
 
Applied and Computational Mathematics 
2023; 12(1): 9-14 
http://www.sciencepublishinggroup.com/j/acm 
doi: 10.11648/j.acm.20231201.12 
ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) 

 

The Metric Dimension of Subdivisions of Lilly Graph, 
Tadpole Graph and Special Trees 

Basma Mohamed
*
, Mohamed Amin 

Mathematics and Computer Science Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt 

Email address: 

 
*Corresponding author 

To cite this article: 
Basma Mohamed, Mohamed Amin. The Metric Dimension of Subdivisions of Lilly Graph, Tadpole Graph and Special Trees. Applied and 

Computational Mathematics. Vol. 12, No. 1, 2023, pp. 9-14. doi: 10.11648/j.acm.20231201.12 

Received: October 28, 2022; Accepted: November 16, 2022; Published: March 16, 2023 

 

Abstract: Consider a robot that is navigating in a space represented by a graph and wants to know its current location. It can 
send a signal to find out how far it is from each set of fixed landmarks. We study the problem of computing the minimum 
number of landmarks required, and where they should be placed so that the robot can always determine its location. The set of 
nodes where the landmarks are located is called the metric basis of the graph, and the number of landmarks is called the metric 
dimension of the graph. On the other hand, the metric dimension of a graph G is the smallest size of a set B of vertices that can 
distinguish each vertex pair of G by the shortest-path distance to some vertex in B. The finding of the metric dimension of an 
arbitrary graph is an NP-complete problem. Also, the metric dimension has several applications in different areas, such as 
geographical routing protocols, network discovery and verification, pattern recognition, image processing, and combinatorial 
optimization. In this paper, we study the metric dimension of subdivisions of several graphs, including the Lilly graph, the 
Tadpole graph, and the special trees star tree, bistar tree, and coconut tree. 
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1. Introduction 

Let G=(V, E) be a connected graph and d(u,v) be the 
shortest path between two vertices u,v	∈ V(G). An ordered 
vertex set B={x1,x2,...,xk}⊆ V(G) is a resolving set of G if the 
representation 

r(v| B) = (d(v, x1), d(v, x2),....,d(v, xk)) 

is unique for every v∈V(G). The metric dimension of G, 
denoted dim(G), is the cardinality of minimum resolving set 
of G. 

Slater [1, 2] introduced the notion of a minimum resolving 
set as a locating set of G and uses the cardinality of B as a 
locating number to uniquely identify the location of an 
intruder in a network. Harary and Melter in [ 3] introduced 
independently the notion of minimum resolving set as a 
metric basis of G and the cardinality of B as the metric 
dimension of G and since then it has been used in several 
applications such as robot navigation in networks [4, 5], 
application to pharmaceutical chemistry Chartrand et al. [6], 

application to pattern recognition Melter et al. [ 7], and 
application to wireless sensor network localization [8]. 

Despite Khuller et al [4] have shown that the problem of 
determining the metric dimension of a graph is NP-complete, 
many scholars have improved an upper bound for the metric 
dimension of several graphs or determined their exact values. 
Chartrand et al. [6] showed the metric dimension of the path 
graph Pn is 1, � ≥ 2, cycle graph Cn is 2, n ≥ 3, complete 
graph Kn is n-1, n ≥ 2 and star graph K1,n-1 is n-2, n ≥ 3. 
Susilowati et al. [9] determined the metric dimension of the 
k-subdivision of the path graph �� is 1, � ≥ 2, cycle graph �� 

is 2, � ≥ 3, complete graph �� is n-2, � ≥ 4, star graph �� is n-
2, � ≥ 3, ladder graph 	� is 2, n ≥ 3 and other special graphs. 
Borchert et al. [10] computed the metric dimension of the 
circulant graphs Cn (±1, ±2) and demonstrated that if n ≡ 1 
(mod 4), then dim(Cn (±1,±2)) = 4. Imran et al. [11] 
investigated the metric dimension of the barycentric 
subdivision of Möbius ladders, the generalized Petersen 
multigraphs P(2n, n) and proved that they have metric 
dimension 3 when n is even and 4 when n is odd. Nawaz et al. 
[12] demonstrated that the total graph of path power of three 
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T(�
� ) and four T(�
� ) has unbounded metric dimension. 
Nazeer et al. [13] demonstrated that the metric dimension of 
a two-middle path graph Two−Mid(pq), q≥3 is 2, three-
middle path graph Three−Mid(Pq), q ≥3 is 3, three-total Pq 
Three−T(Pq), q ≥ 3 is 3, reflection middle tower path graph 
RL(Towers), s ≥3 is 2, middle tower path graph Middle 

Towers, s=2 is 1, Middle Towers, s≥ 3 is 2, symmetrical 
planar pyramid graph SPPs is 2 and reflection symmetrical 
planar pyramid graph RL(SPPs) is 2. Ahmad et al. [14] 
determined the metric dimension of kayak paddles graph 
KP(ℓ, m, n) and cycles Cn with chord and proved that both 
families possess a metric dimension of 2. Mulyono et al. [15] 
determined the metric dimension of friendship graph Fn, n ≥ 
2 is n lollipop graph Lm,n, m ≥ 3, n ≥ 1 is m-1 and the 
Petersen graph Pn,m, m = 1, n is odd, n ≥ 3 is 2 and m = 1, n is 
even, n ≥ 3 is 3. Garces et al. [16] proved that the metric 
dimension of truncated wheels TWn, n = 3 or n = 6 is 3, n = 4 

or n = 5 is 2 and n ≥ 7 is 

�� � 1. Siddique et al. [17] showed 

the metric dimensions of antiweb-gear graphs AWJ2n, n ≥ 15 

is 

��� �	and m-level wheel graphs Wn,m, n ≥ 7, m ≥ 3 is ��
��� �+ �� � 1� ��
��� � . Jäger et al. [18] proved that the 

metric dimension of Zn × Zn × Zn, n ≥ 2 is ��
� �. Tomescu et al. 

[19] determined that the metric dimension of Jahangir graph 

J2n, n ≥ 4 is ��
� �. Tomescu et al. [20] determined that the 

metric dimension of necklace graph Nen is 3 when n is odd 
and 2 when n is even. The metric dimension of convex 
polytopes has been studied [21-24]. 

In this paper, we determine the metric dimension of Lilly 
graph and its subdivision, tadpole graph and its subdivision, 
the subdivisions of the special trees star tree, bistar tree, 
coconut tree, Y-tree, F-tree and n-centipede tree. 

Definition 1.1 [25] The subdivision of a graph is the graph 
obtained by subdividing each edge of a graph �. It is denoted 
by S (�). 

Example 1.2: 

 

Figure 1. Line graph G and its subdivision S(G). 

We show that dim (G) = 2 and dim(S(G)) = 3. The set B = 
{v1,v3} is a resolving set of G. The representations for the 
vertices of G with respect to B are r(v1| B)=(0,1), r(v2| B) = 
(1,1), r(v3| B)=(1,0), r(v4| B) =(2,1), r(v5| B) =(2,2) is unique. 

Clearly. Dim (G) = 2. The minimum resolving set of S(G) 
is B = {v1,v3,v4}. The representations for the vertices of S(G) 
with respect to B are 

r(v1| B)=(0,2,4), r(v2| B) = (2,2,2), r(v3| B)=(2,0,2), r(v4| 
B)=(4,2,0), r(v5| B)=(4,4,2), r(v6| B)=(1,1,3), r(v7| B)=(1,3,3), 
r(v8| B)=(3,1,3), r(v9| B)=(3,1,1), r(v10| B)=(3,3,1), r(v11| 
B)=(5,3,1), r(v12| B)=(3,3,3). 

Clearly. Dim (S(G)) = 3. 

2. Metric Dimension of Lilly Graph Ln 

and Its Subdivision S (Ln) 

In this section, we compute the metric dimension of Lilly 
graph and its subdivision. The metric dimension of Lilly 
graph and its subdivision have different metric dimension. 

Theorem 2.1 For Lilly graph Ln, n ≥ 2, dim (Ln) =	���� . 

 

Figure 2. Lilly graph Ln. 

Proof. The resolving set in general form is B= 
{v2,v3,v4,...,	���� }⊂V(Ln). The representations of vertices vi ∈ 

V(Ln) in regard to B are as follow: 

r(v1|B) = (1, 1, 1,..., 1, 1) 

r(v2|B) = (0, 2, 2,..., 2, 2) 

r(v3|B) = (2, 0, 2,..., 2, 2) 

r(v4|B) = (2, 2, 0,..., 2, 2) 

     =            

r(���� 	|#) = (2, 2, 2,..., 2, 0) 

r(���$ |B) = (% � 
��� & 1, % � 
��� & 1,..., % � 
��� & 1, % � 
��� � 1) 

     =            

r(�(��() |B) = (% � 
��� & 1, % � 
��� & 1,..., % � 
��� & 1, % � 
��� � 1) 

r(�(��$) |B) = (% � �
*�� , % � �
*�� ,...…………., % � �
*�� ) 

     =            

r(vn|B) = (% � �
*�� , % � �
*�� , ………	…… . . , % � �
*�� ) 

The vertices in graph Ln have unique representations, as 
seen above. B is resolving set, but not necessarily the lower 

bound. So the upper bound is dim (Ln) - 
��� . 

So, We demonstrate that dim (Ln) . 
��� . Let B ={ v2, v3,..., 
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���� } be a resolving set with |B| = 

��� 	Assume that B1 is 

another minimal resolving set, or |B1| /	 
��� . 
If we select an ordered set B1 ⊆ B− {vi, vj}, 1- i,j -	 
��� , i 0j, so that there exist two vertices vi,vj ∈	Ln, then r(vi|B) = r(vj 

|B) = (2, 2, 2,..., 2, 2). The assumption that B1 is a resolving 

set is invalid. As a result, dim (Ln) .	
��� 	is the lower bound. 

In conclusion dim (Ln) = 

��� . 

Theorem 2.2 If S(Ln), n ≥ 3 is a subdivision of Lilly graph, 

then dim (S(Ln)) =	
��� . 

 

Figure 3. Subdivision of Lilly graph S(Ln). 

Proof. The resolving set in general form is B= {v2, v3, 

v4,..., 	���$) }⊂V(S(Ln)). The representations of vertices vi ∈ 

V(S(Ln) in regard to B are as follow: 

r(v1|B) = (1,1,1,............, 1,1) 

r(v2|B) = (0, 2, 2,..........., 2,2) 

r(v3|B) = (2, 0, 2,2,........., 2,2) 

r(v4|B) = (2, 2, 0,2,2,......., 2,2) 

     =            

r(���() 	|#) = (2, 2, 2,......., 2, 0) 

r(���$) |B) = (1, 3, 3,................, 3) 

r(���11) |B) = (3, 1, 3, 3,............, 3) 

     =            

r(�
*�2|B) = (3,3,3,............., 3, 1) 

r(�
*3|B) = (2,2,..............., 2, 2) 

r(�
*4|B) = (3,3,..............., 3, 3) 

     =            

r(�
*�|B) = (7, 7,..............., 7, 7) 

r(�
*�|B) = (4, 4,..................., 4, 2) 

r(�
*�|B) = (5, 5,.................., 5, 3) 

r(�
*�|B) = (6, 6,.................., 6, 4) 

r(�
 |B) = (7, 7,..................., 7, 5) 

3. Metric Dimension of Tadpole Graph 

In this section, we compute the metric dimension of 
Tadpole graph and its subdivision. The metric dimension of 
tadpole graph and its subdivision have the same constant 
metric dimension 2. 

Theorem 3.1 If Tn,m, n ≥ 3, m ≥ 1 is a tadpole graph, then 

dim (Tn,m)=2. 
Proof The tadpole graph Tn,m has two cases. 

 

Figure 4. Tadpole graph Tn,m. 

The general form of resolving set of the two cases is B = 
{v1, v2}⊂V(Tn,m). 

Case 1. When n is even. The representations of vertices vi ∈ V(Tn, m) with regard to B are 

5��6|#� 7
899
:9
9; �0,1�, i 7 1;																																																�% � 1, % � 2�, 2 - i - �2 ;																											@% � �2 , % � �2 & 1A , �2 & 1 - i - � � 1;
@% � �2 , % � �2 � 1A , n - i - �.															

 

Case 2. When n is odd. The representations of vertices vi ∈V(Tn, m) in regard to B are 

5��6|#� 7
899
:
99;
�0,1�, i 7 1;																																																																		�% � 1, % � 2�, 2 - i - � & 12 ;																																		
�% � � & 12 , % � � � 12 �, � & 32 & 1 - i - � � 1;
D% � � & 12 , % � � & 12 E , n - i - �.																							

 

As all representations are distinct, dim (Tn,m) = 2. 
Theorem 3.2 If S(Tn,m), n	. 6, m . 2, is a subdivision of 

tadpole graph Tn,m, then dim(S(Tn,m))=2. 
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Figure 5. Subdivision of tadpole graph S (Tn,m). 

Proof. The resolving set in general form is B = {v1,v2}⊂ 

V(S(Tn, m)). The representations of vertices vi ∈ V(S(Tn, m)) in 
regard to B are as follow: 

5��6|#� 7 G �0,1�, i 7 1;�% � 1, % � 2�, 2 - i - 
� & 1;@% � 
� � 1, % � 
�A , 
� & 2 - i - �.  
Since all vertices have unique representations, we obtain 

dim (S(Tn,m))= 2. 

4. Metric Dimension of Subdivisions of 

Special Trees 

In this section, we compute the metric dimension of 
subdivisions of star tree, bistar tree and coconut tree. The 
metric dimension of star tree and its subdivision have 
different metric dimension, subdivision of bistar tree S (BTn,n) 

has metric dimension 

*H�  and subdivision of coconut tree 

S(CT(m,n)) has metric dimension m. 
Theorem 4.1 If S (STn,n), n	. 6 is a subdivision of star tree 

then dim (S(STn,n)) = 

*�� . 

 

Figure 6. Star tree STn,n and its subdivision S (STn,n). 

Proof. In [6] it was shown that dim (STn,n)= n-2, n	. 3 and 
[9] it was computed the metric dimension of k-subdivision of 
star graph with more than one edge dim S(STn,n)= n-2, n	. 4. 
In this theorem, we compute the metric dimension of the 
subdivision of a star graph. 

The resolving set in general form is B={v2, v3, …,��I1 	}⊂V 

(S(STn,n)). The representations of vertices vi ∈ V(S(STn,n)) in 
regard to B are as follow: 

r(v1|B) = (1, 1,....................., 1) 

r(v2|B) = (0, 2, 2,.............…, 2) 

r(v3|B) = (2, 0, 2, 2,..........…,2) 

      =            

r(��I1 |B) = (2, 2,...............…, 0) 

r(���1 |B) = (1, 3, 3,…............,3) 

r(���( |B) = (3, 1, 3,…............,3) 

     =            

r(vn-2|B) = (3, 3,…............,1) 

r(vn-1|B) = (2, 2,…............,2) 

r(vn|B) = (3, 3,..…............,3) 

As seen above, the representations of vertices V (S(STn,n)) 
have unique representations, B is resolving set, but not 
necessarily the lower bound. An upper bound is dim (S(STn,n)) - 
*�� . So, we prove that dim (S(STn,n)) . 
*�� . Let B = {v2, 

v3, …,��I1 } be a resolving set with |B| = 

*�� . Assume that B1 

is another minimal resolving set, or |B1|/ 
*�� . 

If we select an ordered set B1 ⊆ B− {vi,vj}, 1- i, j -	 
*�� , i 0j, so there exist two vertices vi,vj ∈ (S(STn,n)) such that r(vi|B) 
= r(vj |B) = (3, 3,.........., 3). The assumption that B1 is a 

resolving set is invalid. As a result, dim (S (STn,n)) .	 
*�� 	is 

the lower bound. In conclusion dim (S(STn,n)) = 

*�� . 

 Theorem 4.2 If S (BTn,n), n	. 3 is a subdivision of bistar 

tree then dim (S(BTn,n)) = 

*H� . 

 

Figure 7. Bistar tree BTn,n and its subdivision S (BTn,n). 

Proof. The resolving set in general form is B = 
{v1,v2, …, ��I$ }⊂V (S(BTn,n)). The representations of vertices 

vi ∈ V(S(BTn,n)) in regard to B are as follow: 

r(v1|B) = (0, 4, 4…, 4, 6, …, 6) 
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r(v2|B) = (4, 0, 4, 4, …,6,.....,6) 

      =            

r(��I$ |B) = (6,…..., 6, 4, 4,......., 4, 0) 

r(��I� |B) = (1, 3, …, 3, 3, 5,…....., 5) 

r(��I( |B) = (3, 1, 3,…, 3, 3, 5,…...., 5) 

     =            

r(�(�I 1) |B) = (3, 3,…, 3, 1, 5,…...., 5) 

r(�(�I1$) |B) = (3, 3,..................…, 3) 

r(�(�I1() |B) = (3, 3, …, 3, 5, 5,…...., 5) 

r(�(�IJ) |B) = (2, 2, …, 2, 4, 4,…......, 4) 

r(�(�I�) |B) = (4, 4, …, 4, 6, 6,…......, 6) 

r(�(�I1) |B)=(4, 4, …,4, 2, 2,…........., 2) 

r(�(��() |B)=(6, 6,…......, 6, 4, 4, ….., 4) 

r(�)�I$( |B)=(5,.…...., 5, 1, 3,............, 3) 

     =            

r(�
*�|B)=(5,…...., 5, 3,..........., 3, 1) 

r(�
 |B) = (5,…...., 5, 3,.............., 3, 3) 

As seen above, the representations of vertices V (S(BTn,n)) 
have unique representations, B is resolving set, but not 
necessarily the lower bound. An upper bound is dim (S(BTn,n)) - 
*H� . So, we prove that dim (S(BTn,n)) . 
*H� . Let B = 

{v1,v2, …, ��I$ }be a resolving set with |B| =

*H� . Assume that 

B1 is another minimal resolving set, or |B1| / 
*H� . 

If we select an ordered set B1 ⊆ B− {vi,vj}, 1- i, j -	 
*H� , i 0j, so there exist two vertices vi,vj ∈(S (BTn,n)) such that r(vi|B) 
= r(vj |B) = (5,..., 5, 3,..., 3). The assumption that B1 is a 

resolving set is invalid. As a result, dim (S(BTn,n)) .	 
*H� 	is 

the lower bound. In conclusion dim (S (BTn,n)) = 

*H� . 

Theorem 4.3 If (S(CT(m,n)), m .	 3 and n 	.  5 is a 
subdivision of Coconut tree then dim(S(CT(m,n)) = m. 

Proof. The resolving set in general form is B={v1, v2, v3,..., 

vm}⸦V(S(CT(m,n)). The representations of vertices vi ∈ 
V(S(CT(m, n)) in regard to B are as follow: 

 

Figure 8. Coconut tree CT(m,n) and it subdivision S (CT(m,n)). 

r(v1|B) = (0, 4, 4, …, 4, 4) 

r(v2|B) = (4, 0, 4, …, 4, 4) 

r(v3|B) = (4, 4, 0, …, 4, 4) 

     =            

r(vm|B) = (4, 4, 4, …, 4, 0) 

r(vm+1|B) = (1, 3, 3, …, 3, 3) 

r(vm+2|B) = (3, 1, 3,…, 3, 3) 

r(vm+3|B) = (3, 3, 1,…, 3, 3) 

     =            

r(v2m|B) = (3, 3, 3,…, 3, 1) 

r(v2m+1|B) = (2, 2, 2,…, 2, 2) 

     =            

r(vn|B) = (6, 6, 6,..., 6, 6) 

The representations of vertices in graph S (CT (m,n)) are 
distinct as shown above, B is resolving set, but not always the 
lower bound. An upper bound is dim S (CT (m, n)) -	m. As a 
result, we show that dim S (CT (m, n)) .	m. Let B ={v1, v2, 

v3,...,vm} be a resolving set with |B| = m. Assume that B1 is 
another minimum resolving set, or |B1| / m. 

If we choose an ordered set B1 ⊆B− {vi,vj}, 1- i, j -	m, i 0j, so that there exist two vertices vi,vj ∈	S (CT (m, n) such 
that r(vi|B) = r(vj |B) = (3, 3, 3,..., 3, 3). B1 is not a resolving 
set, which is contrary to the assumption. As a result, dim S 

(CT (m, n)) . m is the lower bound. 
As a result, dim S (CT (m, n)) = m. 

5. Conclusion 

The metric dimension of Lilly graph and its subdivision 
have different metric dimensions. The tadpole graph and its 
subdivisions have the same constant metric dimension 2. The 
metric dimension of star tree and its subdivision have 
different metric dimension, subdivision of bistar tree S(BTn,n) 

has metric dimension 

*H�  and subdivision of coconut tree 

S(CT(m,n)) has metric dimension m. 
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