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Abstract: This paper presents the Mellin transform method as an alternative analytic solution for the valuation of 

geometric Asian option. Asian options are options in which the variable is the average price over a period of time. The 

analytical solution of the Black-Scholes partial differential equation for Asian option is known as an explicit formula, this is 

due to the fact that the geometric average of a set of lognormal random variables is lognormally distributed. We derive a 

closed form solution for a continuous geometric Asian option by means of the partial differential equations. We also 

provide an alternative method for solving geometric Asian options partial differential equations using the Mellin transform 

method. 
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1. Introduction 

Numerical methods are needed for pricing options in 

cases where analytic solutions are either unavailable or not 

easily computable. Examples of the former include 

American style options and most discretely observed path 

dependent options, while the latter includes the analytic 

formula for valuing continuously observed Asian options 

which is very difficult to calculate for a wide range of 

parameter values encountered in practice. 

The subject of numerical methods in the area of options 

valuation and hedging is very broad. A wide range of 

different types of contracts are available and in many cases 

there are several candidate models for the stochastic 

evolution of the underlying state variables. 

Asian options are less sensitive to market fluctuations 

near the expiry date. However these options have proved to 

be much more difficult to price than other options. 

There are many techniques developed in the literature to 

price Asian options.  H. Geman and M. Yor [4] used a 

Laplace transform to price Asian option. They also exploit 

the relationship between the Geometric Brownian motion 

and the Bessel process with a stochastic time change and 

the additive property of the Bessel process. Rogers L. and 

Shi Z. [10] reduced the partial differential equation for 

Asian option to the partial differential equation in two 

variables instead three and then, they used numerical 

procedure to solve it. They also derived lower-bound 

formulas for Asian options by computing the expectation 

based on some zero-mean Gaussian variable. Zieneb A.E. 

and Rokiah R.A. [16] derived analytical solution for an 

arithmetic Asian option using Mellin transforms. They 

derived a closed form solution for a continuous arithmetic 

Asian option by means of partial differential equations.  

Monte Carlo method for pricing some path dependent 

options was considered by Nwozo C.R. and Fadugba S.E. 

[6]. Some Numerical Methods for Options Valuation was 

also considered by Nwozo C.R. and Fadugba S.E.  [7]. 

They considered three special numerical methods in 

finance for the valuation of both vanilla and exotic options. 

Performance measure of Laplace transforms for pricing 

path dependent options was considered by Nwozo C.R. and 

Fadugba S.E. [8].  The competitive Monte Carlo method 

for the pricing of Asian options was considered by Lapeyre 

B. and Temam E. [5].  

For a survey of different numerical methods and their 
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performances in derivatives pricing see ([1], [2], [3], [5], 

[9], [11], [12], [13], [14]) just to mention a few 

In this paper, we consider the Mellin transform method 

as an alternative analytical solution for the valuation of 

continuous geometric Asian option. 

2. Asian Options  

Path dependent options are contingent claims whose 

values depend on the sequence of prices of the underlying 

asset during the whole or part of the option’s life rather 

than just the final price of the asset. Examples are Asian, 

Barrier and lookback options.  

Asian or Average options are options whose payoff 

depends on the average price of the underlying asset during 

at least some part of the life of the option. They are also 

contingent claims in which the underlying variable is the 

average price over a period of time. Because of this fact, 

Asian options have a lower volatility and hence rendering 

them cheaper relative to their European counterparts. They 

are commonly traded on currencies and commodity 

products which have low trading volumes. They were 

originally used in 1987 when Banker’s Trust Tokyo office 

used them for pricing average options on crude oil 

contracts and hence the name “Asian” option. 

There are different types of Asian options namely: 

� Continuous arithmetic average Asian option 

The Call and put options are given by 

0

1
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T
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respectively. 

� Continuous geometric average Asian option  

The Call and put options are given by 

0

1
log

max

T

tS dt
T

f e K

 ∫ = −
  
 

                  (3) 
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respectively. 

� Discrete arithmetic average Asian option 

The call and put options are given by  
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� Discrete geometric average Asian option 

The call and put options are given by 
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and  
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Denote the price of the arithmetic average Asian call and 

put options at time 0 , 0( , )a KC S T and , 0( , )a KP S T . Also 

the price of the geometric Asian call and put options at time 

0 are denoted by , 0( , )g KC S T and 

, 0( , )g KP S T respectively. 

Proposition 2.0 

The following inequalities hold in the discrete case 

, 0 , 0

, 0 , 0

( , ) ( , )
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                 (9) 

Proof: 

This follows from the inequality between the geometric 

and arithmetic means 

1
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together with the fact that max( ,0)tS K− is increasing in 

tS while max( ,0)tK S− is decreasing in tS  

2.1. Closed Form Solution for the Geometric Average 

Asian Options 

We make the following assumptions that 

� The price of the underlying asset follows a log-

normal distribution continuous in time 

� The product of log-normal distributed random 
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variables is also log-normal distributed 

� The sum of log-normal distributed random 

variables is not log-normal distributed 

With the above assumption we expect that the pricing of 

geometric average Asian options should be easy to deal 

with, while for arithmetic average ones it may be relatively 

more complicated to handle. In fact, the pricing formula of 

geometric average Asian options can be derived in the 

Black-Scholes framework.  

The payoff function for the discrete geometric average 

call option is given by 
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Where  
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(0,1)N is normally distributed random variables. We also 

write that  
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Substituting (13) into (15) we have 
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Using the properties of independent normal random variables i.e. additive mean and variance, we have that 
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Using the risk-neutral method, the price of the geometric 

average Asian call option is given by  
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Substituting (21) into (22) 
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Where the price of a European call option with volatility 
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Equation (26) is called the price of the geometric average 

Asian call option. The price of the geometric Asian put 

option can be obtained using put-call parity. 

Equation (26) shows that Black-Scholes framework can 
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be used for the valuation of geometric average Asian 

options. 

3. Mellin Transform for the Valuation of 

Geometric Asian Option 

The value of Geometric Asian options denoted by 

( , , )tf t S G satisfies the partial differential equation given 

by 

2
2 2

2

( , , ) ( , , ) ( , , ) ( , , )1
( , , )

2

( , , ) ( , )

t t t t
t t t t

t t

t t

f t S G f t S G f t S G f t S G
S rS S rf t S G

t S S G

f T S G S G

σ

θ

∂ ∂ ∂ ∂+ + + = ∂ ∂ ∂ ∂ 
= 

                 (27) 

Where
tS
is the underlying price of the asset, r is the 

risk-neutral interest rate, σ is the volatility, T is the 

maturity date and 
0

1
ln

t

tS dt
t

G e
∫

=
is the average of the stock 

price at time t .  The payoffs function for geometric Asian 

options are (i) floating strike call: 

( , ) max( ,0)t tS G S Gθ = − (ii) floating strike put: 

( , ) max( ,0)t tS G G Sθ = − (iii) fixed strike call: 

( , ) max( ,0)tS G G Kθ = −  (iv) fixed strike put: 

( , ) max( ,0)tS G K Gθ = −  

The Mellin Transform for geometric Asian option, GA  is 

given by  

1

0

( , ) ( , ) w

G G tA w t A S t S dS

∞
−= ∫

⌢

                 (28) 

Where w is a complex variable with 0 Re( )w< < ∞ . 

The inversion of the Mellin transform is also given by  

1
( , ) ( , )

2

c i

w

p t p

c i

A S t A w t S dw
iπ

+ ∞
−

− ∞

= ∫
⌢

            (29) 

Equation (29) holds everywhere on (0, )∞ , 

where ( , )p tA S t  and ( , )pA w t
⌢

 are called a Mellin 

transform pair with the following conditions  

( , ) (1)p tA S t O= , for 0tS +→                  (30) 

( , ) ( )p t tA S t O S= , for tS → ∞                 (31) 

We present here some properties of the Mellin transform 

as follows: 

( )

2 2

1

0
0

( )
( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( 1)

[ ( )]
1

t
t

t

t
t

t

t t

w

t t

f S
M S w wf w

S

f S
M S w w w f w

S

M S f S w f w

S
M S f S S

w

+

 ∂ = −  ∂  
 ∂ = +  ∂  


= + 

− = −
+ 

⌢

⌢

⌢

                (32) 

Taking the Mellin transform of (27) we have that 

( ) ( )

2
2 2

2

( , , ) ( , , ) ( , , ) ( , , )1
( ( , , ))

2

( , , ) ( , )

t t t t
t t t t

t t

t t

f t S G f t S G f t S G f t S G
M S rS S M rf t S G

t S S G

M f T S G M S G

σ

θ

 ∂ ∂ ∂ ∂+ + + =  ∂ ∂ ∂ ∂  
= 

                       (33) 

Therefore  

2 2( , , ) 1 ( ,1 , )
( ) ( , , ) ( , , ) ( , , )

2

( , , ) ( , )t

f t w G f t w G
w w f t w G rwf t w G rf t w G

t G

f T w G S G

σ

θ

∂ ∂ ++ + + + = ∂ ∂ 
= 

⌢ ⌢
⌢ ⌢ ⌢

⌢
                       (34) 

Rearranging (34) we have that 

2 2( , , ) ( ,1 , ) 1
( ( ) ) ( , , ) 0

2

( , , ) ( , )t

f t w G f t w G
w w rw r f t w G

t G

f T w G S G

σ

θ

∂ ∂ ++ + + − − = ∂ ∂ 
= 

⌢ ⌢
⌢

⌢
                       (35) 
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But ( , , ) ( , )tf T w G S Gθ=
⌢

can also be written for 

floating call and put respectively as 

1

0

1

0

( , , ) max ,0
1

( , , ) max ,0
1

w

w

S
f T w G G

w

S
f T w G G

w

+

+

 
= − −  +  


   = − −    +  

⌢

⌢
           (36) 

By means of change of variables, the first part of (35) 

becomes 

2 21
( ( ) )

2( , , ) ( , , ) ,
w w rw r

f t w G g t w G e T t
σ τ

τ
 + − −  = = −ɶ      (37) 

Also  

( , , ) ( ,1 , )g t w G g t w G

Gτ
∂ ∂ +=

∂ ∂
                (38) 

Using Fourier transforms in w  and then we have 

( , , ) ( , , )iwg t w G g t w G
e

Gτ
∂ ∂=

∂ ∂
ɶ ɶ ɶ ɶ

              (39) 

Solving (39) we have 

( , , ) ( )iwg w G c Geτ τ −= + ɶ
ɶ ɶ                (40) 

The boundary condition yields 

(0, , ) ( , )

( , )

iw

iw

g w G w G cGe

w G
c

Ge

θ
θ

= =



= 


⌢

ɶ

ɶ ɶ ɶ

ɶ            (41) 

Equation (40) becomes 

( , )
( , , ) ( )iw

iw

w G
g w G Ge

Ge

θτ τ −= + ɶ

ɶ

ɶ
ɶ ɶ              (42) 

By means of Fourier transform inversion in wɶ we obtain 

( , )
( , , ) ( ( ) ( 1))

iw

w G
g w G w G w

Ge

θτ τ= ∆ + ∆ −ɶ ɶ      (43) 

Substituting (43) into (37) 

2 21
( ( ) ) ( )

2( , )
( , , ) (( ) ( ) ( 1))

w w rw r T t

iw

w G
f t w G T t w G w e

G e

σθ  + − − − 
 = − ∆ + ∆ −ɶ ɶ ɶ             (44) 

Since  

1( , , ) ( ( , , ))f t w G M f t w G−= ɶ  

Therefore, 

2 21
( ( ) ) ( )

21 ( , )
( , , ) (( ) ( ) ( 1))

2

i
w w rw r T t

w

iw

i

w G
f t w G S T t w G w e dw

Ge

α σ

α

θ
π

 + ∞ + − − − −  

− ∞

= − ∆ + ∆ − 


∫ ɶ ɶ              (45) 

Equation (45) is the analytic solution for geometric Asian 

options via the Mellin transform method. 

4. Conclusion 

In this paper we considered the Mellin transform method 

as an alternative analytical solution for the valuation of 

geometric Asian option. We also derived the closed form 

solution for geometric Asian option in the Black-Scholes 

framework. The Mellin transform method is also a 

powerful technique for the valuation of more complex 

vanilla options and some path dependent options and can 

be extended to jump diffusion processes, stochastic 

volatility and other stochastic processes. 
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