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Abstract: In this paper, we apply G'/G
2
-Expansion method to discover a strategy for the approximate solution of the 

generalized fractional Burger-Fisher equation and fractional Burger equation. The given fractional Burger-Fisher and burger 

equation through substitution are converted into nonlinear ordinary differential equations, in the sense of the Jumarie’s 

modified Riemann-Liouville fractional derivative. The travelling wave solution is approximated by the G'/G
2
-Expansion 

method with unknown parameters that can be expressed by trigonometric functions, exponential functions, hyperbolic 

functions and rational functions. These results reveal that the proposed method is very effective and simple in performing a 

solution to the nonlinear fractional partial differential equation. 
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2
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1. Introduction 

The fractional partial differential equations have a wide 

range of applications in several branch of the pure and 

applied sciences. They appear for instance in various 

applications in physics, biology, engineering and many 

others. The generalized fractional Burgers-Fisher equation is 

of eminent importance for describing different mechanisms. 

Burgers-Fisher equation has important applications in various 

areas of financial mathematics, gas dynamic, traffic flow, 

number theory, heat conduction, elasticity, applied 

mathematics and physics applications. Burgers-Fisher 

equation is a highly nonlinear equation because it is a 

combination of reaction, convection and diffusion 

mechanisms, this equality is called Burgers-Fisher because it 

possesses the properties of convective phenomenon from 

Burgers equation and having diffusion transport as well as 

reaction kind of characteristics from Fisher equation. 

Many Researchers have used various numerical for 

obtaining exact solution of nonlinear fractional partial 

differential equations. For instances, fractional power series 

solutions method [1, 2, 3, 7], reproducing kernel method [4], 

simplest equation method [5], fractional mapping expansion 

method [6], �G�/G� -expansion method [8], first integral 

method [9], conformable fractional derivative [10, 11, 12, 

16], ( )2/G G′ expansion method [13], kernel Hilbert space 

method [14], efficient analytical method [18], generalized 

Kudryashov method [15]. 

The paper is structured follows: Section 1 gives an 

introduction of the study. Section2 gives definition of 

fractional calculus. In Section 3, we provide the 

description of the method to be used in the paper. Section 

4 presents the application schemes of the afore-mentioned 

method, explaining the techniques to be used in the 

analysis. Finally, the manuscript ended up with the 

conclusion in Section 5. 

2. Fractional Calculus 

In this paper, before embarking into detail of an ( )2/G G′ -

expansion method, we would like to recall some basic 

definitions, results, and properties of the fractional calculus 

operators, used in the remaining part of the article. 

Definition 1. 

The Jumarie’s modified Riemann- Liouville fractional 

derivative of order α  is defined as follows (Jumarie’s, 
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2006).  
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is gamma function. 

Some useful results of Jumarie’s modified Riemann- 

Liouville fractional derivative as follows: 

(1 )
,

(1 )
tD t tα β β αβ

β α
−Γ +=

Γ + −
                      (2) 

( ( )) ( ( )),t tD cf t cD f tα α=  c is constant,                 (3) 

[ ] ( ) ( )  ( )  ( ),t t tD a f t bg t a D f t b D g tα α α+ = +             (4) 

where a and b are constant, and 0tD aα =  

( )( ) ( ) ( ) ( ) ( ) ( )t t tD f t g t g t D f t f t D g tα α α= +            (5) 

3. Description of the G'/G
2
 - Expansion 

Method for Fractional 

In this section, we give the main steps of the (
2/ )G G′ −

expansion method for solving nonlinear fractional partial 

differential equations (NFPDEs) as follow: 

i. We consider the nonlinear fractional partial differential 

equation as, 

1 1

1 1 1
1 1 1 1

1 1

( , , , , , , , , , , , , ) 0,    0< < <1
n n

k k k
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… … … … … … … ⋯ … …   (6) 

Where 1 2( , , , , )nu u t x x x= …  and P  is polynomial of ,u  the 

travelling wave solutions of Eq. (6) by use transformation, 

1 2 1 2( , , , , ) ( ),  ( , , , , )n nu t x x x U t x x xζ ζ ζ= =… …          (7) 

Convert the partial differential Eq. (6) into the following 

nonlinear ordinary differential equation, 

1 1 1 1( , , , , , , ) 0k k k kQ U U U U U U U U′ ′ ′′ ′′ ′′′ ′′′ =… … … … ⋯          (8) 

Where Q  is polynomial of ( )U ζ  and its various 

derivatives the prime denotes the derivation with respect to 

.ζ  

ii. We suppose that the solution of Eq. (8) can be expressed 

by a polynomial in ( )2/G G′ such that: 
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Where 0 ,   ia a and , ( 1, 2,3, )ib i m= …  are constants to be 

determined, with ma or mb  may be zero, but both of them 

cannot be zero, the value of m  is a positive integer which 

will be determined, the parameter m  is usual higher by 

balancing the highest order derivatives with the nonlinear 

terms in Eq. (8). 

Where ( )G G ζ= satisfies a second order linear ordinary 

differential equation in the form 

2

2 2

G G

G G
µ λ

′′ ′   = +   
   

                         (10) 

Where 1µ ≠  and 0λ ≠  are integers. 

Substituting Eq. (9) using Eq. (10) into Eq. (8). Then 

collecting all terms with same order of ( )2/G G′  together. 

Then equating each coefficient of the resulting polynomial to 

zero, we obtain a set of algebraic equations for parameters

0 ,   ,b ,  i ia a λ and .µ  

iii. Having the values 
0 ,  , b , i ia a λ and µ from (ii) and 

the solution of Eq. (8), which can be obtained, we are closed 

to the solution of the nonlinear evolution Eq. (6). 

The general solutions can be categorized into the following 

three cases when A and B are arbitrary nonzero constants. 

If 0λµ > , then we obtain the general solution 
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If 0λµ < , then we obtain the general solution 
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Which is equivalent to 
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If 0, 0λ µ≠ = , then we obtain the general solution 

( )2

( )

( )

G A

B AG

ζ
λ ζζ

′
= −

+
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4. Applications of the G'/G
2
 - Expansion 

Method 

In this section, we use the ( )2/G G′ -expansion Method on 

time fractional Burger-Fisher equation and time fractional 

Burger equation. 

Example (1) 

We consider the time fractional Burger-Fisher equation 

2

2
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xt x

u u u
u u u

α

α ρ β
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where ρ and  β are parameters and 0<α<1 

Will be converted the time fractional transform given by 
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                 (16) 

Where k andσ  are constants. Substituting Eq. (16) into  

Eq. (15) we obtain the following ordinary differential 

equation 

2 2 U - U+ U =0U kUU kσ ρ β β′ ′ ′′+ −                  (17) 
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dU

U
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′ =  Balance the nonlinear term 2u  with the 

highest order derivative U ′′ gives 2,m = that does not lead to 

any solution, however, balancing UU ′ with U ′′ gives 1,m =  

1

0 1 12 2
( )

G G
U a a b

G G
ζ

−′ ′   = + +   
   

                         (18) 

Where 1 1,  a b and 0a  arbitrary constants. 

Substituting Eq. (18) with Eq. (10) into Eq. (17), then 

collecting all terms with the same power of ( )2/G G′  and 

setting each coefficient of power of ( )2/G G′  to zero, we 

achieve a system of algebraic equations and solving these 

algebraic equations gives sets of solutions. 
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2
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2
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Case 6: 
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Substituting Eq. (19) with Eq. (13) into Eq. (18) and simplify, we obtain the following. 

1
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Substituting Eq. (20) with Eq. (13) into Eq. (18) and simplify, we obtain the following. 
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Substituting Eq. (21) with Eq.(13) into Eq. (18) and simplify, we obtain the following. 
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Substituting Eq. (22) with Eq. (13) into Eq. (18) and simplify, we obtain the following 
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Substituting Eq. (23) with Eq. (13) into Eq. (18) and simplify, we obtain the following. 
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Substituting Eq. (24) with Eq. (13) into Eq. (18) and simplify, we obtain the following. 
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Graphical representation of the solutions of Burgers 

equation: 

Solution 1( , )U x y is kink waves are traveling waves which 

arise from one asymptotic state to another. This is presented 

in Figure 1 to show the shape of the exact solution of 

fractional Burger-Fisher equation. 

 

Figure 1. Exact solution for  =1, A=3, B=6, =0.5β α  with 0 20,t≤ ≤  

 20 20 .x− ≤ ≤  

Solution 2 ( , )U x y  is singular kink periodic traveling wave 

solution. This is presented in Figure 2 to show the shape of 

the exact periodic traveling wave solution of fractional 

Burger-Fisher equation. 

 

Figure 2. Exact solution for 
1

 = , A=3, B=6,
2

β =0.5α  with 

0 20,  20 20.t x≤ ≤ − ≤ ≤  

Solution 3( , )U x y  is singular kink periodic traveling wave 

solution. This is presented in Figure 3 to show the shape of 

the exact solution of fractional Burger-Fisher equation. 

 

Figure 3. Exact solution for  =1, A=3, B=9,β  =0.5α  with 

0 20,  20 20.t x≤ ≤ − ≤ ≤  

Presented Soliton periodic traveling wave solution 

4( , )U x y  is singular kink wave solution given in Figure 4. 

This figure gives the shape of the exact solution of fractional 

Burger-Fisher equation. 

 

Figure 4. Exact solution for  =1, =1, A=3, B=6,β ρ  =0.5α  with 

0 20,  20 20.t x≤ ≤ − ≤ ≤  

Solution 5( , )U x y is kink waves are traveling waves which 

arise from one asymptotic state to another. This is presented 

in Figure 5 to show the shape of the exact solution of 

fractional Burger-Fisher equation. 

 

Figure 5. Exact solution for  =1, =1, A=3, B=6, =0.75β ρ α  with 0 20,t≤ ≤
20 20.x− ≤ ≤  
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Presented Soliton periodic traveling wave solution 

6( , )U x y  is singular kink wave solution given in Figure 6. 

This figure gives the shape of the exact solution of fractional 

Burger-Fisher equation. 

 

Figure 6.  Exact solution for =1, =1, A=3, B=6,ρ β  =0.5α  with 

0 20,  20 20.t x≤ ≤ − ≤ ≤  

Example: (2) 

We consider the fractional Burger equation 

2

2
0,  0,  0< <1

u u u
u t

t x x

α α α

α α αρ δ α∂ ∂ ∂+ − = >
∂ ∂ ∂

     (31) 

Will be converted the fractional complex transform given 

by 

( , ) ( ),  =
(1 ) (1 )

kx t
u x t U

α ασζ ζ
α α

= +
Γ + Γ +

           (32) 

Where k and γ  nonzero constants. Substituting Eq. (32) 

into Eq. (31) we obtain the following ordinary differential 

equation 

2 U =0U kUU kσ ρ δ′ ′ ′′+ −                 (33) 

With .
dU

U
dζ

′ =  By once integrating Eq. (33) with respect 

to ζ  and setting the constant of integration to zero, we 

obtain. 

2 21
 U =0

2
U kU kσ ρ δ ′+ −                      (34) 

Balance the nonlinear term 2U  with the highest order 

derivative U ′  gives 1,m = then. 

1

0 1 12 2
( )

G G
U a a b

G G
ζ

−′ ′   = + +   
   

           (35) 

Where 1 1,  a b and 0a  arbitrary constants. 

Substituting Eq. (35) with Eq. (10) into Eq. (34), then 

collecting all terms with the same power of ( )2/ GG′  

together, and Setting each coefficient of power of ( )2/ GG′  

to zero, we achieve a system of algebraic equations and 

solving these algebraic equations gives sets of solutions 

Case 1: 

2

0 1 12 4

2
= ,   =- , ,  0,  

4

k
a a b

kk

σ σ δ µµ µ λ
ρ ρµδ

= − = = −  (36) 

Case 2: 

2 2
1

0 1 1 13 2 2
1 1

=- ,   = ,  ,  ,  
28 4

a
a a a b

k kk a k a

ρσ σ σµ λ
δ ρδ ρ ρ

= − = =  (37) 

Case 3: 

2

0 1 14 2

2
=- ,   =  , ,  ,  0

4

k
a a b

kk

σ σ δ λµ λ λ
ρ ρλ δ

= − = =  (38) 

Substituting Eq. (36) with Eq. (13) into Eq. (35) and 

simplify, we obtain the following. 

2 2

1

2 2

cosh sinh
(1 ) (1 ) (1 ) (1 )

( )
2

cosh sinh
(1 ) (1 ) (1 ) (1 )

kx t kx t
A A B

k k
U

k k kx t kx t
A A B

k k

α α α α

α α α α

σ σ σ σ
α α α αδ δσ σζ

ρ ρ σ σ σ σ
α α α αδ δ

       
 + + + +            Γ + Γ + Γ + Γ +      = − +

      
+ + + −            Γ + Γ + Γ + Γ +      

1−



 
 
 
 
 

                    (39) 

Substituting Eq. (37) with Eq. (13) into Eq. (35) and simplify, we obtain the following. 

2 2

2

2 2

cosh sinh
(1 ) (1 ) (1 ) (1 )2 2

( )
2

cosh sinh
(1 ) (1 ) (1 ) (1 )2 2

kx t kx t
A A B

k k
U

k k kx t kx t
A A

k k

α α α α

α α α α

σ σ σ σ
α α α αδ δσ σζ

ρ ρ σ σ σ σ
α α α αδ δ

      
+ + + +            Γ + Γ + Γ + Γ +      = − −

      
+ + + −            Γ + Γ + Γ + Γ +      

2 2

2 2

cosh sinh
(1 ) (1 ) (1 ) (1 )2 2

           
2

cosh sinh
(1 ) (1 ) (1 ) (12 2

B

kx t kx t
A A B

k k

k kx t kx t
A A

k k

α α α α

α α α α

σ σ σ σ
α α α αδ δσ

ρ σ σ σ σ
α α α αδ δ

 
 
 
 
 
 
  

      
+ + + +            Γ + Γ + Γ + Γ +      −

  
+ + +    Γ + Γ + Γ + Γ +  

1

)
B

−
 
 
 
 

   −     
    

                 (40) 
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Substituting Eq. (38) with Eq. (13) into Eq. (35) and simplify, we obtain the following. 

2 2

3

2 2

cosh sinh
(1 ) (1 ) (1 ) (1 )

( )

cosh sinh
(1 ) (1 ) (1 ) (1 )

kx t kx t
A A B

k k
U

k k kx t kx t
A A B

k k

α α α α

α α α α

σ σ σ σ
α α α αρ ρσ σζ

ρ ρ σ σ σ σ
α α α αρ ρ

       
 + + + +            Γ + Γ + Γ + Γ +       = − −

      
+ + + −            Γ + Γ + Γ + Γ +      





 
 
 
 

                  (41) 

Graphical representation of the solutions of Burgers equation: 

Presented Soliton periodic traveling wave solution 

1( , )U x y  is surface wave solution (can occur along any 

boundary of two different substances) given in Figure 7. This 

figure gives the shape of the exact solution of fractional 

Burger equation. 

 

Figure 7.  Modulus plot of kink wave shape of the solution 1( , )U x y  for 

1, 3, 6, =0.5,  =0.25k A Bρ σ α δ= = = = = with 0 20,  20 20.t x≤ ≤ − ≤ ≤  

Presented Soliton periodic traveling wave solution 

2 ( , )U x y  is singular kink wave solution given in Figure 8. 

This figure gives the shape of the exact solution of fractional 

Burger equation. 

 

Figure 8.  Exact for 1, 3, 6, =0.5,  =0.25k A Bρ σ α δ= = = = = with 

0 20,t≤ ≤ 20 20.x− ≤ ≤  

Presented Soliton periodic traveling wave solution 

3( , )U x y  is singular kink wave solution given in Figure 9. 

This figure gives the shape of the exact solution of fractional 

Burger equation. 

 

Figure 9.  Exact for 1, 3, 6, =0.5,  =0.25k A Bρ σ α δ= = = = = with 

0 20,t≤ ≤ 20 20.x− ≤ ≤  

5. Conclusions 

In this paper, the �G�/G�� -expansion method has been 

applied to find some exact solutions of the two equations, 

fractional Burgers Fisher equation and fractional Burgers 

equation. Abundant exact traveling wave solutions are 

constructed for these equations by the proposed method. It is 

noteworthy to observe that our solutions are more general 

and contain further arbitrary constants and the arbitrary 

constants imply that these solutions have rich local structures. 

This method is effective and has a successful use in finding 

exact solutions of nonlinear fractional equations. 
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