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Abstract: Wavelet analysis is a newly rapidly developing subject in the late twentieth century. As a time-frequency analysis 

tool, wavelet analysis has many advantages over other time-frequency tools, such as in signal processing, image processing, 

speech processing, pattern recognition, quantum physics and other fields. Multiresolution analysis (MRA for short) is an 

important method for studying wavelet orthonormal wavelet bases with rational dilation 2. However, p/q-band wavelet is known 

to have advantages over 2-band wavelet in some aspects such as in signal processing and attracted more and more interest in 

recent years. But there are relatively less results for the case of p/q-band. This paper studies the orthonormal wavelet bases with 

rational dilation factor p/q based on multiresolution analysis by a polyphase decomposition technique. First, we gave the concept 

of Multiresolution analysis with rational dilation p/q and deduced an identity of the masks matrix. Also, a perfect reconstruction 

condition in terms of masks was presented. Further, we gave the refinement and wavelet matrices respectively and derived the 

characteristic roots and the corresponding orthonormal characteristic vectors of the wavelet matrix, and then a method with 

characteristic vectors was reduced to achieve the orthonormal wavelet bases with rational dilation factor p/q. In the end, an 

example is offered to verify this theory. 
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1. Introduction 

The concept of wavelet transform was first proposed in 

1974 by J. Morlet who was an French engineer engaged in oil 

signal processing. The study of wavelet bases and frames is 

the foundation of wavelet theory. For a long time, the 

construction of wavelet bases or frames was difficult until 

1986 that Mallat and Meyer [1, 2] formulated the framework 

of the multiresolution analysis. This method makes the 

construction of wavelet base systematic. However, up to now, 

most studied cases are for integer dilation factors 2. In fact in 

multi-rate digital processing, decimation by an 2M >  ratio 

has superiorities over 2M =  and some results have been 

applied to the scope of engineering [3-5, 8-12]. When we need 

to decomposition a signal, such as music, into sharper bands, 

maybe the non-integers are more suitable. In 1989, Auscher 

[4] has proved that wavelet bases with non-integer dilation 

factors are also possible. Recently, there are more and more 

studies in this fields. For example, Iiker Bayram and Tvan W. 

Selesnick [5] studied the orthonormal and overcomplete 

wavelet transforms based on rational sampling factors and 

presented several specific examples of Daubechies-type 

filters for a discrete orthonormal rational wavelet transform. 

Marcin Bownik and Darrin Speegle [6] discussed the wavelet 

dimension function for real dilations. In this paper, we study 

the orthonormal wavelet bases in terms of the refinement and 

wavelet masks, show the similar perfect reconstruction 

condition as the case of dilation factor 2 and deduce a 

characteristic vectors method to achieve an orthonormal 

wavelet base. With the development of wavelet transform, it is 

used in more and more fields, such as signal analysis, image 

processing, quantum mechanics and theoretical physics, 

intelligence of military electronic warfare and weapons, 

computer classification and recognition, artificial synthesis of 

music and language etc. We start by giving some concepts 

associated with multiresolution analysis (MRA for short). 

2. Notations and Preliminaries 

In this section, we will give some notations and 



 Applied and Computational Mathematics 2019; 8(3): 65-69 66 

 

preliminaries which will be used in the following sections. 

Let us first introduce the notion of MRA associated with a 

dilation factor , 1M R M∈ ≥ . Fix an integer M , an MRA is 

a family of nested subspaces { }j j ZV ∈  of 2 ( )L R  such that 

1. 1{ } { }, ;j jV V j Z+⊂ ∈  

2. 
2{0}, ( );j j

j Z j Z

V V L R
∈ ∈

= =∩ ∪  

3. ( ) jf x V∈  if and only if 1( ) jf Mx V +∈ ; 

4. There exists a function 0( )x Vφ ∈  such that 

{ ( ) : }x n n Zφ − ∈  forms an orthonormal basis in 0V . 

The function ( )xφ  is called a scaling function for the 

MRA. We emphasize that ( )xφ  in this paper is assumed to be 

compactly supported. When 2M = , this is the classical 

definition of an MRA. MRA is an important method to 

construct and character the wavelets orthonormal bases and 

there are many results in this case [1-3]. If replace “an 

orthonormal basis” in the above definition by “a frame”, we 

obtain the concept of frame multiresolution analysis (FMRA 

for short) which is another important method to study wavelet. 

In the other hand, the dilation factor M>2 also is worth 

studying and there are academic achievements in this fields. 

For examples, Sun et al studied the construction of 3-band 

wavelet frames with symmetric properties by 

parameterizations of masks [7]. In 2007, Huang and Cheng 

presented a sufficient condition for an FMRA to form a tight 

wavelet frame and give an explicit constructing formula of 

wavelet tight frames by characteristic vectors [14]. As noted 

previously, the case of noninteger has advantages over 2-band 

wavelet orthonormal bases in some aspects such as in signal 

processing, intelligence of military electronic warfare and 

weapons, etc. In recent years, P/q wavelet base attracted more 

and more interest and a few relevant literatures appeared in 

succession [8-12]. One may well wonder what the rational is 

for these fractional dilation factors. One of the answers is that 

they may provide a sharper frequency localization. For some 

applications, it may be useful to have wavelet bases that have a 

bandwidth narrower than one octave, and fractional dilation 

wavelet bases are one possible answer [3]. In this paper, we 

discuss the case
p

M
q

= , ( p and q are relatively prime 

integers with 1p q> > ), namely MRA (
p

q
). 

Let 1 2
1{ , , }N Vψ ψ ψΨ = ⊂⋯ and the generated family of 

Ψ  is 

2
,{ ( ) ( ) (( ) ); , , 1,2 }.

j
p pl l j

j k q q
x x kq j k Z l Nψ ψ= − ∈ = ⋯    (1) 

When (1) forms an orthonormal base in 2 ( )L R , we say Ψ is 

an MRA(
p

q
) wavelet associated with the scaling functions

( )xφ . Auscher [4] proved that when 
p

M
q

= , p and q are 

relatively prime integers with 1p q> > , there exists a set of

p q− wavelet functions 1 2, , p qψ ψ ψ −
⋯ in 0 1 0W V V= − such 

that (1) forms an orthonormal wavelet base for 2 ( )L R . It is 

well known that when 2M = , the wavelet function is 

completely determinated by their masks [2]. What about the 

case 
p

M
q

= ? Fortunately, the answer is yes. Since the 

structure of MRA(
p

q
) is very different from that of MRA(2), 

we need to introduce it briefly as follow. 

From the above definition of MRA(
p

q
), we know that

0 1 Span{ ( ), }.
p

q
V V x n n Zφ⊂ = − ∈ Note 0V is not a 

shift-invariant space and 0 1 0W V V= − is shift-invariant under 

the translations by ,kq k Z∈ , hence 

( ) ( )

( ) ( )

pm
n q

n Z

pl m
n q

n Z

x m h x n

x g x n

φ φ

ψ φ
∈

∈

 − = −



= −


∑

∑
           (2) 

here and through, 0,1, , 1m q= −⋯ and 0,1, ,l p q= −⋯ . 

The Fourier transforms of (2) are 

ˆ ˆ( ) ( )

ˆˆ ( ) ( )

q

p

q

p

i nq qi m m
np p

n Z

i nq ql m
np p

n Z

e h e

g e

ωω

ω

φ ω φ ω

ψ ω φ ω

−−

∈

−

∈

 =


 =



∑

∑
       (3) 

Set ( )
q m i n

m np

n Z

H h e ωω −

∈

= ∑ and ( )
ql l i n

np

n Z

G g e ωω −

∈

= ∑ , then 

ˆ ˆ( ) ( ) ( )

ˆˆ ( ) ( ) ( )

q q i n
m p p

q ql l

p p

H e

G

ωφ ω ω φ ω

ψ ω ω φ ω

 =


=

           (4) 

The 2π periodic functions ( )mH ω and ( )lG ω are called the 

refinement and the wavelet masks respectively. Let these 

masks forms a matrix ( )M ω as 

2 2 ( 1)
0 0 0

2 2 ( 1)
1 1 1

2 2 ( 1)1 1 1

2 2 ( 1)

( ) ( ) ( )

( ) ( ) ( )
( ) .

( ) ( ) ( )

( ) ( ) ( )

q q p

p p

q q p
q q qp p

q q p

p p

q q pp q p q p q

p p

H H H

H H H
M

G G G

G G G

π π

π π

π π

π π

ω ω ω

ω ω ω
ω

ω ω ω

ω ω ω

−

−
− − −

−

−− − −

 + +
 
 
 
 + +
 =
 +
 
 
 
 + +
 

⋯

⋮ ⋮ ⋮ ⋮

⋯

⋯

⋮ ⋮ ⋯ ⋮

⋯

 

Daubechies [3] discussed the case 3
2

M = and concluded 

when the matrix ( )M ω is unitary, ( )xφ was an orthonormal 

wavelet. Actually, if ( )M ω  satisfies 

( ) ( ) , . . .p pM M qI a eω ω ω∗
×=           (5) 
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Here ( )M ω∗ represents the complex conjugate of the 

transpose of ( )M ω , and we can obtain an orthonomal wavelet 

via MRA. This is very similar the perfect reconstruction 

condition in the case of 2M = [2]: 

Lemma (The perfect reconstruction condition) Let 
2( ) ( )x L Rφ ∈ with ˆ ˆ,Lφ φ∞∈ continuous at 0, and ˆ(0) 1φ = be 

a frame refinable function. ( )M ω is the masks matrix of 

( )xφ : 

0 0

1 1

( ) ( )
( )

( ) ( )

H H
M

H H

ω ω π
ω

ω ω π
+ 

=  + 
 

then ( )M ω satisfies: 

( ) ( ) , . . .M M I a eω ω ω∗ =  

The wavelet transform is t tool that cuts up data or functions 

or operators into different frequency components and then 

studies each component with a resolution matched to its scale 

[3]. With the develop of MRA, a natural framework for the 

understanding and construction of new smooth orthonormal 

bases, the orthonormal wavelet bases and even wavelet frames 

became more and more interesting and constructed. Based on 

MRA, we can decomposed a signal or a function, etc. To 

different frequency components and then by the above perfect 

reconstruction condition, we then can obtain this signal. Thus, 

we can analysis a signal to achieve that condens a signal or 

remove noise from a signal. 

3. The Main Conclusions 

In this section, we deduced how an orthonormal wavelet 

base with dilation p/q was obtained if the refinement masks 

were given. We call this method the characteristic vectors 

method and one of the advantages is that this method is easily 

implemented in the computer. This method was inspired by 

the results of [3, 13] and is based on the condition (5), so we 

analyze (5) first. Note that the columns of (5) are correlative 

makes it difficult to obtain an unitary matrix ( )M ω . We 

should eliminate this feature. To do so, we introduce a 

polyphase decomposition technique [7]. It is worth to 

illustrate that the case [7] discussed is integer 3M ≥ , while 

here the case concerns non-integer 
p

q . The polyphase 

decomposition is decompose a 2π -periodic function into p  
2
p
π

-periodic functions. For example, we decompose 0 ( )H ω  

as 

1

0 0,

0

( ) ( )

p
ik

k

k

H e Hωω ω
−

−

=

=∑ . 

Then 

2 2

2
0

1 1
( ) ( )

0, 0,

0 0

( )

( 2 ) ( ),
qL qL

p p

qL

p

p p
ik ik

k k

k k

H

e H qL e H
π π

π

ω ω

ω

ω π ω
− −

− + − +

= =

+

= + =∑ ∑
 

thus ( )M ω is equivalent to ( ) ( ) ( )M E Nω ω ω=  

Where 

2 2 ( 1)

2
2 ( 1) 2 ( 1)

( 1)

( 1)

( 1)

1

1
( )

1

q q p

p p

q p q p

p p

i i p

i ii i p

i ii i p

e e

e e e e
E

e e e e

π π

π π

ω ω

ω ω

ω ω

ω

−

− −

− − −

− −− − −

− −− − −

 
 
 
 =
 
 
 
 

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

 

And 

00 01 0, 1

10 11 1, 1

1,0 1,1 1, 1

10 11 1, 1

,0 ,1 , 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

p

p

T
q q q p

p

p q p q p q p

H H H

H H H

H H HN

G G G

G G G

ω ω ω
ω ω ω

ω ω ωω

ω ω ω

ω ω ω

−

−

− − − −

−

− − − −

 
 
 
 
 
 =
 
 
 
 
 
 

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

, 

( )TN ω is the transpose of ( )N ω . 

Equals 

, . . .
q

p pp
N N I a e ω∗

×=              (6) 

looks very like (5), but the rows of ( )N ω  are discorrelative. 

For the convenience of our discuss, redefine ( )N ω  as 

( )
q

p
N ω , then p pN N I∗

×= . Define the refinement and 

wavelet matrices respectively 

00 10 1,0

01 11 1,1

0, 1 1, 1 1, 1

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

q

q

p p q p

H H H

H H H
R

H H H

ω ω ω
ω ω ω

ω

ω ω ω

−

−

− − − −

 
 
 =  
 
  

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

 

and 

10 20 p-q,0

11 21 p-q,1

1,p-1 2,p-1 p-q,p-1

( ) ( ) ( )

( ) ( ) ( )
W( )

( ) ( ) ( )

G G G

G G G

G G G

ω ω ω
ω ω ωω

ω ω ω

 
 
 =  
 
 
 

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

. 

Then we have ( ) [ ( ), ( )]N R Wω ω ω=  and 

( ) ( ) ( ) ( ).p pW W I R Rω ω ω ω∗ ∗
×= −           (7) 
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The right of (7) is calculated and the left is a complex 

symmetric matrix. If the characteristic roots of ( ) ( )W Wω ω∗

are 1 2, pλ λ λ⋯ and the corresponding orthonormal 

characteristic vectors are 1 2, pα α α⋯ by count, then 

1 1 1

1 1 1 1

1 1 1 1

( ) ( )

( , ) ( , )( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( )(( , ) ( , ) ( ))

p p p

p p p p

p p p p

W W

diag

diag diag

diag G diag G

ω ω
α α λ λ α α

α α λ λ λ λ α α

α α λ λ ω α α λ λ ω

∗

∗

∗ ∗

∗

=

=

=

⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

 

here ( ) ( ) p pG G Iω ω ∗
×= . 

This means, we can achieve ( )W ω  from the characteristic 

roots and vectors. In order to demonstrate it, we provide an 

example in the next section. 

4. Example 

In this section, we give one example in the case of 3
2

M =  

to show explicitly how this method works. When 3
2

M = , the 

corresponding matrixes ( )N ω and ( )W ω are 

10
00 10

11
02 11

12
02 12

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

H H G

N H H G

H H G

ω ω ω
ω ω ω ω

ω ω ω

 
 

=  
 
  

and 

10

11

12

( )

( ) ( )

( )

G

W G

G

ω

ω ω
ω

 
 

=  
 
  

. 

( ) ( )W Wω ω∗ is

2 2
00 10 00 01 10 11 00 02 10 12

2 2
00 01 10 11 01 11 01 02 11 12

2 2
00 02 10 12 01 02 11 12 02 12

1 | | | |

1 | | | |

1 | | | |

H H H H H H H H H H

H H H H H H H H H H

H H H H H H H H H H

 − − − − − −
 
− − − − − − 
 
− − − − − −  

 

The characteristic roots of ( ) ( )W Wω ω∗ are 

1 2 30, 1λ λ λ= = =  and the orthogonal characteristic vectors 

are 

1

1 00 02 10 12 00 01 10 11

2 21
2 00 10 01 02 11 12

00 01 10 11 01 02 11 12

2 2

00 01 10 11 02 12

3 11 02 01 12 00 12 10 02

10 01 00 11

(0, , )

(( )( ),

( )( ),

( )( 1) )

( , ,

)

T

T

T

H H H H H H H H

H H H H H H

H H H H H H H H

H H H H H H

H H H H H H H H

H H H H

α

α

α

α


 = − − +

 = + +



+ +


+ + −


= − −
 −

 

then 1 2 3( ) ( , , ) (0,0,1) ( ).W diag Gω α α α ω= In this case, the 

decompositions of wavelet are 3 ( )gα ω , here ( ) 1g ω = . 

Let jV be the collection of functions whose Fourier 

Transforms supported in 3 3
2 2

[ ( ) , ( ) ]j jπ π− and
sin( ) x

x
x π

πφ = , 

then [ , ]
ˆ( ) ( )π πφ ω χ ω−= and Auscher [4] verified that

{{ } , ( )}j j ZV xφ∈ was an MRA( 3
2

). By a calculation, the two 

refinement masks are 

2 2
3 3

0 2 2
3 3

1, [ , ]
( )

0, [ , ) ( , ]
H

ω π π
ω

ω π π π π

 ∈ −= 
∈ − − ∪

, 

3
2 2 2

3 3
1

2 2
3 3

, [ , ]
( )

0, [ , ) ( , ]

i
e

H

ω ω π π
ω

ω π π π π

− ∈ −= 
∈ − − ∪

. 

And the corresponding polyphase decompositions of 

0 ( )H ω and 1( )H ω are 
2

00 3
( ) , . . [ , ]H a eω ω π π= ∈ − , 

3

3

1 2 2
3 3 3

1 2
01 3 3

1 2
3 3

, ( , ) ( , )

( ) , ( , 0)

, (0, )

i

ii

ii

e

H e e

e e

π

π

ω

ω

ω

ω π π π π

ω ω π

ω π−

− ∈ − −

= ∈ −


∈

∪

, 

3

3

21 2 2
3 3 3

21 2
02 3 3

21 2
3 3

, ( , ) ( , )

( ) , ( , 0)

, (0, )

i

ii

ii

e

H e e

e e

π

π

ω

ω

ω

ω π π π π

ω ω π

ω π

−

 − ∈ − −

= ∈ −


∈

∪

 

and 10 ( ) 0, ( , ),H ω ω π π= ∈ −  

2

62

62

2

3 2
3 3

3 2
3 3

11
3 2

3 3

3 2
3 3

, ( , )

, ( , 0)
( )

, (0, )

, ( , )

i

i

i

i

i

i

ie

e e
H

e e

ie

π

π

ω

ω

ω

ω

ω π π

ω π
ω

ω π

ω π π

−

−−

−−

−

− ∈ − −

 ∈ −= 
 ∈

 ∈

, 

2

62

62

2

3 2
3 3

3 2
3 3

12
3 2

3 3

3 2
3 3

, ( , )

, ( , 0)
( )

, (0, )

, ( , )

i

i

i

i

i

i

ie

e e
H

e e

ie

π

π

ω

ω

ω

ω

ω π π

ω π
ω

ω π

ω π π

−

 ∈ − −

 ∈ −= 
 ∈

 − ∈

. 

Finally, we obtain the orthonormal wavelet is 

2 2
3 31

2 2
3 3

0, [ , ]
( ) .

2 ( ), [ , ) ( , ]
G

g

ω π π
ω

ω ω π π π π

 ∈ −= 
∈ − − ∪

 

From the example above, we can see that this method is 

very straight and can be extended to the more general case p/q. 

When we do so, one point is worth illustration. Thay is, after 

p-q functions perpendicular to ( ), 0,1,2, 1mH m qω = −⋯  are 

achieved, the GramSchmidt orthogonalization should be used 

to ensure these p-q functions are orthogonal to each other. 
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