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Abstract: Clustering is a common technique for statistical data analysis. The clustering method based on intuitionistic fuzzy 

set has attracted more and more scholar’s attention nowadays. This paper discusses the intuitionistic fuzzy C-means clustering 

algorithm. There are a number of clustering techniques developed in the past using different distance/similarity measure. In 

researchers have used various distance measure like Hamming distance, Euclidean distance etc., to solve the clustering 

problems. In this paper, we proposed a novel LINEX for intuitionistic fuzzy c means clustering based on minimal spanning 

tree using Fiedler’s approach initialization method. Our main motives of using the LINEX methods consist inducing a class of 

robust non-Euclidean distance measures for the original data space to derive new objective functions and thus clustering the 

integration of datasets, enhancing robustness of the original clustering algorithms to noise and outliers, and still retaining 

computational simplicity. The proposed Fiedler’s approach LINEX IFCM, which requires the determination of the eigenvector 

belonging to the second Eigen value of the Laplacian matrix. Finally, evaluation is illustrated by the intuitionistic fuzzy C-

means clustering method and the method is compared with the fuzzy C-means clustering method as well. 
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1. Introduction 

Data mining techniques have been recognized in different 

fields for discovering useful patterns and extracting 

information from the pool of available abundant data. Data 

mining provides automated tools for the process of 

knowledge discovery by analyzing available data. The 

purpose of clustering is to divide the data set into groups, so 

that similar data points fall into same cluster. Clustering is an 

unsupervised process, where the data is not supported with 

labeled information, so its aim is to infer the expected 

structure existing within a set of data points. Secondly, 

Unsupervised clustering techniques process totally unlabelled 

data, therefore suffer from the problem of defining number of 

clusters, prior random initialization of the cluster centers, 

problem of local traps and finally binding every data point to 

a class. 

The notion of Intuitionistic Fuzzy Set (IFS) coined by 

Atanassov [1], for fuzzy set generalizations has interesting 

and useful applications in different domains. But few study 

on clustering is reported in the previous study on 

intuitionistic fuzzy sets. Zhang et al. [2], suggested a 

clustering approach, where an intuitionistic fuzzy similarity 

matrix is transformed to interval valued fuzzy matrix. 

Recently intuitionistic theory has been widely used with 

classical clustering algorithms to deal with the problem of 

uncertainty present in the real world unlabelled data. 

Different experiments have proved [3-5] that intuitionistic 

fuzzy set based method helps to better handle the problem of 

uncertainty as compared to fuzzy set. Intuitionistic fuzzy set 

(IFS) is a higher order extension of fuzzy set. Intuitionistic 

fuzzy sets are elaborated set, consisting of hesitation degree 

along with membership and non-membership degree. The 

hesitation degree helps to deal with the problem of 

uncertainty present in the unlabelled data. In literature, few 



83 M. Nithya et al.:  A Fiedler’s Approach to LINEX Intuitionistic Fuzzy C-means Clustering Induced Spectral  

Initialization for Data Analysis 

researchers have used IFS effectively in different 

applications. Among these works, Xu and Wu [6] defined 

IFCM which presents the clustering of Intuitionistic fuzzy set 

(IFS). Pelekis et al. [7] demonstrated the process of 

clustering based on the intuitionistic fuzzy knowledge of data 

and recommended that the intuitionistic fuzzy clustering 

acquires the qualitative information, which may be estimated 

as per feature vector. 

Recently Chaira and Tamalika proposed novel IFS c-means 

for edge detection and segmenting medical images using 

Yager-type IF membership function [8, 9]. Atanassov’s IF 

membership function [10] has been recently used to determine 

the optimal threshold value for grey-level image segmentation. 

Ananthi et al. [11] proposed grey-scale image segmentation 

using multiple membership functions, interval-valued IF for 

brain tumour segmentation [12] and Sugeno, fuzzy generator-

based intuitionistic FCM clustering for crop images [13]. 

Verma used a new fuzzy factor to consider spatial context and 

Dubey [14] used complement function for hesitance 

membership function to segment MR brain image [15, 16]. 

The Gaussian kernel based FCM (GKFCM) for medical image 

segmentation is proposed by Yang and Tsai [17]. The hyper 

tangent FCM (HTFCM) based image segmentation for breast 

images is proposed by Karman et al. [18]. 

These algorithms utilized only intensity of pixel as the 

only feature for the segmentation of images and failed to 

classify noisy pixels accurately. The pixels in an image are 

exceedingly associated, i.e. the every pixel in the prompt 

vicinity have about the equivalent feature information unless 

there is some curve or contour. Subsequently, integrating 

spatial information along with the membership value results 

in more homogenous regions as compared to other methods. 

However, these techniques use the arbitrary initialization of 

cluster centers which give inaccurate outcomes and more 

time for optimization. 

In this paper, to overcome the defects of the algorithms as 

mentioned, we proposed Fiedler’s approach–LINEX IFCM, 

which requires the determination of the eigenvector 

belonging to the second Eigen value of the Laplacian matrix, 

named the MST using LINEX_IFCM. The intuitionistic 

fuzziness is embedded into the calculation process of 

similarity between the pixel and cluster centers, which 

achieves more accurate segmentation in the organization 

boundary. The algorithm is minimal spanning tree using 

Spectral initialization method by a given Fiedler value using 

LINEX_IFCM, which helps to speed up the convergence of 

the algorithm. 

2. Minimal Spanning Tree Algorithm 

In this section, we proposed Fiedler’s approach LINEX 

measures for construct the minimal spanning tree. 

2.1. LINEX Function MST 

Given the grayscale point set D, the hierarchical methods 

starts by constructing a minimal spanning tree (MST) from 

the points in D. In 1 2( , ,....... )T
nx x x x= and

1 2( , ,....... )T
ny y y y=  are two points of a MST and ( , )e x y is 

an edge between x and y then LINEX distance function 

between x and y is denoted by ( , )d x y and calculated using 

equation (1). 

( , ) exp 1LINEX

x y x y
d x y

σ σ
   − −

= − −      
   

           (1) 

2.2. Fiedler Method 

The Fiedler Method is an easy way to partition a graph. 

The Fiedler Method is named after Miroslav Fiedler, a Czech 

mathematician, who worked in graph theory and linear 

algebra. This method was presented by him in 1973. 

Fiedler’s beautiful results to the Laplacian matrix of the 

graph, this method partitions the data set D into two sets D1 

and D2 based on the Eigen vector V corresponding to the 

second smallest Eigen value of Laplacian matrix. Finding the 

Laplacian matrix requires construction of A adjacency matrix 

and D degree matrix, so the Laplacian matrix l is formed as: 

L D A= −                                      (2) 

If G is a simple connected graph with n vertices and if L is 

the Laplacian matrix for G then L has n real Eigenvalues 

satisfying 1 2 30 .......... nλ λ λ λ= < ≤ ≤ ≤ . The Fiedler Value 

or the algebraic connectivity of a graph is the second smallest 

Eeigenvalue of its Laplacian matrix L. 

2.3. Algorithm for Determining the Initial Cluster Centers 

Algorithm: LINEX MST 

Input: Data points 

Output: optimal number of cluster centers 

Let e1 be an edge in the LINEX measure MST constructed 

from Data points 

Let TS be the set of disjoint subtrees of LINEX measure 

MST. 

1. Create a node v, for each data points. 

2. Compute the edge weight using equation (1) 

3. Construct an LINEX measure MST from 2. 

4. , 1 ,T cS n Cϕ ϕ= = = . 

5. To find the adjacency matrix and Degree matrix from 

3. 

6. To find Laplacian matrix L. 

7. Based on a symmetric matrix L, we search for the 

eigenvector 2v is used to recursively partition the graph 

by separating the components into negative and 

positive values. 

8. For each 1e MST∈ . 

9. To remove inconsistent edge from MST using 7. 

10. ' '{ }/ /T TS S T T= ∪ is new disjoint subtrees (regions). 

11. 1c cn n= + . 

12. Compute the center i ic of T
 
using average of points. 

13. { }
iT T iC S c= ∈∪ . 

14. Update the clusters points, Repeat Step 6 to 13. 

Finally we obtain the cluster centers. 
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3. Formulation of Proposed Method 

LINEX Intuitionistic Fuzzy C means 

Clustering 

3.1. Intuitionistic Fuzzy C-means (IFCM) Algorithm 

Intuitionistic fuzzy set given by Atanassov [1] considers 

both membership ( ),x x Xµ ∈  and non-membership 

( ),x x Xν ∈ . An intuitionistic fuzzy set A in X, is written as 

{ }, ( ), ( ) \A AA x x x x Xµ ν= ∈  

where ( ) [0,1]A xµ → , ( ) [0,1]A xν → are the membership and 

non-membership degrees of an element in the set A with the 

condition 0 ( ) ( ) 1A Ax xµ ν≤ + ≤  when ( ) 1 ( )A Ax xν µ= −  for 

every x in the set A, then the set A becomes a fuzzy set. Also 

indicated a hesitation degree, ( )A xπ  which arises due to lack 

of knowledge in defining the membership degree of each 

element x in the set A and is given by 

( ) 1 ( ) ( )A A Ax x xπ µ ν= − − , 0 ( ) 1A xπ≤ ≤ . 

In [1] intuitionistic fuzzy c-means, minimizes the objective 

function as: 

2 1

1 1 1

1i

C N C
m

IFCM ik i k i

i k i

J u x c e m
ππ

∗−∗ ∗

= = −

= − + < < ∞∑∑ ∑                                       (3) 

ik ik iku u π∗ = + , where iku ∗ denotes the intuitionistic fuzzy 

membership and 

2

1

1

1
ik

mc
i k

i jj

u

x c

x c

−

=

=
 −
 
 −
 

∑
                          (4) 

1
1 , 0

1

ik
ik ik

ik

u
u

u
π λ

λ
 −

= − − > + 
                      (5) 

1

1

N
m

ik i

i
k N

m
ik

i

u x

c

u

=

=

=
∑

∑
                                  (6) 

1

1
N

i ik

k
N

π π∗

=

= ∑                                   (7) 

This iteration will stop when 

{ }1
max

k k
ij ik iku u

∗ + ∗− <∈ , 

where∈ is a termination criterion between 0 and 1, where as 

k is the iteration steps. This procedure converges to a local 

minimum or a saddle point of IFCMJ . 

3.2. LINEX Measure Based Intuitionistic Fuzzy C-means 

(IFCM) Algorithm 

In this section, we want to use the LINEX measure in 

Intuitionistic fuzzy c-means (IFCM) algorithm when the over 

estimating and the under estimating are not of the same 

importance. The procedures are the same as a Intuitionistic 

fuzzy c-means algorithm. All the entities are assigned to their 

nearest centroid from MST, using a LINEX loss function as 

the dissimilarity distance. The procedure continues until there 

is no change in clusters. Now consider the following 

optimization problem, 

Objective function: 

1* * *

1 1 1

( , ) ( , ) i

c n c
m

IFCM ij LINEX j i i

i j i

J U C u L x c e
ππ −

= = =

= +∑ ∑ ∑
1 m< < ∞                                       (8) 

where ( , ) exp 1LINEX kj i

x y x y
L x v

σ σ
   − −

= − −      
   

 

3.3. Updating Membership 

To obtain equation for calculating membership we 

minimizing the objective function ( , )LINEXJ U V  with 

constraint conditions. 

0 1 1,2,............ , 1,2...........iku i c k n≤ ≤ ∀ = = . 

1

1 1,2...........

c

ik

i

u k n

=

= ∀ =∑  

1

0 1,2,.........

n

ik

k

u n i c

=

≤ ≤ ∀ =∑  

Can be solved by using the Lagrangian multiplication as 

follows: 

To find min ( , )LINEXJ U V  it is sufficient to minimize the 

following inner sum for fixed k: 

put ( , )ik LINEX ik ijL L u v=  

Let
1 2

1

( , ,....... ) / 1, 0 1

c
c

k k k ck ik ik

i

B u u u u R u u

=

  = = ∈ = ≤ ≤ 
  

∑  

and 

1 1

( ) 1

c c
m

k ik ik ik

i i

g u u L uλ
= =

 
= − − 

 
 

∑ ∑  

( , )kuλ is stationary for F only if , ( , ) 0, 0
k

c
u kF u Rλ λ∆ = ∈

that yields to 
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1

( , ) 1 0

c

k ik

i

F
u uλ

λ =

∂ = − =
∂ ∑                      (9) 

1
( , ) 0

m
k ik ik

ik

F
u mu L

u
λ λ−∂ = − =

∂
                (10) 

From (9) 

1 0m
ik ikmu L λ− − =  

1m
ik ikm u L λ− =  

1m
ik

ik

u
m L

λ− =  

1

1m

ik
ik

u
m L

λ − 
=  
 

 

Then 

11

11 1 mm

ik
ik

u
m L

λ −−   =   
   

                      (11) 

From (9) 

11

11

1 1

1
1

c c
mm

lk
iki l

u
m L

λ −−

= =

  = =  
   

∑ ∑  

1

1

1

1

1

1

1

m

c
m

ikl

m

L

λ −

−

=

 
⇒ = 

 
 
 
 

∑

                   (12) 

Substitute (12) in (11). we obtain 

1

1

1

1

1

1

1

1

1
1

1

1

1 1

1

1

−

−

=

−

=
−

−

=

 
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  
 
 

=
 
 
 

 
  =   
  

 

∑

∑

∑

m

ik
ikc

m

ikl

c
m

ik

lkl

c m
ik

lkl

u
L

L

L

L

L

L

 

1
1

1

1

( , )

( , )

c
LINEX k i m

ik
LINEX k ll

L x v
u

L x v

−

−

=

  
 =  
   
∑                (13) 

The general equation is used to obtain membership ranks 

for objects in data for finding meaningful groups. 

3.4. Obtaining Cluster Prototype Updating 

To find min ( , )LINEXJ U V it is sufficient to minimize the 

following inner sum for fixed i: 

1

exp 1

n
m

ik

k

x y x y
u

σ σ=

    − −
− −            

∑  

Taking the partial derivative of objective function with 

respect to ijv and setting the result to zero, we have the 

general form of updating center as 

1 1 1 1

1 1

0

kj ijx vn n n n
m m m m

ik ik kj ik ij ik

k k i i

ij

u e u x u v u

v

σ
σ σ

−

= = = =

∂ − + −
=

∂

∑ ∑ ∑ ∑

 

1 1

1 1
0

kj ijx v
n n

m m
ik ik

k k

u e u
σ

σ σ

− 
  
 

= =

⇒ − + =∑ ∑  

1 1

1 1
kj ijx v

n n
m m

ik ik

k k

u e u
σ

σ σ

− 
  
 

= =

⇒ − = −∑ ∑  

1

1

ij

kj

n
m

v ik

k

xn
m

ik

k

u

e

u e

σ

σ

− =

=

⇒ =
∑

∑
 

1

1

log

kjxn
m

ik

k
ij n

m
ik

k

u e

v

u

σ

σ =

=

 
 
 

∴ =  
 
 
  

∑

∑
                   (14) 

where ik ik iku u π∗ = + , where iku ∗ denotes the intuitionistic 

fuzzy membership and 

1
1 , 0

1

ik
ik ik

ik

u
u

u
π λ

λ
 −

= − − > + 
                  (15) 
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1

1
N

i ik

k
N

π π∗

=

= ∑                        (16) 

The LINEX measure is suitable for clustering in which it 

can actually induce the necessary conditions. 

This iteration will stop when { }1
max

k k
ij ik iku u

∗ + ∗− <∈  

The MST based LINEX_IFCM algorithm iteratively 

optimizes LINEX IFCMJ by continuous updating *
iku and ijv until 

the difference in successive *
iku values is very small ≤ ∈ , 

where ∈  is a small positive value between 0 and 1. 

4. Efficient LINEX Measure Induced 

IFCM Based MST [LINEX_IFCM] 

4.1. Efficient LINEX_FCM Algorithm 

Stage 1: Set the cluster centroids { } 1
c

j jc =  by using 

LINEX measure MST initialization method. 

Stage 2: Compute the membership function using (13) 

Stage 3: Update the cluster centroids using (14) 

Stage 4: Go to stage (3)-(5), repeat until convergence. 

Stage 7: Image segmentation after defuzzification and then 

a region labeling procedure is proposed. 

Stage 8: The termination criterion is as follows 

1m mJ J −− ∈≺ , where m is the iteration count, 

∈  is a small number that can be set by the user. 

The proposed efficient LINEX MST obtained cluster 

centers; the LINEX_IFCM algorithm continues iteratively 

updates, membership and centroids with these values. When 

this improved, Efficient LINEX_IFCM algorithm has 

converged, another defuzzification process takes place in 

order to convert the fuzzy partition matrix to a crisp partition 

matrix that is segmented. 

4.2. Validation Function Based on Feature Structures 

Two representative functions for the fuzzy partition 

namely; Partition coefficient pcV  and Validation function pV

are used to evaluate the validity of clustering [19, 20]. 

* 2

1 1

1
n c

pc ij

i j

V u
n = =

= ∑ ∑                           (17) 

{ }
1* *

1 1 1

2

( , )

min

i

c n c
m

ij LINEX j i i

i j i

p

i j

u L x c e

V

N c c

ππ −

= = =

+

=
× −

∑ ∑ ∑
       (18) 

The proposed efficient MST obtained cluster centers; the 

MHMGIFCM algorithm continues iteratively updates, 

membership and centroids with these values. When this 

improved, Efficient MHIFCM algorithm has converged, another 

defuzzification process takes place in order to convert the fuzzy 

partition matrix to a crisp partition matrix that is segmented. 

5. Results and Discussion 

 
Figure 1. Scatter diagram for random dataset. 

 
Figure 2. LINEX distance based Minimal spanning tree connected through points. 
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Table 1. Random Data. 

Data Intensity Data Intensity 

S. No X Y I(v) S. No X Y I(v) 

1 1.80 2.00 0.50 11 12.00 4.00 0.80 

2 2.00 2.20 0.91 12 11.50 3.50 0.45 

3 2.00 1.80 0.12 13 12.50 3.50 0.55 

4 2.00 3.50 0.40 14 21.00 10.00 0.65 

5 8.80 3.00 0.50 15 21.00 11.00 0.25 

6 9.00 3.20 0.38 16 20.50 10.50 0.35 

7 9.00 2.80 0.60 17 21.50 10.50 0.75 

8 9.20 3.00 0.12 18 2.00 4.00 0.70 

9 7.00 2.80 0.80 19 19.00 20.00 0.60 

10 12.00 3.00 0.90 20 11.00 12.00 0.40 

Table 2. Dissimilarity matrix. 

S. 

No 

Co-ordinate intensity 
           

x y I(v) vertex 1 2 3 4 5 6 7 8 9 10 

1 1.80 2.00 0.50 1 0.0000 0.5074 0.4270 0.3320 11.2008 12.7079 12.2028 15.3318 5.1123 49.3249 

2 2.00 2.20 0.91 2 
 

0.0000 2.5878 1.1597 11.8730 14.6006 11.9487 20.7327 3.9904 40.8562 

3 2.00 1.80 0.12 3 
  

0.0000 0.6665 12.0401 12.5096 13.9505 12.5354 7.7815 59.7461 

4 2.00 3.50 0.40 4 
   

0.0000 9.9285 10.7263 11.3774 12.7963 5.0748 47.0369 

5 8.80 3.00 0.50 5 
    

0.0000 0.0421 0.0312 0.4340 0.6075 1.8983 

6 9.00 3.20 0.38 6 
     

0.0000 0.1446 0.1869 1.0616 2.2628 

7 9.00 2.80 0.60 7 
      

0.0000 0.7319 0.5136 1.3817 

8 9.20 3.00 0.12 8 
       

0.0000 2.5527 4.0437 

9 7.00 2.80 0.80 9 
        

0.0000 3.8757 

10 12.00 3.00 0.90 10 
         

0.0000 

Table 3. LINEX measure based minimal spanning tree edges. 

S. No Edges LINEX measure S. No Edges LINEX measure 

1 (1,4) 0.3320 11 (7,5) 0.0312 

2 (4,18) 0.2801 12 (5,6) 0.0421 

3 (18,2) 0.6026 13 (6,8) 0.1869 

4 (18,3) 2.2364 14 (6,20) 53.8331 

5 (18,9) 4.3247 15 (20,16) 34.9406 

6 (9,12) 3.7182 16 (16,15) 0.0744 

7 (12,13) 0.1093 17 (16,14) 0.3060 

8 (13,11) 0.2219 18 (14,17) 0.0744 

9 (11,10) 0.1491 19 (17,19) 75.3462 

10 (10,7) 1.3817    

 

Our LINEX distance based minimal spanning tree 

algorithm constructs LINEX_MST from the dissimilarity 

matrix is shown figure 2. 

Adjacency Matrix: 

The adjacency matrix of a finite graph G of a ‘n’ vertices is 

the n n× matrix where the non-diagonal entry ija is the 

number of edges from vertex ‘i’ to vertex ‘j’ and the diagonal 

entry iia is either once or twice the number of edges from 

vertex ‘i’ to itself. 

Table 4. Adjacency Matrix for minimal spanning tree. 

Adjacency-Matrix 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

5 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 

7 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

10 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 
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Adjacency-Matrix 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

13 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 

18 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

20 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Degree Matrix: 

In the mathematical field of graph theory the degree matrix is a diagonal matrix which contains information about the degree 

of each vertex. That is the count of edges connecting a vertex v. If i j≠  then replace the cell value with 0 otherwise degree of 

the vertex iv . 

Table 5. Degree Matrix for minimal spanning tree. 

Degree Matrix 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

Laplacian Matrix: 

Given a simple graph G with n vertices, its Laplacian matrix is defined as: 

L(i,j)= degree of vertex iv if i j= , if i j≠ and iv  is not adjacent to jv  and in all other case fill it with 0. 

Table 6. Laplacian Matrix for minimal spanning tree. 

Laplacian Adjacency-Matrix 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 

3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 

4 -1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 

5 0 0 0 0 2 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 -1 3 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 

7 0 0 0 0 -1 0 2 0 0 -1 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 2 0 0 -1 0 0 0 0 0 -1 0 0 

10 0 0 0 0 0 0 -1 0 0 2 -1 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 -1 2 0 -1 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 -1 0 0 2 -1 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 -1 -1 2 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 -1 -1 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 3 0 0 0 -1 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 2 0 -1 0 

18 0 -1 -1 -1 0 0 0 0 -1 0 0 0 0 0 0 0 0 4 0 0 
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Laplacian Adjacency-Matrix 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 

20 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0 2 

 

To Find Eigenvalue and Eigenvector in SPSS 16.0 Syntax: 

matrix. /* computing eigenvalues and eigenvectors 

get x /variables var00001, var00002, var00003, var00004, 

var00005, var00006, var00007, var00008, var00009, 

var00010, var00011, var00012, var00013, var00014, 

var00015, var00016, var00017, var00018, var00019, 

var00020. /* this creates a matrix with the n rows and p=20 

columns 

compute xtx=transpos(x)*x. /* compute x’x which is a 

symmetric matrix;  

note: “transpos” could be shortened to just “t” 

print xtx. 

call eigen(xtx,eigvec,eigval). /*compute eigenvalues and 

eigenvectors of x’x 

print eigval. 

print eigvec. 

/* the original matrix x’x can be represented 

approximately using the “spectral decomposition” of 

eigenvalues  

and eigenvectors 

compute approx1=eigval(1)*eigvec(:,1)*t(eigvec(:,1)). 

print approx1. 

compute 

approx2=eigval(1)*eigvec(:,1)*t(eigvec(:,1))+eigval(2)*eigv

ec(:,2)*t(eigvec(:,2)). 

print approx2.  

/* the approximation with only the largest eigenvalue is 

not bad, but with both it is perfect  

end matrix. 

Iteration: 1 

Eigenvalue:  

Second smallest Eigenvalue 00085.02 =λ  

Eigenvector: 

2v
 
is used to recursively partition the graph by separating 

the components into negative and positive values. 







=

++−++++−−−−−++++−−−−
20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1v2  











 ++++++++++

= 20,19,17,16,15,14,8,7,6,5Positives  







=

−−−−−−−−−−
18,13,12,11,10,9,4,3,2,1Negatives  

Iteration: 2 

Eigenvalue:  

Second smallest Eigenvalue 0750.02 =λ  

Eigenvector: 

2v
 
is used to recursively partition the graph by separating 

the components into negative and positive values. 







=

−++−−+−−−−
20,19,17,16,15,14,8,7,6,5v2  











 +++

= 19,17,14Positives  







=

−−−−−−−
20,16,15,8,7,6,5Negatives Finally we get three 

subtrees { }1 1, 2, 3, 4, 9, 10, 11, 12, 13, 18T = , 

{ }2 5, 6,7, 8, 15, 16, 20T =  and { }3 14, 17, 19T = and initial 

cluster centers 1 (6.48, 3.03, 0.61)C = , 

2 (12.64, 6.50, 0.37 )C =  and 3 ( 20.50, 13.50, 0.67 )C =  

The new efficient MST based IFCM objective function 

LINEX measure the termination value is achieved, with very 

less iteration and with much better performance in getting 

membership (Table 7) than standard IFCM. Table 8 gives the 

number of iteration to achieve the results of cluster on the 

data points by standard IFCM and LINEX IFCM. It is clear 

from the final cluster, membership (Table 7), scatter diagram 

(Figure 1), that our proposed MST based LINEX IFCM is 

much faster than the standard FCM and the method is 

converged fast to terminate condition with less run time. To 

test the effectiveness of LINEX_IFCM, then MST 

initialization method based IFCM is used as center. This is 

done to find out the fuzzy membership and appropriate 

number of clusters. Thus, we have concluded the final 

optimal clusters formed as 3. This algorithm has also reduced 

the number of iterations. Best result is achieved by this 

measure fuzzy partition coefficient pcV  maximum and 

validation function pV  minimum (Table 9). The LINEX 

IFCM clustering algorithm has the following membership 

value intimacy (Table 7), 

 
Figure 2. Spectral initialization method based Intuitionistic FCM, final 

cluster three. 
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Table 7. Final membership of three clusters of Intuitionistic FCM method and object allocation. 

Co-ordinate (x,y) intensity 
   appropriate cluster 

S. No x y I(v) Mem-1 Mem-2 Mem-3 

1 1.80 2.00 0.50 0.9624 0.0369 0.0007 1 

2 2.00 2.20 0.91 0.9607 0.0386 0.0007 1 

3 2.00 1.80 0.12 0.9511 0.0479 0.0010 1 

4 2.00 3.50 0.40 0.9505 0.0485 0.0009 1 

5 8.80 3.00 0.50 0.8587 0.1392 0.0020 1 

6 9.00 3.20 0.38 0.7944 0.2026 0.0031 1 

7 9.00 2.80 0.60 0.8513 0.1466 0.0021 1 

8 9.20 3.00 0.12 0.7331 0.2615 0.0054 1 

9 7.00 2.80 0.80 0.9877 0.0121 0.0002 1 

10 12.00 3.00 0.90 0.3227 0.6639 0.0135 2 

11 12.00 4.00 0.80 0.1668 0.8228 0.0104 2 

12 11.50 3.50 0.45 0.3028 0.6860 0.0111 2 

13 12.50 3.50 0.55 0.2046 0.7798 0.0156 2 

14 21.00 10.00 0.65 0.0006 0.0097 0.9897 3 

15 21.00 11.00 0.25 0.0001 0.0020 0.9979 3 

16 20.50 10.50 0.35 0.0001 0.0025 0.9974 3 

17 21.50 10.50 0.75 0.0005 0.0088 0.9906 3 

18 2.00 4.00 0.70 0.9464 0.0526 0.0010 1 

19 19.00 20.00 0.60 0.0048 0.0641 0.9311 3 

20 11.00 12.00 0.40 0.0687 0.7512 0.1801 2 

Table 8. Comparison of iteration count. 

 
No. of iterations No. of clusters 

FCM 10 3 

KFCM 5 3 

MST initialization method based LINEX Intuitionistic FCM 2 3 

Table 9. Cluster validity function. 

 Vpc Vp 

FCM 0.8020 0.2750 

KFCM 0.8058 0.2660 

MST based LINEX Intuitionistic FCM 0.8103 0.2568 

 

6. Conclusion 

This paper studies the intuitionistic fuzzy C-means 

clustering algorithm. Several important parameters during the 

IFCM clustering process, such as the initial form of the 

partition matrix, the number of classification and the 

threshold of terminating the iteration, which significantly 

affect the clustering results, are analyzed and discussed. The 

proposed a novel integration of Fiedler value for MST based 

LINEX_IFCM to search for the optimal parameters to 

improve the performance. The algorithm overcomes 

problems involved with membership values of objects to 

each cluster by generalizing degrees of membership of 

objects to each cluster. For the initial partition matrix, if the 

membership degrees and non-membership degrees of the 

classified objects to the categories are obviously different, 

the iteration times will be reduced accordingly. When the 

number of classification increases, the clustering results 

change, and some objects are separated from the original 

category. Compared with FCM clustering algorithm, Fiedler 

value MST initialization method based LINEX_IFCM 

algorithm can classify objects more accurately. This study 

can help to understand and master the factors that affect the 

intuitionistic fuzzy clustering results, and help to promote the 

further research and application of LINEX_IFCM clustering 

method. 
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