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Abstract: The variable separation method is an important method to solve the definite solution problems, especially the 

definite solution problems of cylinder and sphere regions. This method can solve these problems on cylinder and sphere 

regions, but the solving procedures are very difficult in the practical application. It is often solved by combining the properties 

of Bessel functions. In this paper, we propose a method combining Bessel function to solve homogeneous definite solution 

problem on the cylindrical coordinate system and give the algorithm of solving a definite problem. This algorithm is easy to 

implement and simplifies the process of calculation. Firstly, the definition and properties of Bessel function are briefly recalled, 

which are the first and essential step to solve the definite solution problem. Then we give the basic process of solving 

homogeneous definite solution problem, where consider the problem of the definite solution of the homogeneous wave 

equation, homogeneous heat conduction equation and Laplace equation. We analyze the solution of the Bessel equation 

definite solution problem under three kinds of boundary conditions and conclude the algorithm of solving a definite problem. 

At last, two numerical examples are provided to validate the feasibility of the proposed method. 
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1. Introduction 

Bessel function is one of the most significant special 

functions, which is widely used in atmospheric science, 

mechanics, mathematics and other disciplines. Bessel function 

is obtained when equation Helmholtz and Laplace equation are 

solved by separating variables in cylindrical or spherical 

coordinates [12]. There are some limitations to use elementary 

function to solve the definite problem. Therefore, Bessel 

functions have been attracted considerable attention. The 

solution of the definite solution problem usually needs to be 

converted into the partial differential equation with variable 

coefficient in cylindrical or spherical coordinate system, then 

solve by using special functions. There are many classical 

problems, such as electromagnetic wave propagation 

waveguides [4, 7], heat conduction problem [1], the vibration 

mode problem of circular or annular films and so on. 

Several special cases of positive integer order of Bessel 

function were proposed by Swiss mathematician Daniel 

Bernoulli as early as the mid-18th century. Bessel functions 

first appeared in problems involving catenary oscillation, 

cooling of long cylinders and tension membrane vibration [6]. 

In 1824, German mathematician F. W. Bessel systematically 

put forward the overall theoretical framework of Bessel 

function for the first time. Rossetti [2] deduced an 

approximate form for the standard Bessel functions of first 

and second kind and obtained the real zeros. The definition 

and properties of Bessel function were introduced in detail in 

[13]. Karatsuba [3] presented a fast method to calculate 

Bessel function. Then fast and accurate Bessel function 

computations were presented in [5]. Zhou [9] applied the 

deformed Bessel function to mechanics and obtained the 

formal solution in mechanical analysis. Recently, many 

scholars were concerned about the application of Bessel 

functions for solving equations [15, 16]. Bessel function was 

applied to the definite solution of heat conduction equation 

[8]. The mixed problems of axisymmetric parabolic partial 

differential equations and spherical symmetric parabolic 

equations in cylindrical regions are solved by using Bessel 
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function [11]. 

In this paper, we propose a method combining Bessel 

function to solve homogeneous definite solution problem of 

cylindrical coordinate system. The definite solution problems 

with different boundary conditions are analyzed. A brief 

outline of this paper is as follows. Section 2 recalls the 

definition and properties of the Bessel function, which 

provides a theoretical basis for the following methods. In 

Section 3, the method of separating variables to solve the 

homogeneous definite solution problem is summarized, and 

Bessel equation definite solution problem under three kinds 

of boundary conditions are analyzed. Numerical examples 

are provided to validate the proposed method in Section 4. 

Finally, the paper is concluded.  

2. Bessel Function 

Bessel function is the solution of Bessel equation, except 

elementary function. Bessel function is the most commonly 

used function in mathematics, physics and engineering. 

2.1. Bessel Function Definition 

Bessel's equation is the equation 

2 2 2'' ' ( ) 0,x y xy x v y+ + − =                      (1) 

where v  is a constant and is called order of equation, which 

can be any real number or complex number. The solutions of 

Bessel's equation are called as Bessel functions, which can be 

divided into three kinds. 

The first kind of Bessel functions are often called Bessel 

functions, which are denoted by ( )vJ x  and ( )vJ x− . These 

can be written in the form 
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The second kind of Bessel function are often called 

Neumann function, which is denoted by ( )vY x . This can be 

written in the form 
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The third kind of Bessel functions often are called Henkel 

functions, which are denoted by 
(1) ( )vH x  and 

(2) ( )vH x . 

These can be written in the form 
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(1) ( )vH x  and 
( ) ( )v
xH x  are respectively called the first 

Henkel function and the second Henkel function. 

2.2. Properties of Bessel Function 

Bessel functions are characterized by many important 

properties. Analyzing its properties was the primary step in 

understanding the Bessel function. 

2.2.1. Recursion Formula 

Bessel functions have recursive relationships. Taking the 

first kind of Bessel functions as an example, we have the 

following recursive formulas 
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Similar properties exist in other kind of functions.  

2.2.2. Zero Point 

The root of ) 0(vJ x =  is called the zero point of ( )vJ x . 

( )vJ x  has an infinite number of individual real zeros in the 

interval [0, ]∞ , which are distributed symmetrically around 

the origin on the x  axis. The zero points of ( )vJ x  and 

1( )vJ x+  are distributed with each other. If x  is sufficiently 

large, the distance between the two adjacent zeros of ( )vJ x  

is close to π . 

We know that the zero point of ) 0(vJ Aλ =  is 
(0)
n nx Aλ= , 

then we can obtain the eigenvalues and eigenfunctions, 
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2.2.3. Bessel Function Series Expansion 

Arbitrary function ( )f x  has a continuous first order 

derivative and the second derivative piecewise continuous in 

the interval [ ]0, A . Suppose (0) , ( ) 0f f A< +∞ = , then 

( )f x  must be expanded to the following series 
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where the zero point of ( )vJ x  is 
( )v
nx , and 
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3. Solving the Definite Solution Problem 

The separation of variables method is the most common 

and important method to solve the problem of definite 
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solution of partial differential equations, which is widely 

used in various definite solution problems. Bessel functions 

make it easier to solve the definite solution problem in 

cylindrical coordinate system. We consider the problem of 

the definite solution of the homogeneous wave equation, 

homogeneous heat conduction equation and Laplace equation. 

3.1. Separating Variables 

A set of ordinary differential equations is obtained by 

separating variables from the original equation. 

3.1.1. Laplace Equation 

2 2 2

2 2 2
0.

u u u

x y z

∂ ∂ ∂+ + =
∂ ∂ ∂

                               (9) 

The expression in cylindrical coordinate system is 

2 2 2

2 2 2 2
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                   (10) 

Let the form of variable separation be 

( , , ) ( ) ( ) ( ).u r z R r Z zθ θ= Φ                         (11) 

Substituting the above equation into (10), we obtain 
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Multiplying both sides of the equation by 
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It decomposes into two equations 
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Dividing in both sides of (15) by 
2

r  and transfers, we get 

2
2

2

1
,    0.

R R v Z

R r R Zr
λ λ+ − = − = −

′ ′′
≠

′ ′
                (16) 

Eventually we can decompose the original equation into 
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3.1.2. Homogeneous Wave Equation 

2 2 2 2
2

2 2 2 2
0.
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t x y z
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First, we separate time variables from space variables. 

Supposing that ( , ) ( ) ( )u t T t V=v v , then 
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It decomposes into two equations 

2 2'' 0,T k a T+ =                                      (20) 

2 0.V k V∆ + =                                      (21) 

Using cylindrical coordinates for (21), we treat 

( , , ) ( ) ( ) ( )u r z R r Z zθ θ= Φ  as a new variable, three equations 

can be decomposed by the same method. Finally, we can 

decompose the original equation into 
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3.1.3. Homogeneous Heat Conduction Equation 

2 2 2
2
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Similarly, first we separate the time variables, and then we 

separate the space variables in cylindrical coordinates. We 

can separate the original equation to get 
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3.2. Solving the Eigenvalue Problem 

3.2.1. General Condition 

We consider the general case 

''( ) ( ) 0.X x X xω+ =                                   (25) 

In the situation of ω<0, the general solution of the equation 

is 

( ) .x xX x Ae Be ωω− − −= +                          (26) 
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In the situation of ω=0, the general solution of the equation 

is 

( ) .X x Ax B= +                                (27) 

In the situation of ω>0, the general solution of the equation 

is 

( ) cos sin .X x A x B xω ω= +                      (28) 

Then the solution sequence ( ), 1,2,nX x n = ⋯  is obtained 

according to the boundary conditions. 

3.2.2. Eigenvalue Problems of Bessel Equation 

2
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λ λ′ =′ + − ≠′+                     (29) 

Supposing that x rλ=  the equation can be reduced to 

2 2 2( ) 0,xx xx R xR x v R+ + − =  

which is v  order Bessel equation, and the general solution is 

( ) ( ) ( ).v vR r AJ r BY rλ λ= +                       (30) 

Since (0)R < +∞ , 0B = . The above equation can be 

rewritten as 

( ) ( ).vR r AJ rλ=                                     (31) 

Firstly, we consider the first kind of boundary conditions 

0( ) 0, (0)R r R= < +∞ , we obtain 0A ≠  and 0( ) 0vJ rλ = . In 

other words, we need to find the zero point of ( ) 0vJ x = . 

Let 
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The solution sequence for 

( ) ( ),    1, 2, .n v nR r J r nλ= = ⋯                       (32) 

Next, we consider the second kind of boundary conditions 
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from 0( ) 0R r =  and 
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where 
( )v
nx  means the n-th zero of ( ) 0vJ x′ = . 

Finally, from the third kind of boundary conditions 

0 0( ) '( ) 0, (0)R r CR r R+ = < +∞ , we have 

0 0( ) ( ) 0.v vJ r C J rλ λ λ λ′ ′+ =                          (34) 

According to the properties of Bessel function, the above 

equation can be rewritten as 

0
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Then 
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where 
( )v
nx  means the n-th zero of (35). 

3.3. Superposing Solution Sequences 

From the above process, the formal solution can be 

obtained according to the principle of superposition 

( , , , ) ( , , , )
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R r Z T tz

θ θ
θ
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Then we confirm the correlation coefficient according to 

the initial conditions. Finally, we solved the definite solution 

problem. 

Consequently, we give an algorithm of solving a definite 

problem as following. 

Table 1. The algorithm of solving a definite problem. 

Algorithm Solving a definite problem 

Step i Determine the type of equation; 

Step ii Obtain ordinary differential equations by separating variables; 

Step iii 
Obtain eigenvalues and eigenfunctions according to the 

boundary conditions; 

Step iv Solve the corresponding solution sequence; 

Step v Superposition all solutions; 

Step vi 
Confirm the correlation coefficient according to the initial 

conditions. 

4. Numerical Example 

In this section, we present numerical examples to illustrate 

our methods in the above sections. 

Example 1 Consider the axisymmetric free vibration 

problem of an infinitely long cylinder with radius 0 0.5r = . 

2

0
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Suppose that the vibrational displacement of the particle is 

( , , , )u r z tθ . Clearly, the solution is independent of the 

variables , zθ . Thus, we separate the variables by introducing 
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( ) ( ) ( ),u r t R r T t= . 

We can separate the original equation to get 

( ) ( )2 2 0,T t a T tλ′ + =′                              (38) 

( ) ( ) ( )1
0.R r R r R r

r
λ+′ ′+ =′                       (39) 

The solution of (38) is 

( ) ( ) ( )cos sin ,  1,2, .n n n n nT t A a t B a t nλ λ= + = ⋯     (40) 

Equation (39) is Bessel function of order 0v = , its general 

solution is 

( ) ( ) ( )0 0 .R r CJ r DY rλ λ= +                        (41) 

This boundary belongs to the second boundary condition, 

we have 0D = , the eigenvalues and eigenfunctions of Bessel 

equation are 
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where 
(0)
nx  is the zero point of 0 ( )J x′ . 

According to the principle of linear superposition, the 

general solution of original solution can be expressed as 
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where coefficients nA  and nB  are determined by initial 

condition 
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Then we can solve  
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Substituting the coefficient into equation (44), we have 

2
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The vibration displacement of cylinder is given by 

computer simulation, see Figures 1-3. 

 

Figure 1. The vibration displacement of cylinder with 1.a =  

 

Figure 2. The vibration displacement of cylinder with 2.a =  

 

Figure 3. The vibration displacement of cylinder with 4.a =  
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Example 2 There is an empty cylinder with a conductor 

wall. The height of the cylinder is 1h = , the radius is 0 1r = , 

the top of the cylinder potential is 0.2, the side and the 

decisive potential are 0. Below we solve the potential 

distribution inside the cylinder. 

Using cylindrical coordinate system, we can find that the 

conditions of the solution are independent of the angle θ  and 

only related to ,r z . The problem can be boiled down to the 

following definite problem. 

2 2
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We use the separation of variables method to solve the 

above problems. Suppose that ( ) ( ) ( ),u r z R r Z z= , we can 

separate the original equation to obtain 

''( ) ( ) 0,Z z Z zλ− =                               (46) 
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The solution of (46) is 
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This boundary belongs to the first boundary condition, we 
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equation are 
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where 
(0)
nx  is the zero point of 0 ( )J x . 

According to the principle of linear superposition, the 

general solution of original solution can be expressed as 
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where coefficients nA  and nB  are determined by initial 

conditions, 

0

1

0

1

( ) ( ) 0,

[ ] ( ) 0.2.n n

n n n

n

n n n

n

A B J r

A e B e J r
λ λ

λ

λ

∞

=
∞

−

=

+ =

+ =

∑

∑
           (51) 

Simplifying the above equations, we have 
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Finally, the coefficients are 
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Substituting the coefficients into (50), we obtain 
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Figure 4 shows the potential distribution inside the 

cylinder. 

 

Figure 4. The potential distribution inside the cylinder. 

5. Conclusion 

The method of separating variables is usually used to solve 

the problem of definite solution of partial differential 

equations. We propose a method combining Bessel function 

to solve homogeneous definite solution problem of 

cylindrical coordinate system. Numerical examples validate 

the feasibility of the method. In addition, the cylindrical 

coordinate system introduced in this paper, Bessel function 

can also be used for the definite solution problem in the 

spherical coordinate system. 
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