation diverges before the fluid region
comes back completely to the origin.
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Figure 1a. Density p due to Trapezoidal initial distribution of p.



20

Hiroshi Isshiki et al.:

Application of Generalized Integral Representation (GIRM) Method to Fluid Dynamic Motion of
Gas or Particles in Cosmic Space Driven by Gravitational Force

e ——
u

LS
(SR —— ST T T

16 20 25 30 35 a0 00 085 10 15 20 28 30 35 40
x x

B e T

1ria1i

Figure 1b. Velocity u due to Trapezoidal initial distribution of p.
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Figure 2a. Density p due to Rectangular initial distribution of p.
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Figure 2b. Velocity u due to Rectangular initial distribution of p.



23

Applied and Computational Mathematics 2015; 4(3-1): 15-39

owonon
=l B el

165 20 25 30 35 40

10

0o o8

15 20 25 30 385 40

10

oo o8

15
= 45
- t= 80

oo = 30
R

-—-t=

|C—~t¢ 00
|'l: >
e

T b
g sammmnnbe J-

Seaeamreneaaad

ononon cwowaon

CrmoTo~ SraTo~

muw«mt

messmsmmmmmanegen

[P —|
R el
v .

B TP

B

cial damping o. on density p due to initial rectangular distribution of p.

Effects of artifi

Figure 3a.



24 Hiroshi Isshiki et al.:  Application of Generalized Integral Representation (GIRM) Method to Fluid Dynamic Motion of
Gas or Particles in Cosmic Space Driven by Gravitational Force

3 L] 1@ 15 20 2% 30 as
E

.
Temmaaa

2

LT R

E] 4

NopRwao
hwohowno

-
el

3 4
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Figure 4a. Effects of gravity G on density p in case of exponential initial distribution of p.

3.2.2. Case When Initial Velocity Distribution is Moderate
(A=0.01)

GIRM results in case of moderate initial velocity
distribution (A =0.01) are shown in Fig. 9. The initial
velocity distribution is shown in, for example, Fig. 9(a). In
case of moderate initial velocity distribution, the fluid
spreads first and then shrinks backward. Finally, the
calculation diverges before the fluid region comes back to the
origin.

3.2.3. Case When Initial Velocity Distribution is Radical
(A1=0.002)

GIRM results in case of radical initial velocity distribution
(A=0.002) are shown in Fig. 10. The initial velocity
distribution is shown in, for example, Fig. 10(a). In case of
radical initial velocity distribution, the fluid spreads first and
then shrinks backward rapidly. Finally, the calculation
diverges before the fluid region comes back to the origin.
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4. N;-Dimensional Fluid Motion without

Pressure

If x,, (i=1,2,---,N,) and t refer to the coordinates

and time, the fluid motion in N, -dimension is expressed as

Ou,
L+
ot

op + 0pu; _ 0
or O, ’
Ou, 0’u

J ax/

i

on
=+
Ox,
o’n
0x,0x,

=4nGp .

V—
axjaxj

>

(33)

(34

(35)
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Figure 4b. Effect of gravity G on velocity u in case of exponential initial distribution of p.

The summation convention is used for the repeated indices,
that is, 0°/dxdx, =0°/ax? +0°/ox} +---+0*/x} . w, ,

@=1,2,---,N,;) refers to the velocity vector. p, V and
M is the density, kinematic viscosity and gravitational
potential (Appendix A). G is the gravitational constant.
Since it’s not difficult to obtain two-dimensional expressions
from three-dimensional ones, we develop theory using
three-dimensional expressions below.

We rewrite the basic equations Eq. (34) as follows:

Non-uniformity equation:

Ou.
g =—=-
3 ox, " (36)
Constitutive equation:
9, =v,. (37)

Equilibrium equation:

%4.“9 :—a_n_%

o T oy Ty, 3%)

We introduce Gaussian type Generalized Fundamental
Solution (GFM) G(x,&) with scale y, , (i=12,---,N,)
[4.5]:

~ Na = 2
o[ o 5

First, we obtain an integral representation of the equation
of continuity given by Eq. (33). For the purpose, we notice

(39
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Figure 5a. Comparisons of density p among various initial distributions of p.
~ =[]] Gx £)9P0) 4y +[[ o0, (x.)G (x. &),
0p(x,)u, (X,1) ~ G(x.E)= 0p(x, u, (x,1)G(x,8) oy x g PSS PR
Ox, Ox; ~
~[[] Pty (D& (x.8)av, (42)
_ (X 3)
PO, (%,6) = == where S, and n, are the boundary surface of /' and the
unit outward normal to S, , respectively. If we rewrite Eq.
00(x,)u, (x,t G X, e~ 42), then, we have
= POODTED)  pix, (1,08 (x0), a0y P
i ~ 0o(x,t <
[[] 68y 2% ay, = [[] px.u (x)E (x2)a,
where ot
G(xE) ~ = [[. p(x. 00, (x.)G(x,&)nidS, | (43)
2D =5 x9). (@) I

i

Multiplying (N}(x,é’;) on the both sides of Eq. (33) and
integrating in region V , we obtain

o=(([ ap(x ), 9p(x, t)lf (X, t)}G(x,é’;) o

J'H/ G( ) ap(x t) Op(x Hu, a(;( t)G(X &) W

—p(x,r>ui<x,t)ri(x,a>

Exchanging X and & in Eq. (43), we obtain a generalized
integral representation for Eq. (33):

J1[ 60 2LEDar, = [[] peou @03 @ xar:

=[], P&, &0GE XS, . (44)

Now, we obtain an integral representation of the equation
of motion given by Eq. (34). From Eq. (41), we have

o, (x,0)G(x,8)

Ou,(x,1) ~ _
S ==

—u,(x,1)0,(x,8) . (45)

./
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Figure 5b. Comparisons of velocity u among various initial distributions of p.
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Figure 7. Merge of three lumps of gas or particles under gravity (GIRM, 6y=06,=0,=0.2).

Multiplying (N?(x, &) on the both sides of Eq. (36), we obtain & (%08, (x.0) - Gui(x,t)é(x,g)

-(1f

0=[[f |6, w0252 \Gx gya, +u (1,03, (x.8)
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= [[[ 608,00+ 1,08, (x.9)|av, [[[ Gew8, @nar, ==[[] u&nd,&x)av,
~[[.u,xG(x.&)m, ds, . 46) +[[.GExu,&on,, ds, 48)
Rewriting Eq. (46), we have The generalized integral representation of Eq. (38) is

N o obtained similarly. From Eq. (41), we have
[[f 688, (x.ndv, ==[[[ u,(x.)3,G(x.8)dV,

04 (0) & o 2 O, (DGx.E)

+ Hsu,,(x,t)é(x,g)nx S, . 47) Ox; ox, ~ 0, (600, (%.8) - (49)

Exchanging x and & in Eq. (47), we obtain a generalized  Multiplying (N;(X,F,) on the both sides of Eq. (38) and
integral representation for Eq. (36): integrating in region ¥ , we obtain
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Figure 8. GIRM results (Mild initial velocity distribution).

~ " (;t Ry /%06, (01) G(x.5)———= % (X 2 G(x,&)u, (x,08,,(x,1)
0=.”-J;/G(X,§) Lonx0 +0q,-j(x,t) dv, :Ijj RPN L)) 6I'I(x ) av,
Ox, Ox; X,

+I[ —aG(x’zq”(x’t) ~q,(03,(x8) [a¥, =[] é(x,é)—a“";’t"t) av, +[[] Gx.8yu,(x.08,(x.0) v,

J

+[11 60 T a4 [[ Gexepa, (v0m, d, = [[] 4, %08 (%D, . (50)
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Figure 9. GIRM results (Moderate initial velocity distribution)

Rewriting Eq. (50), we have

(10 é(x,g)wtﬂfx =[[[ 4, (x08,(x&)av, - [[f, Gx.2u,(x.08, (x.0)aV,

[ 6o v, - [ Gx2ya, (x.0m, a5, (51)

Exchanging x and & in Eq. (51), we obtain a generalized integral representation of Eq. (38):

I[ 6. x)%d% = [[ 4., €03, Gx)av; =[], GE&xu,&08, & naV,
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PN () =
I} jVG@,x)a—{dVg [[.G@&x)q;, & 0)n, s, (52)
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Figure 10. GIRM results (Radical initial velocity distribution).
M(x,r) and 0r(x,t)/0x, are obtained by Egs. (Al7) or — p(x,t) from0p(x,1)/0t and u,(x,t+dr)
(A10) in Appendix A in two- or three-dimension,
respectively. from Ou,(x,1)/0t — repeat. (53)
Then, we can obtain p(x,?) and u,(X,#) numerically, if
we use the following process: 5. Numerical Results in Two-Dimension
p(x.1) and u,(x,1) are known — [0p(x,1)/0t 5.1. Zero Initial Velocity
from Eq. (44)] and [ 6,,(X,?) from Eq. (48) — In the present calculations, the explicit time evolution is

used:
q;(x.t) from (37) — Ou,(x,1)/0¢ from (52)]
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P(x,y,t +dt) = p(x,y,1) +

Wdt . (54a)

u(x,y,t +dt) = u(x, y,t) +

Ou(x, y,1)
—=dt 54b
Py (54b)

In FDM (Finite Difference Method) calculations, the
central difference is used for the derivatives of unknown
function f(x,f):

Y xy.0 =L(f(x+dx,y,t) - f(x—dx,y,0)), (55a)
Ox 2dx
Y2 - L (4 sy foy-dvn), (55b)
oy 2dy
0% f(x,0,0) _ 1 f(x+dx,y,t)=2f(x,p,t)
ox> (+f(x—dx,y,t) ] (53¢)
azf(X,y,t) 1 f‘(xsy-'-dyst)_zf(xsyst)j
J ATt~ . (55d
oy’ (+ f(x,y=dy,0) (53d)

In GIRM (Generalized Integral Representation Method)
calculations, the following approximations are used for the
weighted integral of unknown function f(x,¢) :
x, =& =—-L+(i+0.5)dx (i=0, L,

dx:dEZi, M -1), (56a)

d=dn=, ¥, =, ==BH(j+05)dy (=01~ N-1),(56b)

[" ] G&nxyr&nnagin

~ zzj‘fmwé/z‘.‘n,,wn/z G(&.n,x,y)dé&dn f(€,,.1,.t) , (56¢)

dé[2d ny-dn/2

J‘{m +d<(/2J"7n +d'7/2
Em—d§[29 ny—dn/2

G(&.n,x,y)dédn .

df 5

25+ (p+o. 5) d
(56d)

7, - d2’7+( +05)%

oNneE.n

déd
2 gdn

[0 GEnxn=22

G(&.17,x,y)dédnN ¢ (&,,.17,.1)

- szgm+d{/2'[’7n+d’7/2
Em—dé[2d ny—dn/2
1+3 Jj+3

Z J'c"m +d<5/2.[l7n +d”/2G({ n.x. y)dfd/] n . ({m’,]n’[) (56e)

m=i-3n=j-3 Em=dE[2 9 =dn/2

Eq. (56e) is very important to reduce the computational time.
5.1. Zero Initial Velocity

First, we study the case where the initial velocity is zero:

u(x,0)=u(x,y,0)=0, -L<x<L & —-L<ysL, 6 (57)

where the infinite space is approximated by a computational
region —L<x<L & —-L<y<L. In this case, the widely

distributed fluid continues to concentrate because of the
gravitational attraction. This may correspond to aggregation
of particles or gas in space.

5.1.1. Single Lump of Gas or Particles

Let’s assume a single lump of gas or particles. We consider
two kinds of initial density distributions.

Exponential distribution:

p(x,,0)= exp[—[ﬁj ] -L<r<L, (58)

where 7 =q/x" +)° .

Rectangular distribution:

1 0=<r<0.5L

0 0.5L<r (59)

P(x,,0) = {

An initial filter to reduce the numerical noise due to the
discontinuity of the initial density distribution is defined as

L[ Pl p 00+ ooy +dr0) + px=dr )
8L+ p(r. v —d,0) +4p(x, 1,0) - (60

The parameters for numerical calculations are as follows:

L=B=4; M=N=21,41; dx=L/M ; dy=L/N;
V,=dx; ¥y, =dy; dt=0.0025; T =400dt,600dt ;
G=0.1; v=0; a,=0; a,=0;

ini_ flIt =on, off ; (61)
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Figure 11. Convergence tendency of FDM calculation (Exponential distribution)

Convergence tendency of FDM and GIRM solutions is . .
shown in Figs. 11 and 12, respectively. Effects of the initial 3.1.2. Merge of Multtp.le Lumps of Gas or P arttcles
filter are shown in Figs. 13, 14, 15 and 16. We study the Let’s assume multiple lumps of gas or particles. We
performance of the initial filter given by Eq. (60). The initial ~ consider the following initial density distribution:
filter was applied to the rectangular density distribution given R R +02L Y 3
by Eq. (59). The results are shown in Figs. 13 and 14 in case p(x,y,0)=eXP[-[%] -(ﬁ] ] +0-75eXP(-(xOl—5'L) -(ﬁ) ]
when M=N=21 and in Figs. 15 and 16 in case when M=N=41. ) )
When the filters are applied to GIRM, the numerical noise —L<r<L, (62)
due to discontinuity of initial density distribution is reduced
sufficiently without damaging the accuracy. The parameters for numerical calculations are as follows:
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p on y=0

u on =0

M=N=21, i B -
ini_fil=off, =
Exponential
distribution

M=N=41.
ini_fil=off, e
Exponential
distribution

Figure 12. Convergence tendency of GIRM calculation (Exponential distribution)

L=B=8; M=N=41; dx=L/M ; dy=L/N,
¥, =0.5dx ; y,=0.5dy; dr=0.0025; T =2000dt ;
G=01; v=2; a,=0016; a,, =0.016;

ini_ flt = off ; (63)

In this examples, we used J);=0.5dx and ), =0.5dy
instead of ), =dx and ), =dy, since the former choice

gave slightly reasonable results than the latter choice.

Numerical results are shown in Fig. 17. In Fig. 17, two
lumps of gas or particles at #=0 merge into one lump
under gravitational force.

5.2. Non-Zero Initial Velocity

Now, we study the case where the initial velocity is not
Zero:

hor{ [l ol

-L<x<L & -L<ys<L, (64)

where r=4/x" +” . The infinite space is approximated by
-L<x<L & -L<y<L.
The initial density distribution is given by

(65)

0(x,0) = exp[— [ﬁj —[ﬁj J .

The parameters for numerical calculations are as follows:
L=B=4; M=N=21; dcx=2L/M ; dy=2B/N;

¥1=0.6dx; ), =0.6dy; dr=0.0025; T =5000dt;

G =0.15,03,045; v=0.01; a,=0,; a

vel

0, ;

>

ini_flt = off ; (66)

In this examples, we used ), =0.6dx and J, =0.6dy
instead of );=dx and ), =dy, since the former choice

gave slightly reasonable results than the latter choice.

The numerical results are given in Figs. 18, 19 and 20 for
G=0.15, G=0.3 and G=0.45, respectively. In two-dimensional
gravity field too, we need infinite energy to move a particle
from finite position to infinity as in one-dimensional gravity
field. Hence, the fluid can’t expand to infinity against gravity.
This is quite different from three-dimensional case. As is
shown in the numerical examples, the fluid tries to spread
first and then comes back to the origin. As the gravity
increases, the fluid comes back rapidly. In Fig. 20, density
O(x,0,¢) at ¢=12.5 includes a spurious oscillation. If

M =21 and N =21 increased to M =41 and
N =41, the spurious oscillation is reduced.

arc
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Figure 14. Effects of initial filter on velocity u on y=0 (Rectangular distribution).
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Figure 16. Effects of initial filter on velocity u on y=0 (Rectangular distribution).
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Figure 17. Merge of two lumps of gas or particles (GIRM results).
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Figure 18. Spreading and coming back of fluid (G=0.015, GIRM results).
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Figure 19. Spreading and coming back of fluid (G=0.03, GIRM results).
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Figure 20. Spreading and coming back of fluid (G=0.045, GIRM results).

6. Conclusions

In the present paper, application of Generalized Integral
Representation Method (GIRM) to fluid dynamic motion of
gas or particles in cosmic space was discussed. Spreading
and merging or gas or particles under gravitational force was
discussed through numerical calculations, and interesting
results were obtained. Using one- and two-dimensional
theory, merging of lumps of gas or particles was discussed.
The effects of initial velocity field were also discussed. In
contrast to three-dimensional theory, the fluid can’t spread to
infinity in one- and two-dimensional theory. This means the
importance of three-dimensional theory. Merging and
spreading of gas or particles may be treated by the fluid
dynamic approach, though we may need very big
computational power and vast amount of time to obtain
realistic numerical results in three-dimensional space.

In the present theory, although viscosity was included,
pressure was neglected. For further discussion, introduction

of pressure and change of internal state of substance would
be necessary. We studied one- and two-dimensional problems
in the present paper. However, the real cosmic space is three
dimensional. Before challenging three dimensional
calculations, we need to study more to improve accuracy,
stability and to reduce computational time [7].

Appendix A. Gravitational Potential
A.1. Newton’s law in three-dimensional space:

Force F,, acting on particles 1 and 2 with mass m; and
m, , respectively, is given by

-G mm, (X; —X,)

F,= ) (AT)

|X, = x, |

where X, and x, are the position vectors of the particles 1
and 2, respectively, and
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|x, —x, |5 N/(xl_x2)2+(y1_Y2)2+(21_22)2 (A2)
The force field F, of a unit mass at the origin of the
coordinates is given by

G (x, —x,)

F,=- . A
. 1%, =%, [ (43)

The potential 1, of three-dimensional gravitational field of
a unit mass at the origin of the coordinates is defined as

F, =-00n, (A4)
Hence, we obtain
r 1
M, =—|\F, Wr=|G—Ur=—|GO| — |Ldr
=[5 @r=[oar= a1
1 1
=-f Gd[—j =-G—, (A5)
r r

- — 2 2 2 :
where r is |x|=4/x"+y°+z°, and M, is assumed to

tendto 0 as » tends to infinity.
If we use Gauss integral theorem

2\
I} jm)[ - %)Tdedydz

y

=[5,

= 411G ([ 8(x)8()3(z) dxdydz

2172 in Odg=4nG

(A6)

we have for the gravitational potential 1, of a unit mass
given by Eq. (A5) satisfies

P L S =arGewEme) . (A
Hence, the potential 1, of the density distribution 0 :
=~G[[[ 2 (A8)
satisfies
0N, =4n1Gp. (A9)

The potential I, and the force field F, at x =x; due to

mass m; (j=0,12,---,i-Li+1,---,N —1) are given by

m

n,=-G —~—,

Al0a
J#i | X, 7X; ( )

m;(X;, —X)
F=-0,N,=-G) ~—— (A10b)
J#i |Xi -X; |
where
X, - X, |= \/(x,. —x,) 2+ (=) +(z—z) . (Al

A.2. Newton’s Law in Two-Dimensional Space

The potential 1, of two-dimensional gravitational field
of a unit mass at the origin of the coordinates is defined as

a;:zU ¥ a;;” =47Go(x)3()[ oz -z dz'
=47G0(x)A() . (A12)
Since
”5(,)[ Jln”dxdy [, Oln rrd6?=27'r, (A13)

where 7 =|x|=4/x*+)” , the potential of two-dimensional

gravitational field due to a unit mass at the origin of
coordinates is given by

M, =2GlInr . (A14)
Hence, the potential I, of the density distribution o
n, =2G”p(x')ln|x—x’|dx’ (A15)
satisfies
2 _
un,=4mGp. (Al6)

The potential 1, and the force field F, at x =x; due to

mass m; (j=0,12,---,i=1i+1,--,N—1)are given by

n,=-2GY mr,, (Al7a)
J#i
m (X, —X)
=-0,N,=-26) ———1 (A17b)
j#i |Xi -X; |
where

X, - X, |= J(x,. —x )+ (-, (A18)

A.3. Newton’s Law in One-Dimensional Space

The potential 1, of one-dimensional gravitational field
of a unit mass at the origin of the coordinates is defined as

drlU_

47ﬁ5(x)j Oy —y)dy =4mGd(x). (A19)
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Since

(A20)

of d° E
[ 155 |1xlax = BNy

- dx dx |_,
the potential of one-dimensional gravitational field due to a
unit mass at the origin of coordinates is given by
M, =2nG|x|. (A21)

Hence, the potential 1, of the density distribution 0 :

n, =27TG”,0(x')|x—x'|dx' (A22)
satisfies
2
d n2U =4nGp. (A23)
dx

The potential I, and the force field F; at x =x; due to

i

mass m; (j=0,12,---,i-Li+1,---,N —1) are given by

M, =2ITGZm/ |x;, = x, |
j#i i

(A24a)

X, —X;
F=-0N,=271GY m,——_  (A24b)
! = X
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