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Abstract: The Finite Volume Method (FVM) is currently the most popular method in CFD. The main reason is that it can 

resolve some of the difficulties that the other methods have. Finite volume methods are a class of discretization schemes that 

have proven highly successful in approximating the solution of a wide variety of conservation law systems [1]. Finite volume 

method can be classified into three groups: (1) Cell-centered scheme, (2) Cell-vertex scheme with overlapping control volumes 

and (3), Cell-vertex scheme with dual control volumes [2]. The present work used Finite volume based Cell Cell-centered. This 

approach used the grid cell identical to its control volume. While in view of a manner the grid cells in this work can be defined 

numerically, it can follow as a structured grid based on Elliptic grid generation PDEs [3]. Computer code had been developed 

by using a cell centered Finite volume scheme combined with structured grid approach. The computer codes applied for the 

case of compressible flow past through  an airfoil NACA 0012, in which the flow problem can be treated as purely inviscid 

flow or as the flow with viscous effect but considered to be as a laminar flow.  The comparison result presented in term of 

pressure coefficient Cp for different angle of attack using available experimental  result and the result provided by Fluent 

software. In term for the case of flow problem treated as an inviscid flow, both the developed computer code and Fluent 

software produce the result closed to the experimental result. However if the developed computer code as well as fluent 

software treated the flow problem to include the viscous effect by considering them as a laminar flow both are slightly deviate 

with the experimental results. Strictly speaking the present developed computer code give a similar result as the experimental 

result, which both showing that this type of airfoil having a sensitive effect to the angle of attack. A small change of angle of 

attack will produce a significant change to the location of shock will occurred. 
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1. Introduction 

All CFD codes contain three main elements: (1) A pre-

processor, which is used to input the problem geometry, 

generate the grid, and define the flow parameter and the 

boundary conditions to the code. (2) A flow solver, which is 

used to solve the governing equations of the flow subject to 

the conditions provided. (3) A post-processor, which is used 

to massage the data and show the results in graphical and 

easy to read format [4]. In the last decades, finite volume 

methods have been greatly successful in solving engineering 

models of flows in porous media on complex geometrical 

domain, because the finite volume formulation works on 

general polygonal and polyhedral meshes [5]. Several 

discretization methods have been implemented to stimulate 

inviscid incompressible fluid and viscous incompressible 

fluid. Among them, the Finite Volume Method (FVM) Cell-

centered scheme has proved to be simple yet very efficient in 

computing such flows [6]. However, to employ the above 

method has to make a mesh flow domain appropriately. This 

can be done by firstly choosing the grid topology. When 

providing a great grid mesh with flexibility as was applied in 

this is study Elliptic grid generation PDEs on simple 

geometry in the case of external an airfoil NACA 0012 model, 

will provide a clear and accurate results [7,8]. In other hand, 

in fluid mechanics, the Euler equations and Navier-Stokes 
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equations are applied to depict motion state of inviscid 

incompressible fluid and viscous incompressible fluid, 

respectively. In case of the inviscid flow (i.e. when viscosity 

= 0 and there is no heat conduction), then the Navier-Stokes 

equation reduces to the Euler equation, so the latter is a 

special instance of the former [5]. The analogy here is similar 

to solving for the acceleration of a box sliding down on an 

incline, when there is and where there is not kinetic friction; 

of course the idealized scenario with no friction present is 

easier to solve. But, that viscosity can be roughly thought of 

as liquid friction or thickness, and should not be ignored in 

describing motion of the boundary layer or when turbulence 

is present [9.10]. The Euler equation is essentially Newton's 

second law applied on a flowing infinitesimal volume 

element and it addresses conservation of mass, momentum, 

and energy absent the effect of viscosity. Therefore it is an 

easier idealized scenario which was solved a long time ago 

via a technique known as potential theory.  Euler equation 

will in fact yield the famous Bernoulli equation when there is 

a further assumption of incompressibility (= constant density) 

[3,11]. It should also be mentioned that proving the general 

existence of solutions for the Navier-Stokes equations 

equation is still one of the major unsolved problems in 

mathematics [12, 13]. The present work focused on the 

development of computer code based on Cell Centered 

scheme combined with structured grid.  The governing 

equation used here is a two dimensional compressible 

laminar flow, in which the solution of inviscid flow can be 

obtained through switching the viscosity equal to zero.  This 

computer code applied for the case of flow past through Naca 

0012 airfoil at a fixed Mach number for four different angle 

of attacks in which the experimental results are available. 

The comparison result in term of pressure coefficient 

distribution between the present code, Fluent software and 

experimental results indicate that the present code able to 

produce as the experimental result as well as the Fluent 

software. The sensivity in term of the shock wave location 

due to angle of attack owned by this type of airfoil also be 

able captured by the present developed computer code.  

2. Governing Equations 

2.1. Governing Equations Of Viscous Two Dimensional 

The dimensionalized governing equations of the fluid flow 

are given respectively by the continuity equation 
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 are the velocity components in the 
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density, and �is the viscosity. 

Using the dimensionless definitions, [12,15], 

� = �∗�
� , 
 = �∗

� , � = �∗
� , � = �∗

� , 
 = �∗
� , � = �∗

���  

The governing equations (1) to (3) become 

��
�� + ��

�� = 0                                   (4) 

� ��
�� + 
 ��

�� = ��
�� + �

�� ����
��� + ���

����                   (5) 

� ��
�� + 
 ��

�� = ��
�� + �

�� ����
��� + ���

����            (6) 

Where � = !ℎ/
 is the Reynolds number 

2.2. Governing Equations of Inviscid Two Dimensional 

For the simplicity in the explanation of the Cell Centered 

Finite volume, the governing equation will be used here is 

the governing equation for purely inviscid flow. As in usually 

adopted in inviscid flow analysis, let the flow variables are 

denoted by p, ρ, u, v, E and H which they are representing 

the pressure, density, Cartesian velocity components, total 

energy and total enthalpy respectively. For a perfect gas one 

has.  

E = %
&γ'�(ρ + �

) &u) + v)(      and        H = E + %
ρ
       (7) 

Where γ  is the ratio of specific heat, the governing 

equation of fluid flow without viscous effect is known as 

Euler equation. For the case of flow passes over a body, the 

Euler equations which can be derived from the conservation 

of law are written in term of the conservative variables can 

be written in integral form for a region Ω  with boundary dΩ 

as: 

1
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Where x and y are Cartesian coordinates and 
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The discretization procedure follows the method of lines in 

decoupling the approximation of the spatial and temporal 

terms. The computational domain is divided into 

quadrilateral cells as in the sketch figure (1), and a system of 

ordinary differential equations is obtained by applying 

equation (1) to each cell separately. The resulting equations 

can be solved by several alternative time stepping schemes. 
In general, the conservation laws is applied to the cell 

ABCD as shown in figure (1)  
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Figure 1. Cells in the finite-volume approach. 

The grid cell ABCD as shown in the figure above has a 

side AB surface vector  S5GHI and its normal direction ȷĤI  is 

defined as:  

S5GHI = ΔyHIı̂ − ΔxHIȷ ̂
ȷĤI = &yI − yH(N − &XI − XH(P 

While the area of grid cell ABCD [1, 2] can be obtained 

from: 

ΩHIRS = 12 VX55GHR − X55GISV 
Where 

X55GHI = X55GI − X55GH 

Or in term of coordinate point (X, Y) as: 

ΩHIRS = 12 W&XR − XH(&yS − yI( − &XS − XI(&yR − yH(X 

Determination of the flux vector can be done in various 

approaches. The flux E crossing the side surface AB denoted 

as E55GHI can be yielded using one of the following approaches.  

a. Average of fluxes 

EHI = E YQNP– QN\� ,P2 ] 

Where: 

ENP = E;QNP> 

a. Flux of the average flow variable: 

EHI = E&QNP + QN\�,P2 ( 

b. Average of fluxes in A&B 

EHI = 12 &EH + EI( 

In the last approach, approach c, the flux EA can be 

determined by firstly defining the flow variable Q at A as 

given below: 

QH = �
^ ;QNP + QN\�,P + QN\�,P'� + QN,P\�>        (9) 

Then the average of the fluxes EA  becomes: 

EH = �
^ ;ENP + EN\�,P + EN\�,P'� + EN,P\�>        (10) 

In defining the flux vectors E and  H as explained above,  

the implementation of the finite volume makes the Eq. (1) 

can be transformed into an ordinary differential equation with 

respect to time  as given below[12,13]. 

1
12 QNP∆X∆y + YEN\�̀,P − EN'�̀] ∆y + YQN,P\�̀ − QN,P�̀] ∆X = HNP∆X∆y                                                  (11) 

Or 
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) + &ab,ce�̀'ab,cf�̀(

∆� = ghi         (12) 

Through above equation, the flow problems are solved.  

However to solve above equation one has to make a mesh 

flow domain appropriately. This can be done by firstly 

choosing the grid topology [2, 16, 6].  

3. Grid Generation 

Grid (mesh) generation is, of course, only a means to an 

end: a necessary tool in the computational simulation of 

physical field phenomena and processes. Grid (mesh) 

generation is truly a worldwide active research area of 

computational science 

3.1. Elliptic Grid Generation 

This method proved in computational space producing a 

smooth grid in the entire domain. Thus, high quality, 

boundary orthogonal grids can be generated also allows the 

user to prescribe the angle between a grid line and boundary 

and to control the grid spacing and the expansion ratio near 

surfaces, which made it the most popular method among all 

of the methods  

This type of grid generation is motivated by the maximum 

principle for elliptic partial differential equations.  Where the 

inverse grid transformation, ξ(x, y), η(x, y) as the solution of 

j�� + j�� = 0                           (13) 

k�� + k�� = 0                           (14) 

When 0 ≤ j ≤ 1  and 0 ≤ j ≤ 1  are monotone on the 



 Applied and Computational Mathematics 2015; 4(1-1): 12-17  15 

 

boundaries. It then follows from the maximum principle that j and k will stay between these values. Furthermore, there 

will be no local extreme in the interior, and thus grid lines 

cannot fold. The equations (14) are formulated in the 
 − � 

domain, and have to be transformed to the unit square, so can 

solve them there [16]. We use the unknown transformation 

itself to transform the equations (14). The transformed 

system then becomes 

;
m) + �m)>
nn − 2;
n
m + �n�m>
nm + ;
n) + �n)>
mm = 0 

;
m) + �m)>�nn − 2;
n
m + �n�m>�nm + ;
n) + �n)>�mm = 0 

Specifying normal derivatives is here equivalent to 

specifying the distance between the first and second grid 

lines. These equations are then approximated by, e.g. 
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h,i\� − 
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nn = 
h\�,i − 2
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Where now the index space 1 ≤ r ≤ sh and  1 ≤ t ≤ si  is 

a uniform subdivision of the &j, k(  coordinates.  j = &r −1(/&sr − 1(,   k =  &t −  1(/&si − 1( . The number of grid 

points is specified as sh  ×  si . 

To introduce more control over the grid, so called control 

functions are introduced into (6)[14, 17]. The system then 

becomes 

j�� + j�� = v&j, k(                          (15) 

k�� + k�� = w&j, k(                          (16) 

Where, P, Q the known functions which using for the 

control of concentration of inner grid points. By 

interchanging the independent and the dependent variables, 

we obtain the transformed system in the transformed 

computational domain [8]. 

x
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4. Results and Dissection 

4.1. The Compressible Flow Past Through Naca 0012 

Airfoil 

The airfoil geometry of NACA0012 as shown in figure2.a 

with zooming their mesh flow domain developed by used of 

Elliptic grid generator as depicted in the Figure 2.b.  [16].  

As an external flow problems, here the boundary condition 

had been applied with the incoming Mach-number M = 

0.7550, static pressure [Pa] = 150.E+3 and static temperature 

[K] = 350.0.  The analysis carried out for four different angle 

of attacks, namely  at Angle of attack [deg]= 1.25
0
, 2.

0
 , 2.34

0
 

and 2.410 respectively,  These four setting angle of attack 

produce their pressure coefficient distribution and make a 

comparison between the present code, fluent and 

experimental result as shown in the Figure 3 to Figure 6. 

These four angles of attack can be considered as a small 

angle of attack. The flow past through airfoil at small angle 

of attacks are normally behave as inviscid flow. So 

considering these four figures, they are clearly indicating that 

the inviscid present code provide the result which very close 

to the experimental result as well as to the inviscid Fluent 

software.  However if the flow problem treated as viscous 

flow but considered as the laminar flow both the viscous 

present code as well as the fluent both produce a similar 

result but they are way from the experimental result. 

 

Figure 2.a. Cross section of NACA 0012 AIRFOILS. 

 

Figure 2.b. Grid generation Cross section of NACA 0012 AIRFOILS. 
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5. Conclusions 

The present developed computer code based on cell-

centered finite volume discretization technique had been 

successfully developed.  The present code is able to produce 

the result as provided by Fluent software as well as by the 

experimental result. The effect of angle of attack to the flow 

behavior can also be captured, as it happen experimentally, 

by the present developed code for the case of flow past 

through airfoil NACA 0012.  

 

Figure 3. Cpdistribution on NACA 0012 AIRFOILS at angle of attack 1.2500. 

 

Figure 4. Cpdistribution on NACA 0012 AIRFOILS at angle of attack 20. 

 

Figure 5. Cpdistribution on NACA 0012 AIRFOILS at angle of attack 2.3400. 

 

Figure 6. Cpdistribution on NACA 0012 AIRFOILS at angle of attack 2.4100. 
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