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Abstract: The Jacobi, Gauss-Seidel and SOR methods belong to the class of simple iterative methods for linear systems. 

Because of the parameter ω, the SOR method is more effective than the Gauss-Seidel method. Here, a new approach to the 

simple iterative methods is proposed. A new parameter q can be introduced to every simple iterative method. Then, if a matrix 

of a system is positive definite and the parameter q is sufficiently large, the method is convergent. The original Jacobi method 

is convergent only if the matrix is diagonally dominated, while the Jacobi method with the parameter q is convergent for every 

positive definite matrix. The optimality criterion for the choice of the parameter q is given, and thus, interesting results for the 

Jacobi, Richardson and Gauss-Seidel methods are obtained. The Gauss-Seidel method with the parameter q, in a sense, is 

equivalent to the SOR method. From the formula for the optimal value of q results the formula for optimal value of ω. Up to 

present, this formula was known only in special cases. Practical useful approximate formula for optimal value ω is also given. 

The influence of the parameter q on the speed of convergence of the simple iterative methods is shown in a numerical example. 

Numerical experiments confirm: for very large scale systems the speed of convergence of the SOR method with optimal or 

approximate parameter ω is near the same (in some cases better) as the speed of convergence of the conjugate gradients 

method. 
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1. Introduction 

The solution of linear systems is a fundamental problem in 

numerical analysis, especially, if the system has a very large 

scale. Such systems appear while solving partial differential 

equations, nonlinear systems or optimization problems. The 

literature in this area is very rich, for example, Koutis et al. 

[1] present a very interesting fast algorithm for solving linear 

systems using the techniques of graph theory, but their 

method can be used only for symmetric diagonally dominant 

matrices. In solving the linear systems, preconditions play a 

very important role. Because of preconditions, the algorithm 

proposed by Boman and Scott [2] for elliptic finite element 

systems is near-linear. Hogg and Scott [3] apply a direct 

method to obtain an approximate solution and then use an 

iterative method to improve its accuracy. Here, we return to 

the classical simple iterative methods, such as the following: 

the Jacobi method, the Richardson method, the Gauss-Seidel 

method and the Successive Over-Relaxation (SOR) method. 

The theoretical basis of the simple iterative methods can be 

found in [4-7]. Broyden [8] gives the theorem about 

convergence of the SOR method. There are many results 

concerning the optimal parameter for the SOR method. Up to 

now, the formula for optimal parameter for the SOR method 

is known only in special cases. For example, in the papers [6, 

9, 10] you can find exact formula for optimal parameter � 

for some discretization of Poisson equation. Here, we give 

such formula for every positive definite and symmetric 

matrix. In papers [11-13] the authors use an approximate 

value of the parameter �. Nevanlinna [14] explains why the 

SOR and conjugate gradients methods are essentially equally 

fast for discretized Laplacians. Additionally, Woźniakowski 

[15] has proved that under some assumptions Jacobi, Gauss-

Seidel and SOR methods are numericly stable. 

Let us consider the linear system 

�� � �                                          (1) 

where �	
��� , �	
�, �	
� ,  and �  is a positive definite 

matrix. Let �  be divided into two parts, i.e. � � �
 � �� , 

where �
  is a nonsingular matrix and the linear system 

�
� � �, �	
� can be solved, at most, in ����� arithmetical 

operations. The simple iterative methods are defined as 
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follows: 

� �� � 0
���
 � �
�
�� − �����, � = 0,1,2, …         (2) 

Let � =  + ! + " , where !  is the diagonal matrix and  , " are lower and upper triangular matrices, respectively. If �
 = ! , we obtain the Jacobi method; if �
 =  + ! we 

obtain the Gauss-Seidel method; if �
 =  + #$ , �	(0,2), we 

obtain the SOR method. Here, we introduce a parameter %	
 

to the formula (2) in the following way: 

(�
 + %&)� = � − (�� − %&)�, 
where & is the unit matrix. The simple iterative method with 

the parameter %	
 is defined as: 

� �� = 0���
 = (�
 + %&)�
(� − (��−%&)��), � = 0,1,2, … (3) 

In the analysis of the convergence, the main role plays the 

matrix 

' = (�
 + %&)�
(�� − %&)                    (4) 

or, more precisely, the spectral radius ((') of the matrix '. 

A sufficient condition for the convergence is ((') < 1. We 

can consider the following cases: �
 = 0. Then the sequence (3) is equivalent to 

* �� = 0���
 = �� − +�% , � = 0,1,2, … 

where the residual +� = ��� − �. In this case we have the 

Richardson method. If % = ,-./,-,-.,- , we then have the minimum 

residual (mr) method; 

b. �
 = !. In this case we obtain the Jacobi method with 

the parameter %  and, for sufficiently large %, the method is 

convergent not only for a diagonally dominated, but also for 

every positive definite matrix; 

c. �
 =  + !.  If %  is appropriately chosen, then the 

effectiveness of the Gauss-Seidel method with % is equivalent 

to the SOR method; 

d. �
 is a block-diagonal matrix; 

e. �
 is a tri-diagonal matrix. 

Why is % important in the simple iterative methods? For a 

sufficiently large %, the matrix � + %& is positive definite and 

even diagonally dominated. In addition, the conditional 

number 

κ(� + %&) = 0123(/)�40156(/)�4 < 7(�) 

for 

% > 0 

and 

lim4→= 7(� + %&) = 1. 

The expression 
>(/)�
>(/)�
  plays an important role in the 

analysis of the speed of convergence of some of the iterative 

methods. In Section 2, one can find the theorem regarding the 

convergence and speed of convergence of the sequence (3). 

The optimality criterion for the choice of the parameter % is 

given. In Section 3, the residual method with % is analyzed 

and the minimal spectral radius is calculated. The results 

concerning the Gauss-Seidel and SOR methods can be found 

in Section 4, and formulas for the optimal values of % and � 

are given. In Section 5, the results of some of the numerical 

experiments are presented. This Section shows how the 

number of iterations depends on the parameter %. 
Additionally, a comparison of the speed of convergence for 

some of the iterative methods is made. 

2. Convergence of the Method 

We take under consideration the system (1), where � is a 

positive definite matrix. The sequence ?��@ may be written as 

� �� = 0,���
 = � − '�� ,                                 (5) 

where � = (�
 + %&)�
�  and '  is defined by (4). If �A 
denotes the solution of the system (1), then �A = � −'�A. Subtracting the last equation from (5), we obtain 

���
 − �A = −'(�� − �A)                         (6) 

The sufficient condition for the convergence of the 

sequence ?��@  has the form ((') < 1.  Let an eigenpair (B(%), �),  where B(%)	C, �	C�  for the matrix '  be given. 

Then 

(�� − %&)� = B(%)(�
 + %&)�,  �∗� = 1, 
where �∗ denotes transposition and complex conjugate of the 

vector �. This equation implies the formula 

B(%) = �∗/E��4�∗/F��4 = �∗/��∗/F��4 − 1                      (7) 

and lim4→= B(%) = −1. Next, the theorem about regarding 

convergence of the sequence (3) will be proved. 

Theorem 1. Let � be a positive definite matrix. Then there 

exists %� such that for % > %� 

((') < 1 and ((') ≥ max JK,-LFKK,-K , K�-LF��-KK�-��-MFKN for 

� = 1,2, …,                                      (8) 

where +� = ��� − � and K�K� = �O�. 
Proof. Let us denote �∗�
� = P + QR and �∗��� = S + TR, 

where R = √−1 and P, Q, S, T	
. Then 

B(%) = V�4�WXY�4�ZX, 
and 

|B(%)|� = (V�4)E�WE
(Y�4)E�ZE                              (9) 
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Because �∗�
� � �∗��� � �∗�� > 0  for � ≠ 0, we have T = −Q  and P + S > 0.  The inequality |B(%)|� < 1  is 

equivalent to 

|S − %| < |P + %|                                    (10) 

Let %′ = 
� (S − P) . Then P + % > 0  and |S − %| < P + % 

are satisfied for % > %^. Let us define 

%� = 
� maxK�K_
�`a6
? 
b(�∗��� − �∗�
�)@               (11) 

Then ((') < 1 for % > %�. Subtracting (6) for � − 1 from 

(6) for �, we obtain 

���
 − �� = −'(�� − ���
) 

and 

((') ≥ K�-LF��-KK�-��-MFK                                   (12) 

Let �A	
� be the solution of system (1). Then, 

+� = ��� − � − (��A − �) = �(�� − �A)           (13) 

Because ���
 − �A = −'(�� − �A), we have 

+��
 = �(���
 − �A) = −�'(�� − �A) = 

−�'��
�(�� − �A) = −�'��
+� . 
which implies 

K+��
K ≤ ((')K+�K                            (14) 

This result concludes the proof of Theorem 1. 

Remark 1. If �  is a negative definite matrix, then there 

exists %�	
 such that ((') < 1 for % < %�. 

Remark 2. If % > ((��),  then 
b?B(%)@	(−1,0).  This 

result means that %  should be chosen from the interval (%�, %
), where %� is defined in (11) and %
 = K��K=. 

Remark 3. The function 

d(%) = |B(%)|� = (S − %)� + Q�(P + %)� + Q� 

is a unimodal function on the interval (%�, ∞) , and d(%) 

reaches its minimum when % = S. This result concerns only 

one eigenvalue. If we want to choose the optimal % for the 

sequence ?��@, we then must apply the definition B(%) and 

the following equation 

− minK�K_
 
b?B(%)@ = maxK�K_
 
b?B(%)@.       (15) 

Using (7) and (15) we define the optimality criterion as 

minK�K_
 �./��./F��4 = 2 − maxK�K_
 �./��./F��4         (16) 

and then 

((') = 1 − minK�K_
 �./��./F��4 =  maxK�K_
 �./��./F��4 − 1. (17) 

3. The Richardson Method 

Let �
 = 0. Then ' = 
4 (� − %&) = /4 − & and 

λ(') = �./�4 − 1, �O� = 1. 
The relation λ(')	(−1,1) implies 0 < �O�� < 2%. Thus, 

if �  is a positive definite matrix and % > 
� Bgh�(�),  then ((') < 1 and the sequence ?��@ is convergent to the solution 

of the system (1). The optimal % should satisfy equation (16) 

minK�K_

�O��% = 2 − maxK�K_


�O��% , 
and this means 

BgX�(�) = 2% − Bgh�(�). 
Lastly, 

%ijk = 
� lBgX�(�) + Bgh�(�)m                     (18) 

and then 

((') = maxK�K_
 n�O��%ijk − 1n 
= 1 − BgX�(�)/%ijk 

= 0123(/)�0156(/)0123(/)�0156(/) = >(/)�
>(/)�
                     (19) 

If we assume �XX = p for R = 1,2, … , � , then the Jacobi 

method with parameter %  is equivalent to the Richardson 

method, and for both methods we get the same results. 

4. The Gauss-Seidel Method with the 

Parameter q 

Let � be expressed as the sum of three matrices 

� =  + ! + "                                     (20) 

where D is a diagonal matrix and  , " are lower and upper 

triangular matrices, respectively. The Gauss-Seidel (GS) 

method is defined by 

���
 = ( + !)�
(� − "��), � = 0,1,2, …          (21) 

The successive over-relaxation (SOR) method is also 

known as the extrapolated Gauss-Seidel method. In this case 

���
 = q + 1� !r�
 sq1� ! − ! − "r �� + �t,  
�	(0,2) � = 0,1,2, …                              (22) 

If the parameter � is chosen properly, then the 

effectiveness of the SOR method is greater than the Gauss-

Seidel method. Usually, we do not know how to choose the 

optimal value of �. For example, such a result for a special 
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class of matrices is given in [4]. In contrast, the properties of 

the Gauss-Seidel method with the parameter %  can be 

analyzed easily, and it is possible to calculate the optimal 

value % and the spectral radius for '. 
Let � be a symmetric and positive definite matrix. Then 

the Gauss-Seidel method with the parameter % has the form 

���
 = � − '��                                  (23) 

where � = ( + ! + %&)�
�, ' = ( + ! + %&)�
( O − %&). 
The method is convergent if 

% > %� = 
� maxK�K_
�`a6
? 
b(�∗��� − �∗�
�)@= 

= 12 maxK�K_
 
b?�∗ O� − �∗ � − �∗!�@ 

= − 12 minK�K_
 �O!� = − 12 min
uXu� �XX . 
Of course, the Gauss-Seidel method is convergent if % = 0. We next will use criterion (16) to establish the optimal 

value %. Because �O � = (�O �)O for �	
�  and 

�O�
� = �O � + �O!� = 12 (�O�� + �O!�), 
We therefore have 

�./��./F��4=
��./��./���.#���4. 

The function d(v) = �kk�h is increasing for v > −w and the 

function x(v) = yh�k  is decreasing for w > 0 and c> 0. This 

relationship implies 

0F0F�z��4 ≤ �./��./F��4 ≤ 0606�g��4                       (24) 

where { = min
uXu� �XX , | = max
uXu� �XX , B
 =min B(�)  and B� = max B(�).  The criterion of optimality 

has the form 

2B
B
 + | + 2% = 2 − 2B�B� + { + 2% 

This equation is equivalent to 4%� + 2%({ + |) + {| − B
B� = 0. 
The greater root of the last equation has the form 

%ijk = 
~ (−{ − | + �(| − {)� + 4B
B�)         (25) 

and then 

((') = 1 − 2B
B
 + p + 2%ijk = �7(�) + v� + v − 1�7(�) + v� + v + 1 

where = z�g�0F . 

Usually, in the analysis of the SOR method (for example 

[8]), it is assumed that �XX = 1 for R = 1,2, … , �.  If we 

assume that �XX = p, for R = 1,2, … , �, then 

%ijk = 
� l�B
B� − pm                             (26) 

and 

((') = 1 − �0F0F����4���=
�0F06�0F�0F06�0F = �>(/)�
�>(/)�
 

In this way we have proved the following theorem. 

Theorem 2. If � is a symmetric, positive definite matrix 

and �XX = p for R = 1,2, … , �, then the Gauss-Seidel method 

with the parameter % is convergent for % > − 
� p and if 

%ijk = 
� l�B
B� − pm                           (27) 

then the spectral radius of the matrix ' has the form 

((') = �>(/)�
�>(/)�
                               (28) 

Remark 4. If | > {, then 

((') > �7(�) − 1�7(�) + 1 

In this case, as the first preconditioner, we propose the 

matrix !�
  and solve the system !�
�� = !�
� or, in the 

symmetric case, we propose !�FE  and solve the system !�FE�!�FE� = !�FE�, where � = !�FE�. 
Remark 5. Usually, we do not know  B
  and B�  of the 

matrix �. In such cases, it is safely to choose % > %ijk than % < %ijk . For example, K�K= can be used rather than B� , and 

m can be used rather than B
. 
Remark 6. The parameter %  may be changed at every 

iteration. If 

max JK,-LFKK,-K , K�-LF��-KK�-��-MFKN ≥ 1                       (29) 

then we should increase the parameter %. It is also possible to 

apply certain minimization techniques to minimize the last 

expression. 

In the end of this Section, we propose the following 

theorem regarding the SOR method. 

Theorem 3. Let �  be a symmetric and positive definite 

matrix and let �XX = p for R = 1,2, … , �.  Then the Gauss-

Seidel method with % is equivalent to the SOR method with � = ���4. The optimal value of � for the SOR method can be 

calculated from the formula 

�ijk = �����0F06                                  (30) 

Proof. We compare two matrices: 

a) For the SOR method 

'��� = ( + 1� !)�
 q O − (1� − 1)!r , �	(0,2); 
b) For the Gauss-Seidel method with % 

'�� = ( + ! + %&)�
( O − %&). 
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If 
�
$ � % � p, then '��� = '��  and because %ijk =
� l�B
B� − pm, we obtain 

�ijk = pp + %ijk = 2pp + �B
B� 

Remark 7. In practice, we can start the SOR method 

with  � = �√�√���K/K� , and we obtain an algorithm that is 

equivalent to the Gauss-Seidel method with % =0.5 (�pK�K=-d). 

Remark 8. A new variant of the Gauss-Seidel method. Let � =  + ! +  O ,  where ! is a symmetric and nonsingular 

matrix. We next define �
 =  + 
� !  and the sequence ���
 = � − '�� ,  where � = (�
 + %&)�
�,  and ' =(�
 + %&)�
(�
O − %&). In this case 

B(%) = �∗�� − 2%�∗�� + 2% , �∗� = 1. 
From the optimality criterion, we obtain %ijk = 
� �B
B� 

and ((') = �>(/)�
�>(/)�
. 

Next, we observe that the rate of convergence of the 

sequence ?��@ is independent of the form of the matrix !; as 

a result, usually, !  would be a diagonal matrix and its 

elements could be different. 

5. Numerical Example 

Let � ≥ 2  and � ≤ � − 1  be given. Here, we take the 

system �� = � into consideration, where the matrix �  is 

defined as 

�X� = � 2 R = �,
|X��|  R ≠ �, |R − �| ≤ �0 b��b�ℎb+b                        (31) 

for R, � = 1,2, … , �  and �X = 1  for R = 1,2, … , �.  At every 

iteration, we use the same stopping criterion 

K+�K�� ≤ 10��                                  (32) 

where +� = ��� − �. In Table 1, we can see the character of 

the dependence of the number of iterations on the parameter %.  These results were computed for � = 1000, � = 30  and 

for the Richardson method. 

Table 1. The speed of convergence depends on the parameter %. 
q Number of iteration 

4.9 divergence 

5.0 3540 

5.1 240 

5.4 64 

5.7 38 

5.8 34 

5.9 32 

6.0 33 

7.0 38 

10.0 55 

100.0 553 

In this case, the Jacobi method is divergent and because �XX = 2 for R = 1,2, … , �, the Jacobi method with parameter % gives the same results as the Richardson method in which % 

is chosen appropriately. 

Table 2 provides a comparison of the methods that were 

mentioned earlier: 

a) RM – the Richardson method with optimal % , (% is 

calculated in the numerical experiment), 

b) RM1 – the Richardson method with % = 0.5 (K�K= +p), 

c) MR – the minimum residual method %� = ,-./,-,-.,- , 
d) TDM – the tri-diagonal method with optimal %, 

e) GS – the Gauss-Seidel method (% = 0), 

f) GS1 – the Gauss-Seidel method with optimal %, 

g) GS2 – the Gauss-Seidel method with % = 0.5 (�pK�K= − p), ( %  is an approximation of  %ijk  for the Gauss-Seidel method – see Remark 5). 

Because �XX = 2,  for R = 1,2, … , �,  this algorithm is 

equivalent to the new variant of the Gauss-Seidel 

method (Remark 8), 

h) CG – the conjugate gradient method. 

Table 2. Comparison of the number of iterations for different values n and k. The notation NI/q denotes: NI – number of iterations, q – the value of % used in 

the given iterative process. 

n k RM RM1 MR TDM GS GS1 GS2 CG 

10 2 22/3.0 26 18 9/0.3 11 10/-0.2 14/0.58 6 

10 5 19/3.6 22 13 7/0.5 9 9/0.0 12/0.76 6 

10 9 21/3.7 22 15 7/0.8 9 9/0.0 11/0.76 6 

100 2 22/3.1 24 19 11/0.6 12 12/0.0 14/0.58 11 

100 5 26/4.0 28 23 9/1.0 15 11/0.4 13/0.81 13 

100 30 31/5.8 33 24 15/2.5 15 11/0.6 14/1.23 12 

100 99 33/6.2 34 24 16/2.9 16 11/0.7 14/1.34 11 

1000 2 23/3.2 24 19 11/0.6 13 12/0.2 14/0.58 11 

1000 5 27/4.1 28 23 10/1.0 17 12/0.5 13/0.81 13 

1000 30 32/5.9 33 26 16/2.7 26 13/1.0 14/1.23 15 

1000 999 44/5.9 45 34 27/5.2 28 14/1.4 16/1.79 15 

10000 2 23/3.2 24 19 11/0.6 14 12/0.2 14/0.58 11 

10000 5 27/4.2 28 23 10/1.1 19 12/0.5 13/0.81 13 

10000 30 33/6.0 33 25 17/2.8 29 14/1.2 14/1.23 15 

10000 9999 55/11.0 55 41 38/7.5 42 17/2.0 17/2.18 18 
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6. Conclusions 

A new approach to the simple iterative methods is done. 

Owing to introducing a new parameter q the Jacobi, 

Richardson, Gauss-Seidel methods are convergent for every 

linear system with a positive definite matrix. The optimality 

criterion for the parameter q is given. Thus, interesting results 

for the Jacobi, Richardson and Gauss-Seidel method are 

obtained. The Gauss-Seidel method with the parameter %, in 

a sense, is equivalent to the SOR method. From the formula 

for the optimal value of % results the formula for optimal 

value of �. Up to present, this formula was known only in 

special cases. Practical useful approximate formula for 

optimal value �  is also given. Numerical experiments 

confirm: for very large scale systems the speed of 

convergence of the SOR method with optimal or approximate 

parameter � is near the same as the speed of convergence of 

conjugate gradients method. 
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