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Abstract: Let ( )2,GL ℝ  be real Möbius groups. For any 2×2 matrix A in ( )2,GL ℝ  induces real Möbius transformations 

g by the formula 
A

A g g→ =  where ,
a b ax b

A g
c d cx d

  += =  + 
. The collection of all real Möbius transformations for which 

1ad bc− =  takes the values 1 forms a group which can be identified with ( )2,PSL ℝ . We write ( )*
2,f PSL∈ ℝ  to mean 

that f  is a random variable in ( )2,PSL ℝ . In this paper, we study the random Möbius subgroup ( )*
2,PSL ℝ . We can get 

some new results: (1) If ( )*
, 2,f g PSL∈ ℝ , the probability ( ) ( )2 1 1| 4 | | 2 | 1tr f tr fgf g− −− + − ≤  is greater than 0.027282. (2) 

If f is hyperbolic transformation and g is parabolic transformation, then the probability ,f g  is discrete is greater than 7/12. 

(3) If f  is elliptic of order n  and g  is elliptic of order 2, then the probability ,f g  is discrete is greater than 2 / n . (4) 

The probability that random chosen ( )*, 2,f g PSL∈ ℝ  generate an elementary or non-discrete group ,f g is greater than 

0.0302049. 

Keywords: Random Discrete Möbius Group, ( )* 2,PSL ℝ , Jørgensen’s Inequality 

 

1. Introduction 

Throughout this paper, we will adopt the same notations 

and definitions as [2, 13, 14, 15, 16] such as, discrete group, 

Fuchsian group, elementary group, ( )* 2,PSL ℝ  and so on. 

For example, if G is discrete and if 1 2
, , ...X A A are in G with

n
A X→ then n

A X= for all sufficiently large n . A group G of 

Möbius transformation is a Fuchsian group if and only if 

there is some G − invariant disc in which G acts 

discontinuously. A subgroup G of ( )2,PSL ℂ is said to be 

elementary if and only if there exists a finite G-orbit in 3
ℝ . 

See [2, 3, 4, 5, 6, 7, 8, 9, 10，11，12, 18, 19, 20] etc. for more 

details. 

It is well known that Random group, introduced in the 

1943 by Auerbach [1], has been extensively studied over the 

group of random symmetric group [4] and random finite 

group [11, 12]. G. J. Martin and G. O’Brier [13, 14] 

introduce a geometrically natural probability measure on the 

group ( )2,PSL ℝ . They studied the probability that random 

Möbius subgroup ,f g is discrete and given a lower bound 

for the probability a group generated by two random 

hyperbolic elements or parabolic elements of ( )* 2,PSL ℝ  is 

discrete. 

Theorem MO1 [13, Theorem 11.6] The probability that 

two randomly chosen hyperbolic transformation ,f g ∈ . 

( )* 2,PSL ℝ generate a discrete group ,f g is at least 2 / 5 . 

Theorem MO2 [13, Theorem 10.3] The probability that 

two randomly chosen parabolic transformation ,f g ∈ . 

( )* 2,PSL ℝ generate a discrete group ,f g is at least 1/ 6 . 

We further study the probability a group generated by a 

hyperbolic element and a parabolic element of ( )* 2,PSL ℝ is 
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discrete and obtain the following theorems. 

Theorem 1.1 Let ,f g be random chosen hyperbolic 

element and parabolic element in ( )* 2,PSL ℝ . Then the 

probability ,f g is discrete is at least 7 /12 . 

G. J. Martin and G. O’Brier studied the probability a group 

generated by a elliptic element of order n  and a hyperbolic 

element of ( )* 2,PSL ℝ  is discrete. 

Theorem MO3 [13, Theorem 12.5] Let f zξ= and 1nξ = . 

Let ( )* 2,g PSL∈ ℝ be a randomly chosen hyperbolic. Then 

the probability ,f g is discrete is 2
2 / n . 

We further study the probability a group generated by two 

elliptic elements of ( )* 2,PSL ℝ  is discrete and obtain the 

following theorems. 

Theorem 1.2 Let ,f g be random chosen elements in

( )* 2,PSL ℝ . If f is elliptic of order n and g is elliptic of 

order 2 . Then the probability ,f g is discrete is 2 / n . 

G. J. Martin [15, 16] had results such as the p.d.f for trace, 

Commutators, Cross ratios. We will obtain the p.d.f for ( )m f

and have the following theorem. 

Theorem 1.3 Let f be randomly chosen element of 

( )2,PSL ℝ . Then the random variable ( )2m f has the p.d.f 

( )
( )

1

2

0 8
( )

8

F s s
F s

F s s

 < ≤=  ≥  

Where, 

( )( )

1
8

1 2 1

1 1
( )

8
8 1 2 1

8 8

+
=

 + + − − − 
 

∫
s

y
F s dy

s s
y y y

π
 

( )( )

2

2 2 1

1 1
( )

8
1 1 2 1

8 8

y
F s dy

s s
y y y

π
=

 + + − − − 
 

∫

. 

Finally, by using Theorem 1.3, we will obtain the following 

theorems. 

Theorem 1.4 Let ,f g be random chosen elements in

( )* 2,PSL ℝ . Then the probability ( )2| 4 |tr f − +

( )1 1| 2 | 1tr fgf g− − − ≤ is greater than 0.0272821 . 

Theorem 1.5 Let ,f g be random chosen elements in

( )* 2,PSL ℝ . Then the probability ,f g is non-discrete or 

elementary is greater than 0.0302049 . 

2. Preliminaries 

2.1. Random Möbius Groups 

If ( )2,A PSL∈ ℂ has the form 

2 2
= , 1.

a c
A a c

c a

 
± − = 
 

          (1) 

Then the group of all matrices satisfying (1) will be denoted

F . It is not difficult to construct an algebraic isomorphism 
2(2, ) ( )PSL Isom+≡ ≡ℝ HF . 

The probability distribution. The probability space is 

( , )µ
F

F , the space of matrices with the following imposed 

distribution of the entries of an element ofF . 

(i) /a aξ = and /c cη = are chosen uniformly in the 

circle S , with arclength measure. 

(ii) | | 1t a= ≥ is chosen so that 

( ) [ ]2arcsin 1/ 0,t π∈
 

is uniformly distributed. 

Lemma 2.1.1 [13, lemma 2.3] The random variable

[ )1,a ∈ ∞ has the p.d.f 

| |
2

2 1
( ) .

1
a

F x
x xπ

=
−  

we write ( ) [0,2 ]arg a µ π∈
ℝ

if ( )arg a uniformly distributed on

ℝmod 2π . The following lemma will be crucial. 

Lemma 2.1.2 [13, lemma 2.4] If ( ), ( )arg a arg b ∈

[0,2 ]µ π
ℝ

, then ( ),arg ab ( / ) [0,2 ]arg a b µ π∈
ℝ

. Hence 

( )karg a = ( )karg a ∈ [0,µ 2 ]π
ℝ

for k ∈ℤ . 

For any 

a c
A

c a

 
= ∈ 
 

F                (2) 

| ( ) | | 2 ( ) | | 2 ( ) |, ( )tr A Re a a cos arg aθ θ= = ⋅ = .     (3) 

Using the obvious symmetries, by lemma 2.1, we may 

calculate 

{ } 2

0

2 2 1
[ | ( ) | 2 ] (1 )

2
Pr tr A d

π

θ θ
π π

> = − =∫      (4) 

Corollary 2.1 [13, corollary 2.4] Let f ∈F be a Möbius 

transformation chosen random from the distribution 

described in (i) and (ii). Then the probability that f is 

hyperbolic is equal to 1 / 2 , f is elliptic is equal to 1 / 2  

and f is parabolic is equal to 0 . 

See [13, Section 2] for more details. 

2.2. Jørgensen’s Inequality 

In 1976, Jørgensen proved a necessary condition for a 

non-elementary two generator subgroup ( )2,PSL ℂ to be 

discrete, which is called Jørgensen’s inequality. 
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Theorem J [21, lemma 1] If ( ), 2,f g PSL∈ ℂ generate a 

discerte and nonelementary group ,f g . Then 

( ) ( )2 1 1| 4 | | 2 | 1tr f tr fgf g− −− + − ≥        (5) 

For each f ∈F , we let ( )2m f denote the norm 

( ) 2 2 22 1
2 8m f A A a a c

−= − = − +      (6) 

We have the following theorem from [9, Theorem 2.7]. 

Theorem FG1 If f and g in ( )2,PSL ℝ . Then 

2 21
| ( ) 4 | ( )

2
tr f m f− ≤              (7) 

1 1 2 21
| ( ) 2 | ( ) ( )

16
tr fgf g m f m g− − − ≤ .       (8) 

Both of these inequalities are sharp. 

According to (7) and (8), we have 

2 1 1 2 21 1
| ( ) 4 | | ( ) 2 | ( ) ( ( ) )

2 16
tr f tr fgf g m f m g− −− + − ≤ +  (9) 

2.3. An experiment on ( ) ( )m f m g
2 2

 

If we select two random Möbius transformations, say, 

( ) ( )
( ) ( )

1 1

1 1

1 1

1 1

csc cot
,

cot csc

i i

i i

e e
f

e e

φ α

α φ

θ θ
θ θ− −

 
 =
 
 

       (10) 

( ) ( )
( ) ( )

2 2

2 2

2 2

2 2

csc cot
,

cot csc

i i

i i

e e
g

e e

φ α

α φ

θ θ
θ θ− −

 
 =
 
 

      (11) 

where 1 2, [0, / 2]µθ θ π∈
ℝ and 1 2 1 2, , , [0, 2 ]µα α φ φ π∈

ℝ . 

Then 

( ) ( )
( )
( ) ( ) ( )

( ) ( )

2 2

2 2

1 22 2

1 22 2

1 2

sin sin
64 cot cot

sin sin

m f m g

φ φ
θ θ

θ θ

=

   
+ +      

   

  (12) 

We made several independent runs through about 7
10  

random matrix pairs of elements to generate the histogram in 

Figure 1. We found the probability that 

( ) ( )2 2 2
16 2cos 1

7
m f m g

π  ≥ −  
  

      (13) 

to be about 0.0308797 . 

 

Figure 1. Histogram of ( ) ( )2 2m f m g values. 

We also found 

2 2
.

1 1
Pr ( ) ( ( ) ) 01

2 16
 .027282m f m g

 + ≤ ≈ 
 

    (14) 

According to Theorem J and Lemma 2.3, we have 

( ) ( ){ }2 1 1Pr | 4 | | 2 | 1 0.027282tr f tr fgf g− −− + − ≤ ≥  (15) 

We have the following theorem from [9, Theorem 4.19]. 

Theorem FG2 Suppose that ,f g is nonelementary discrete 

Fuchsian group subgroup of M . Then 

( ) ( ) ( )( )2 2 16 2cos 2 / 7 1m f m g π≥ − .     (16) 

In addition, if f or g is parabolic, then 

( ) ( )2 2 16m f m g ≥ .             (17) 

If f and g are both elliptic, then 

( ) ( ) ( )2 2 216cos / 7m f m g π≥ .        (18) 

If f and g are both hyperbolic, then 

( ) ( ) ( ) ( )( )22 2
16 cos 2 / 7 cos / 7 1m f m g π π≥ + −   (19) 

Finally, if f is hyperbolic and g is elliptic, then 

( ) ( ) ( )( )2 2 16 cos 2 / 7 1m f m g π≥ −        (20) 

Each of these inequalities is sharp. 

Another discrete criterion can be found in [9, 16]. 

Lemma 2.3.1 [10, Lemma 4.2] Suppose that ,f g has 

parameters ( ), , 4γ β − with γ β≥ and that f is a primitive 

elliptic of order 3q ≥ . Then ,f g is a discrete group if and 

only if 4γ β≥ + . 

Lemma 2.3.2 [15, Theorem VII. A.13.] Let , 1, 2, , .
i

f i n= …  

be hyperbolic transformations of the disk whose isometric 

disks are all disjoint. Then the group generated by these 
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hyperbolic transformations 1 2, , , nf f f…  is discrete. 

3. Proofs of the Main Results 

Proof of Theorem 1.1 Suppose that the arc ( ),
i ii m lα αα α=

1, 2.i = of f and the arc ( ),
i

m lβ ββ β= of g . Since f is 

hyperbolic, we have 

1 2α α∩ = ∅ .                (21) 

Thus 

1 2,α β α β∩ = ∅ ∩ = ∅           (22) 

are independent. A little trigonometry reveals that 

( )arg ,
2ii

l l
m m

α β
α βα β

+
∩ = ∅ ⇔ ≥      (23) 

Now the variables ( )arg , , 1,2,
ii m m iα βθ = = are uniformly 

distributed in [ ]0,π and independent. 

According lemma 2.1.2, we have 

2
2

2

Pr min Pr min
2 2 2

1 1
1 .

2

i i

l

l l l l

l
d

α

α β β α

π α

θ θ

θ
π π

+   
≥ = − ≥   

   

   
 = = −     
∫

 

Let
2

lα ϕ= , then 0,
2µ

πϕ  ∈   
, thus 

2

2

0

2 7
Pr min 1 .

2 12
i

l l
d

π
α β ϕθ ϕ

π π
+   ≥ = − =   

  
∫

 

Using lemma 2.3.2, the probability ,f g is discrete is at 

least 7 /12 . 

Proof of Theorem 1.2 With loss of generality, f and g can 

be represented that 

( ) ( )
( ) ( )

csc cot0
,

cot csc
0

i
in

i
i
n

i ee
f g

e i
e

π
ϕ

ϕπ

θ θ

θ θ−
−

 
  
 = =   −   

 

  (24) 

By calculation 

( )2 2 24sin , 4sin cot
n n

π πβ γ θ   = − =   
    . 

Using lemma 2.3.1, ,f g is a discrete group if and only if 

4γ β≥ + . 

{ } ( )2 2 2

0

Pr 4 Pr 4sin cot 4cos

2 2
Pr .n

n n

d
n n

π

π πγ β θ

πθ θ
π

    ≥ + = ≥    
    

 = ≤ = = 
  ∫

 

Then the probability ,f g is discrete is 
2

n
. 

Proof of Theorem 1.3 We select a random Möbius 

transformation 

( ) ( )
, [0, ], , [0,2 ]

2( ) ( )

i i

i i

e csc e cot
f

e cot e csc

φ ϕ

µ µϕ φ

θ θ πθ φ ϕ π
θ θ− −

 
= ∈ ∈ 
 
  . 

Then 

( ) ( )
( ) ( )

2

2 2

2

sin
8 8cot

sin
m f

φ
θ

θ
= +

. 

The probability distribution functions of ( )2sinx θ= and 

( )2siny φ= are independent and identically distributed ( )xΨ

and ( )yΨ , 

( )
( )
1

1
x

x xπ
Ψ =

−
 

The random variable has the c.d.f 

12 8

1 1 1
( )

(1 ) (1 )
x y

s
y

P S s dxdy
x x y yπ  + −⋅ ≤ 

 

≤ =
− −∫∫

 

We begin this calculation under the assumption 0 8s≤ ≤ . 

( )
1 ( 1) 1

8
12 0

1
8

1

12

1
8

1
8

2 1

1

1 1 1

(1 ) (1 )

2 1
[ ( 1) 1]

8(1 )

12

( 1 )
8

s
y

s

s

s

dxdy
x x y y

s
arcsin y dy

y y

arcsin y
dy

P

s
y y

s
π

π

π

+ −

+

+

+

− −

= ⋅ + −
−

−
=

=

+ −

∫ ∫

∫

∫

  (25) 

We can now differentiate (26) of sunder the integral. 

( )
1

12

1
8

1
8

2 1

1

1

8 (1 )[2 ( 1) ][( 1) 1)]
8 8

1 1

8 1 ( 1 )(2 )( 1)
8 8

s

s

y
dy

s s
y y y

y
dy

F

s s
y

s

y y

π

π

+

+

− − + + −

=
+ + − −

=

−

∫

∫

 (26) 
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Similarity, suppose that 8s ≥ , we can calculate 

( )
2

2 2 1

12 2 2
1 [ ]

1( 1 )
88

arcsin y
P s dy arcsin

ss
y y

ππ
−

= + − ⋅
++ −

∫
 

and 

( )
2

2 2 1

1 1

8 1 ( 1 )(2 )( 1)
8 8

y
F s dy

s s
y y yπ

=
+ + − − −
∫

. 

The proof is completed. 

A discussion similar to the proof of Theorem 1.3, we 

obtain some corollaries. 

Corollary 3.1 Let f be randomly chosen parabolic element 

of ( )* 2,PSL ℝ , then the random variable ( )2m f has the p.d.f 

4 1
( )

(16 )
H s

s sπ
=

+
. 

Corollary 3.2 Let f be randomly chosen hyperbolic 

element of ( )* 2,PSL ℝ , then the random variable ( )2m f has 

the p.d.f 

2
4

2
8

2 1

1 1
( )

4 1 ( 1 )(2 )( 1)
8 8

s

s
y

G s dy
s s

y y yπ

+

+
=

+ + − − −
∫

. 

Corollary 3.3 Let f be randomly chosen elliptic element of 

( )* 2,PSL ℝ , then the random variable ( )2m f has the p.d.f 

( )
( )

1

2

0 8
( )

8

T s s
T s

T s s

 < ≤=  ≥  

Where, 

( )
1

8
1 2

2
4

2
8

1 1

4 1 ( 1 )(2 )( 1)
8 8

s

s

s

y
T s dy

s s
y y yπ

+

+

+

=
+ + − − −
∫

 

( )
2

2 2
2

4

2
8

1 1

4 1 ( 1 )(2 )( 1)
8 8

s

s

y
T s dy

s s
y y yπ +

+

=
+ + − − −
∫

. 

Corollary 3.4 Let f be randomly chosen element of 

( )* 2,PSL ℝ . Then the random variable ( )21 1

2 16
m f+ has the 

p.d.f 

( )
( )

1

2

1
1

( ) 2

1

F t t
F t

F t t

 < ≤= 
 ≥  

Where, 

( )( )( )
2

1 2 1

1
( ) ,

2 2 1

t y
F t dy

t y y ytπ
=

− − −∫
 

( )( )( )
2

2 2 1

1
( )

2 2 1

y
F t dy

t y y ytπ
=

− − −∫
. 

Corollary 3.5 Let f be randomly chosen parabolic element 

of ( )* 2,PSL ℝ . Then the random variable ( )21 1

2 16
m f+ has 

the p.d.f 

1 1
( ) .

1 1
( )

2 2

H t

t t
π

= ⋅
+ −

 

Corollary 3.6 Let f be randomly chosen hyperbolic 

element of ( )* 2,PSL ℝ . Then the random variable

( )21 1

2 16
m f+ has the p.d.f 

4

2 1
2 1

2
( ) .

(2 )(2 )( 1)

t

t y
G t dy

t y y ytπ
+=

− − −∫
 

Corollary 3.7 Let f be randomly chosen elliptic element of 

( )* 2,PSL ℝ . Then the random variable ( )21 1

2 16
m f+ has the 

p.d.f 

1

2

1
( ) 1

( ) 2

( ) 1

T t t
T t

T t t

 < ≤= 
 ≥  

Where, 

( )

( )

2

1 42

2 1

2

2 42

2 1

1
,

(2 )(2 )( 1)2

1
.

(2 )(2 )( 1)2

t

t

t

t

t

y
T t dy

t y y yt

y
T t dy

t y y yt

π

π

+

+

=
− − −

=
− − −

∫

∫
 

Proof of Theorem 1.4 Suppose that ,f g  be randomly 

chosen in ( )* 2,PSL ℝ , we need calculate the probability of 

2 21 1
( ) ( ( ) ) 1

2 16
m f m g+ ≤ . According to Theorem 1.3 and 

Corollary 3.5, we have 
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{ }
2 2

1

1 1
1 2 1 2 1

8 8
1 4 41 1 1 1 1
2

1 1
( ) ( ( ) ) 1 ( ) ( )

2 16

1 12 2

(2 )(2 )(

8

1

0.0161113 +0.0111708=0.027

) (2 )(2 )( 1)1 1
( 1 ) (
8 8

2

1 )

s t

t
t t

Pr m f m g F t F s dsdt

arcsin y arcsin yx x
dydxdt dydxdt

t x x x t x x xt t
y y y y

t t

π π

⋅ ≤

+ ∞ +

 + ≤ = ⋅ 
 

− −
= +

− − − − − −
+ +

=

− −

∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

21.

 

Using (27), we have 

2 2 2 1 11 1
( ) ( ( ) ) 1 {| ( ) 4 | | ( ) 2 | 1}

2 16
Pr m f m g Pr tr f tr fgf g− − + ≤ ≤ − + − ≤ 
 

 

Then 

2 1 1 0.0272821.{| ( ) 4 | | ( ) 2 | 1}Pr tr f tr fgf g− −− + − ≤ ≥
 

Proof of Theorem 1.5 Suppose that ,f g  be randomly 

chosen in ( )* 2,PSL ℝ , we need calculate the probability of

( )( )2 2( ) ( ) 16 2cos 2 / 7 1m f m g mπ≤ − = . According to 

Theorem 1.3, we have 

{ }2 2

1 2
8 8

41 1

1
8 8

0 1

8 1 1

0

8
41

8

2

8

1

( ) ( )

1 1

4 1 ( 1 )(2 )( 1)( 1 )
8 88

1 2
1

8 1 1 ( 1 )(2 )( 1)
8 8 8

1 1

4 1 (
8

1

1

1 )

2

1

(
8

m t

m t

t m

m
t

Pr m f m g m

arcsin x
dxdydt

y y yx x
t

x
a d
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Using (28), we have the probability ,f g is non-discrete 

or elementary is greater than 0.0302049 . 

According theorem 1.5, we further have the following 

corollaries. 

Corollary 3.8 Let ,f g be random chosen elements in

( )* 2,PSL ℝ and f or g is parabolic. Then the probability

,f g is non-discrete or elementary is greater than 

0.0881294.  

Corollary 3.9 Let ,f g be random chosen elements in

( )* 2,PSL ℝ and f , g are both elliptic. Then the probability

,f g is non-discrete or elementary is greater than 

0.0756016.  

Corollary 3.10 Let ,f g be random chosen elements in

( )* 2,PSL ℝ and ,f g are both hyperbolic. Then the 

probability ,f g is non-discrete or elementary is greater than 

0.0329061.  

Corollary 3.11 Let ,f g be random chosen elements in

( )* 2,PSL ℝ and f is hyperbolic and g is elliptic,. Then the 

probability ,f g is non-discrete or elementary is greater than 

0.0302049.  
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