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Abstract: Let GL(2,R) be real Mdbius groups. For any 2 X2 matrix 4 in GL(Z,R) induces real Mobius transformations

d cx +

ad —bc =1 takes the values 1 forms a group which can be identified with PSL(Z,]R) . We write f0,PSL (Z,R) to mean
that f is a random variable in PSL(2,R) . In this paper, we study the random Mdbius subgroup *PSL(Z,R). We can get
some new results: (1) If f,g 0 ,PSL(2,R), the probability |#* (f)—4]|+] tr(fgf'lg'1 ) -2|<1 is greater than 0.027282. (2)

b +
g by the formula 4 -~ g, =g where 4 = [a ], g :%. The collection of all real Mobius transformations for which
c

If f is hyperbolic transformation and g is parabolic transformation, then the probability < f, g> is discrete is greater than 7/12.
(3) If f iselliptic of order n and g is elliptic of order 2, then the probability < f, g) is discrete is greater than 2/n . (4)
The probability that random chosen f,g [l *PSL(Z,R) generate an elementary or non-discrete group < /s g) is greater than
0.0302049.
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1. Introduction

Throughout this paper, we will adopt the same notations
and definitions as [2, 13, 14, 15, 16] such as, discrete group,

introduce a geometrically natural probability measure on the

group PSL(2,R) . They studied the probability that random

Fuchsian group, elementary group, .PSL(2,R) and so on. MGébius subgroup ( f,g) is discrete and given a lower bound

For example, if Gis discrete and if X, 4,,4,...are in G with

A, - X then 4, = X for all sufficiently large . A group G of

Mobius transformation is a Fuchsian group if and only if
there is some G- invariant disc in which G acts

discontinuously. A subgroup G of PSL(2,C) is said to be

elementary if and only if there exists a finite G-orbit in R>.
See [2,3,4,5,6,7,8,9,10, 11, 12, 18, 19, 20] etc. for more
details.

It is well known that Random group, introduced in the
1943 by Auerbach [1], has been extensively studied over the
group of random symmetric group [4] and random finite
group [11, 12]. G. J. Martin and G. O’Brier [13, 14]

for the probability a group generated by two random
hyperbolic elements or parabolic elements of *PSL(Z,R) is
discrete.

Theorem MO1 [13, Theorem 11.6] The probability that
two randomly chosen hyperbolic transformation f,gU.
.PSL(2,R) generate a discrete group (f.g)isatleast 2/5.

Theorem MO2 [13, Theorem 10.3] The probability that
two randomly chosen parabolic transformation f,gU .
.PSL(2,R) generate a discrete group (/g ) is at least 1/6 .

We further study the probability a group generated by a
hyperbolic element and a parabolic element of . PSL (Z,R) is
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discrete and obtain the following theorems.
Theorem 1.1 Let f,g2 be random chosen hyperbolic

element and parabolic element in.PSL(2,R). Then the

probability ( f ,g> is discrete is at least 7/12.

G. J. Martin and G. O’Brier studied the probability a group
generated by a elliptic element of order 7 and a hyperbolic

element of . PSL(2,R) is discrete.

Theorem MO3 [13, Theorem 12.5] Let f =z and &" =1.

Let g0.PSL(2,R)be a randomly chosen hyperbolic. Then

the probability (f,g)is discreteis 2/n>.

We further study the probability a group generated by two
elliptic elements of .PSL(2,R) is discrete and obtain the
following theorems.

Theorem 1.2 Let f,2 be random chosen elements in
.PSL(2,R). If fis elliptic of order7and &is elliptic of

order 2. Then the probability < f ,g> is discreteis 2/n .

G. J. Martin [15, 16] had results such as the p.d.f for trace,
Commutators, Cross ratios. We will obtain the p.d.f for m ( f )
and have the following theorem.

Theorem 1.3 Let f be randomly chosen element of

PSL(2,R) . Then the random variable m” (/') has the p.d.f

Fio) = F(s) 0<s<8
()= Fz(s) s=8
Where,
D S y
F(s)=——1[° dy
8ﬂzs+8j \/(s+l—yj(2—y)(y—l)
8 8
_ L1 v
Fz(s)_ 1 dy
8772;+1J‘ \/(;+l—yj(2—y)(y—l)

Finally, by using Theorem 1.3, we will obtain the following
theorems.

Theorem 1.4 Let f,2 be random chosen elements in
.PSL(2,R) Then the probability | (f)—4|+
|f”(fgf_1g_l) —2|< lis greater than 0.0272821.

Theorem 1.5 Let f,g be random chosen elements in
.PSL(2,R). Then the probability(/,g)is non-discrete or
elementary is greater than 0.0302049 .

2. Preliminaries

2.1. Random Mdbius Groups

If AOPSL(2,C)has the form

Discrete Probability of Random Mbius Groups: Random Subgroups By Two Generators

A—J_{g 2] a e =1. (1)

Then the group of all matrices satisfying (1) will be denoted
F . It is not difficult to construct an algebraic isomorphism

F = PSL(2,R) = Isom™ (H*).
The probability distribution. The probability space is
(F, M) , the space of matrices with the following imposed

distribution of the entries of an element of F .
(i) é=a/l|a| and 7 =c/|c| are chosen uniformly in the
circle S, with arclength measure.
(i1) ¢ =] a |2 1 is chosen so that

2arcsin(1/t)D[0,711

is uniformly distributed.
Lemma 2.1.1 [13, lemma 2.3] The random variable

|a| D[l,w) has the p.d.f

1

xVx? —1.

we write arg(a) U, [0, 277];, if arg(a) uniformly distributed on

mww%

R mod 277. The following lemma will be crucial.

Lemma 2.1.2 [13, lemma 2.4] If arg(a),arg(b)lU
(10,27, then arg(ab), arg(a/b)U, [0,277]; . Hence
arg(a*) = karg(a)0 ,[0, 271]; for k OZ .

For any

a c
A= {_ _j OoF 2)
c a
| tr(A) |5 2Re(a) |5 2a [dos(8) |, 0 = arg(a) . 3)

Using the obvious symmetries, by lemma 2.1, we may
calculate

Pr{|er(4) > 2}]:%_[05(1-%%6’:% @

Corollary 2.1 [13, corollary 2.4] Let f 0 F be a Mobius
transformation chosen random from the distribution
described in (i) and (ii). Then the probability that f is
hyperbolic is equal to 1/2, fis elliptic is equal to 1/2
and f is parabolic is equal to 0.

See [13, Section 2] for more details.

2.2. Jorgensen’s Inequality

In 1976, Jergensen proved a necessary condition for a
non-elementary two generator subgroup PSL(2,(C) to be
discrete, which is called Jorgensen’s inequality.
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Theorem J [21, lemma 1] If f,gU PSL(2, C) generate a
discerte and nonelementary group < f, g) . Then

o (f) =41+ (fef g ) -2 121 (5)
For each f O F , we let m’ ( f ) denote the norm
w(f)=|a-a[ =2la-af +8l @)

We have the following theorem from [9, Theorem 2.7].
Theorem FG, If f and g in PSL(2,R). Then

() =41 %m(f)z %)

(g g -2 %m(f)zm(g)z . ®)

Both of these inequalities are sharp.
According to (7) and (8), we have

() -4+ r(fef g -2 m(f)z(% +%m(g>2> ©)

2.3. An experiment on m’ (f) m’ (g)

If we select two random Mobius transformations, say,

4 cse(6, i cot (4
pef heseta) - eeorld) | (10)
e Mcot(6) e csc()
in ia,
= e_.acsc(é?z) e_. cot(Hz) ’ (1
e cot(6,) e csc(6,)
Whereel 962 Dﬂ [Oaﬂ/z]R andal ’aza W)@ Dﬂ [0’277]R .
Then
m* (f)m’ (g) =
in’ in’ 12
64 S%Il2 (¢f)+c0t2 (91) S%Il2 (@)+cot2(¢92) (12)
sin’ (6,) sin*(6,)

We made several independent runs through about 10’
random matrix pairs of elements to generate the histogram in
Figure 1. We found the probability that

m* (f)m’ (g)216[2cos(27ﬂ]—1] (13)

to be about 0.0308797 .
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Figure 1. Histogram of p? (£)m*(g) values.

We also found
Pr{m(f)z(%+%m(g)2) < 1} = 0.027282.  (14)

According to Theorem J and Lemma 2.3, we have
Pef|or () =41+ e (fef ™) -21< 1} 20.027282 (15)

We have the following theorem from [9, Theorem 4.19].
Theorem FG, Suppose that < f, g) is nonelementary discrete
Fuchsian group subgroup of M . Then

m*(f)m* (g)216(2cos(277/7)-1).  (16)
In addition, if f or g is parabolic, then

m* (f)m*(g)=16. (17)
If fand g are both elliptic, then
m* (f)m* (g)=16cos’ (17/7). (18)
If fand g are both hyperbolic, then
m?* (f)m* (g) 216(cos(271/7) +cos(77/7)-1)"  (19)
Finally, if £ is hyperbolic and g is elliptic, then

m* (f)m’ (g) 216(cos(277/7)-1) (20)

Each of these inequalities is sharp.
Another discrete criterion can be found in [9, 16].

Lemma 2.3.1 [10, Lemma 4.2] Suppose that (f,g) has
parameters (y, B, —4) with > f and that f is a primitive
elliptic of orderg>3. Then( f, g) is a discrete group if and
onlyif y=pf+4.

Lemma 2.3.2 [15, Theorem VII. A.13.] Let f;,i =1,2,...,n.

be hyperbolic transformations of the disk whose isometric
disks are all disjoint. Then the group generated by these
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hyperbolic transformations <f1 3 fase .,fn> is discrete. Pr{yz p+d) = Pr{4sin2 [Lrj cot? (6) 2 4cos” (7_7)}
n n
3. Proofs of the Main Results 2" o
:Pr{ﬁs—} :—J'nd@:—.
0
Proof of Theorem 1.1 Suppose that the arc a; = a’(mm ,la[ ) & ]T "
i=12.0f / and the arc = ﬁ(m,g,, Jﬁ) of g . Since 1 is Then the probability <f, g) is discrete is g
. n
hyperbolic, we have Proof of Theorem 1.3 We select a random Maobius
ana,=0. Q1 transformation
Pesc(@)  e?cor(0
Ths ={ O €O o 10,7090, 007
anpB=0,a,n =0 22) e Pcot(8) e ese(6)
are independent. A little trigonometry reveals that Then
Iy +1p 5 sin® ((0) )
anpB=0 = arg{m, ,img|= 23 m =8 +8cot” (@
i ﬁ g( a; ﬂ) > ( ) (f) Sinz(g) ( )
Now the variables & = arg (mai M )’l =1,2, are uniformly The probability distribution functions of x = sin’ (9) and
distributed in[O, 771 and independent. y= sin’ (qo) are independent and identically distributed LIJ(x)
According lemma 2.1.2, we have
and W ( y) ,
1+ lg 1
Pr{miné’l-z a2 ﬂ}:Pr{min@—?Z%} w 1
X)|m=F——
2 ) 1T, /x(l —x)
= L[ ag| =[1-LLa
- _J-li o) The random variable has the c.d.f

1 1 1
P(S<ys) _FJ.J.{S g%s} \/x(l > \/y(l = dxdy

/
Let-2=¢, theng ] [O,I—T}, thus
2 4 2

We begin this calculation under the assumption0 < s < 8.

I, +1 z 2

Pr{miné, > £ =£J.2(1—£j d¢:l'
2 mrdo V3 12 1 1

dy

1 ¢l G-l
B(s)=— ’ a
1 (s) nzj'sllj'o Jx(-x) fy(1-y) :
g+

Using lemma 2.3.2, the probability < f, g) is discrete is at

least 7/12. 2 ! 1 . s
Proof of Theorem 1.2 With loss of generality, f and g can = ?J' % m Laresin| (§+1)y —lldy  (25)
be represented that .
7 2 J'gﬂ arcsinyy —1 by
= ANy 72

s 1/y(éﬂ-y)

We can now differentiate (26) of sunder the integral.

f= el; 0 g _iAcsc(H) e""? cot(B) (24)
e cot(H) =i csc(H)

By calculation

1 ! [ y
£ (S) =o 2] dy
= ~4sin’ (’_Tj y = 4sin? (Ej cot? () 877 sﬂ\/ (1-2-C+DyIE +Dy-1)
n n , 5 8 8 (26)
. o . . _ Lt y p
Using lemma 2.3.1, (f,g) is a discrete group if and only if BT | P Y
e \/(8+1—y)(2—y)(y—1)

y=[p+4.
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Similarity, suppose that s = 8 , we can calculate

2 ] -1
) arcsm\/y— dy +1 _2 Ldresin|
T

2
P(s)==5 | ———
) f N s
J’(g*'l_y) 8+1

and

11 2 y
Fy(s)= dy
e §+1L\/(;+1—y>(2—y)(y—l)

The proof is completed.

A discussion similar to the proof of Theorem 1.3, we
obtain some corollaries.

Corollary 3.1 Let f be randomly chosen parabolic element

of .PSL(2,R), then the random variable m’ ( f) has the p.d.f

4 1
H(s) =t
75 (16+s)
Corollary 3.2 Let f be randomly chosen hyperbolic
clement of ,PSL(2,R), then the random variable m” ( f) has
the p.d.f

G(s) =

11 J'§+2 Is Yy dy
: \](8+1—y><2—y><y—1>

Corollary 3.3 Let f be randomly chosen elliptic element of
.PSL(2,R), then the random variable m’ ( /) has the p.d.f

T(s) 0<s<8
)= Tz(s) s=8
Where,
L1 gt y
T(s)— f dy
l 4”“+1I4+2\/ 2412 - -1)
8 a1
_1 12 y
T(s)— R dy
’ 4”2;+1jﬂ\/<§+1—y)<2—y)(y—l)

42
8
Corollary 3.4 Let f be randomly chosen element of

PSL (2,R). Then the random Variable% +%m2 (f) has the

p.d.f

Where,

F0= sl ™

£ =

I 2 y
_ dy
il \/(2f—y)(2-y)(y-1)

Corollary 3.5 Let f be randomly chosen parabolic element
of ,PSL (2,R). Then the random variable% +%m2 (f) has
the p.d.f
1

1 1
t+—-)[t—=
( 2) 2

H(t) -1

Corollary 3.6 Let f be randomly chosen hyperbolic
element of *PSL(Z,R) . Then the

1 1 ,
—+— has the p.d.f
2 16 " (f) P

random variable

4
2 y
G = _Z | 21+l dv.
O=], J Qi-n2-po-n"

Corollary 3.7 Let f be randomly chosen elliptic element of
PSL (Z,R) . Then the random Variable%+%m2 (f) has the
p.d.f

1
ho <<t

T, (0)

T(t) =
21

1 2t y
T (¢) = .
)= 0, ;‘J @=ne-no-n*

t+1

1 2 y
T. = dy.
(1) 27t 4’\/(2t—y)(2-y)(y—1) g

2t+1

Proof of Theorem 1.4 Suppose that f,g be randomly
chosen in ,PSL (Z,R) , we need calculate the probability of

m(f)? (%+%m(g)2) <1. According to Theorem 1.3 and

Corollary 3.5, we have
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Pr{m( f)2(%+%m(g)2)sl}= j j PO TFG)dsds
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=J-11J-2tj-81’+1 2 arcszn\/y 1\/ X dvcdvdt + J- J-J-gﬂ 2 arcsm\/y 1\/ X dyddt
Jo ﬂt\/( Q2t-x)2-x)(x-1) ﬂt\/( (2t=x)2=-x)(x-1)

=0.0161113 +0.0111708=0.0272821.

Using (27), we have

Pr{m(ff(%%m(g)z) 51}5Pr{|tr2<f>—4| (el g -21< )

Then
Pr{| o (f)-4|+|o(faf "'g)-2I<1} 2 0.0272821.

Proof of Theorem 1.5 Suppose that f,g be randomly

Pr{m(f)zm(g)2 < m}

chosen in ,PSL(2,R), we need calculate the probability of
m(f)*m(g)* <16(2cos(271/7)~1)=m

Theorem 1.3, we have

According to

arcsinx -1 [ y

m t
=J-§J‘g+lj‘2 1 1
0 Ji 14;141_'_
8

ﬂ £+1
+J.8J‘8 BRI l—garcsin 2
o1 87 £+1 T \/m

7+1
t

1 ,/x(£+l—x) \/(;+1—y)(2—y)(y—1)

dxdydt

/ .

dxdt
\/(; +1-x)2 - x)(x-1)

arcsinyx—1 I y

I [

+1‘fx( +1- x)\/( +1-y)2-y)(y-1)

dxdydt

arcsin\/ y—1 I X

8 J1 1 477 LN
8

! /y(81t+1—y)\/(;+1_x)(2_x)(x_1)

dxdydt

=0.00222416 +0.00805606 +0.0155805 +0.00434425 = 0.0302049.

Using (28), we have the probability  f, g) is non-discrete

or elementary is greater than 0.0302049 .

According theorem 1.5, we further have the following
corollaries.

Corollary 3.8 Let f,g be random chosen elements in

*PSL(Z,R) and f or g is parabolic. Then the probability

< f, g> is non-discrete or elementary is greater than

0.0881294.
Corollary 3.9 Let f,g be random chosen elements in

.PSL(2,R)and /', g are both elliptic. Then the probability
( f ,g> is non-discrete or elementary is greater than

0.0756016.
Corollary 3.10 Let f,g be random chosen elements in

.PSL(2,R) and f,g are both hyperbolic. Then the

probability ( f, g> is non-discrete or elementary is greater than

0.0329061.
Corollary 3.11 Let f,g be random chosen elements in

.PSL(2,R)and f is hyperbolic and g is elliptic,. Then the
probability< f, g> is non-discrete or elementary is greater than
0.0302049.
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