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Abstract: Developing countries are prone to some outburst of epidemic because of the poor sanitary apparatus in existence 

in the public schools where more - likely those children from the underdogs will be seen. Conjunctivitis is one of such 

communicable disease in western sub – Sahara Africa because of the topography, level of education in the rural communities 

and the degree of poverty that rocks an average family. Model for transmission dynamics of acute conjunctivitis is proposed 

and analyzed both analytically and numerically. The model is reformulated as an optimal control problem taking into 

consideration the effect of proper sanitation and training of the educators; and Maximum Principle was employed to obtain the 

necessary conditions for existence of optimal control. The basic reproduction number is obtained using the next generation 

matrix and spectral radius which is less than one when computed. The result shows an agreement of the analytical and 

numerical solution; in addition, if the sanitation that includes the serenity of the school environment, conduciveness of the 

classrooms, personal hygiene are dually observed in and outside the school, and education of the caregivers which includes the 

teachers, menders, parents and even the pupils are articulated properly, the infected pupils shall be decreased drastically over 

time. 
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1. Introduction 

Lately mathematical modeling of biological processes, 

physical process and other epibiological processes have been 

on the raise, basically because of its ability to incorporate the 

undermining factors that are so intricate to elucidate. 

Mathematical biology is a branch of mathematics that has 

been gaining tremendous interest of scholars recently; 

modeling of infectious diseases, modeling of growth in the 

human anatomy, body fluid modeling, and other viable areas. 

These surges include the solid reputation of such models in 

laying foundational structures to understanding the 

complexities of biological processes and the likes. In 

modeling of infectious diseases, it helps in estimating the 

threshold parameters, elucidation of the transmission 

dynamics, in addition to its ability to provide feasible control 

strategies [1]. Mathematical modeling of infectious diseases 

has been productive in terms of its pragmatic therapeutic 

recommendations for treatment and prevention strategies of 

infectious diseases has been borne, and has been an 

alternative tool that has been in exploit in the combative 

approach of infectious diseases [2]. 

Conjunctivitis is an infectious disease of the eye (s) that is 

characterized by typically redness or swelling of the white of 

the eye (Conjunctiva). It is most often caused by virus, 

bacteria, allergy or chemical irritation (Pollen, smoke, 

cosmetics or chlorine in water) [3]. The infection is 

transmitted from an infected person to a susceptible 

individual through contact with discharge from conjunctivae 

or upper respiratory tracts of infected persons, contact with 

contaminated foreign bodies that has been in contact with the 

eyes. It can also be transmitted vertically to newly born 

babies due to its direct relation between maternal gonococcal 

and chlamydial infection. We are interested in conjunctivitis 

caused by virus rather called Acute Hemorrhagic 

conjunctivitis (ADC). The incubation period of ADC ranges 

from 1 – 3 days. The symptoms of the infection include 

tearing, irritation, photophobia, sore throat which usually 

results in swelling of the lids or purulent discharges [4]. 

Conjunctivitis infection is commonly contracted in the 



30 Michael Uchenna et al.:  Control Model on Transmission Dynamic of Conjunctivitis During Harmattan in Public Schools 

 

early ages of children by direct or indirect contact with 

contaminated foreign bodies. It is widely common 

communicable disease of tropical countries Africa, Asia, 

Central and South America, and is undoubtable considered as 

a serious health problem in communities where the 

appropriate drugs for treatment is scares [5]. The period of 

infection is about 2 weeks. The infection only affects the 

eyelids and conjunctiva while part of the black eye is normal, 

hence it does not affect the sight. Commonly associated with 

the diseases is its burden that includes loss in contact for 

hours or days for pupils, loss of savings through medication 

bills and loss in productivity. 

Chowell et al. [6] modeled an outbreak of acute 

hemorrhagic conjunctivitis by considering a model that was 

categorized into susceptible, infectious, reported and 

recovered compartments. The model considered 

underreporting and behavior changes on the transmission rate 

of ADC in Mexico. A SEIR model of conjunctivitis was 

proposed by Unyong and Naowarat [7] that considered a 

nonlinear incidence on which the local stability was 

performed; they concluded that an increase in the infected 

humans was dependent on the decrease in the fraction of the 

infected individuals. A deterministic mathematical model for 

the dynamics of conjunctivitis disease that assessed the effect 

of education campaign on the spread of the diseases was 

develop by Suratchala et al.[8]. Local stability analysis of 

mathematical model for hemorrhagic conjunctivitis disease 

was studied in [9] that they resolved that the endemic and 

disease free equilibrium are unique and stable. Optimal 

control model of hemorrhagic conjunctivitis disease was 

studied using dynamical system that was employed in 

investigating the potency of the spreading of the epidemic 

[2]. Their analysis suggests the likelihood of the epidemic to 

spread in the entire population if the basic reproduction 

number is exceeded. Even though an outstanding 

contributions have been achieved by researchers in 

expatiating viral interactions with human and their biology, 

the complexities in the life cycle of the virus, highly 

environmental factors that to a greater extent affects the 

transmission posed by the virus in drug resistance has thrown 

a challenge to researchers to come up with combination 

method in order to eliminate the epidemic. 

In this research article, we formulate a dynamical system 

approach to solving an optimal control model for viral 

conjunctivitis disease. The purpose of this work is basically 

to determine the effect of proper sanitation and education of 

viral conjunctivitis for nursery and primary schools 

caregivers. The structure of this paper is organized as 

follows; formulation of model for the viral conjunctivitis in 

section 2. The optimal control problem that assesses the 

effect of good sanitation, education on preventive measures 

and management of the infection since it is self-limited by 

using time dependent control functions; Pontryagins 

Maximum Principle is applied to obtain the necessary 

condition for an optimal solutions. Stability differential 

equations theory was used to determine both the endemic 

equilibrium point, basic reproduction number and investigate 

the stability of the model. Finally, in section 4 the optimal 

system is numerically solved and computed to investigate the 

optimum control strategy that would be efficient in curtailing 

the population in exposed and infected in the compartments. 

2. Formulation of the Transmission 

Model 

The human population at time � is assumed to be constant 

because birthrate and death rate of human population are 

approximately equal. The population is partitioned into four 

compartments: susceptible human �(�) , exposed human 

�(�), Infected human �(�), and recovered human �(�). The 

total population at any given time � is  

( ) ( ) ( ) ( )N S t E t I t R t= + + + .                 (1) 

The dynamical transmission model for ADC infection is 

given as follows 

( )1dS
N R SI S

dt N

π
β θ µ α

−
= + − −                (2) 

( )1dE
SI E

dt N

π µ κ α−= − +                   (3) 

( )dI
E I

dt
κ ρ ι α= − + +                        (4) 

( ) ( )dR
I R

dt
ρ ι θ α= + − + ,                   (5) 

where 

β  is the birth rate of human population in a school 

α  is the death rate of human population in a school 

π  is the effectiveness of personal hygiene outside the 

school 
κ  is the rate that the exposed become infected in a school 

ρ  is the recovery rate of persons who have seen the 

doctor 

ι  is the recovery rate of persons who have not consulted 

the doctor 

θ  is the rate of immunity after recovery is lost and the 

individual become susceptible again 

µ  is the probability that virus transmitted from infected 

pupil to susceptible pupil. 

We normalize (2) − (5) by assigning 

ˆ ˆ ˆ ˆ, , ,
S E I R

S E I R
N N N N

= = = = .                     (6) 

When (7) is infused into (2) − (5), we obtain 

( )
ˆ

ˆ ˆˆ ˆ1
dS

R SI S
dt

β θ π µ α= + − − −                 (7) 
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( ) ( )
ˆ

ˆˆ ˆ1
dE

SI E
dt

π µ κ α= − − +                    (8) 

( )
ˆ

ˆ ˆdI
E I

dt
κ ρ ι α= − + +                        (9) 

( ) ( )
ˆ

ˆ ˆdR
I R

dt
ρ ι θ α= + − + .                   (10) 

2.1. Optimal Control Strategies 

The impact of some control strategies is examined by 

incorporating them into (2) to (5) which in our work we are 

considering good sanitation and education of the caregivers 

in nursery and primary schools. The infection force is 

reduced by a factor 11 ( )tφ− , where 1( )tφ  represents efforts 

of maintaining sound sanitation among the individuals. 2 ( )tφ  

is introduced as a control variable that represents the 

education of the caregivers about the infection that includes 

how to respond when the infection is suspected, proper way 

of isolation of individuals, follow up with the clinic 

department and the psychological management. With the 

introduction of these optimal control strategies which spans 

better disease management that will save time and resources 

we can modify (2) − (5) as follows 

( )1

1
1 ( )

dS
N R t SI S

dt N

πβ θ φ µ α−= + − − −          (11) 

( ) ( )1

1
1 ( )

dE
t SI E

dt N

πφ κ α−= − − +                (12) 

( )2

dI
E I

dt
κ ρ ι α φ= − + + +                      (13) 

( ) ( )2

dR
I R

dt
ρ ι φ θ α= + + − + .               (14) 

With suitable initial conditions, we consider an optimal 

control problem aiming to minimize the objective functional 

given as  

( ) ( )
1

0

2 2
1 2 1 2 1 1 2 2

1
,

2

t

t

J B E B I d d dtφ φ φ φ = + + + 
 ∫ .          (15) 

where �
 , ��  are the weight constant of the exposed and 

infected individuals, 1φ  and 2φ  are weight constant for 

minimizing the number of exposed and infected by proper 

sanitation and education of caregivers. Furthermore, 
2

1 1d φ  

and 
2

2 2d φ  represents the cost of maintaining proper 

sanitation and educating the caregivers about the infection. 

The choice of the quadratic cost is as a result of what is 

obtainable in current literature [2], [12]. We wish to obtain an 

optimal control 1φ̂  and 2φ̂  such that 

( ) ( ){ }1 2 1 2 1 2
ˆ ˆ, min , : ,J J Qφ φ φ φ φ φ= ∈                  (16) 

where { }1 2, : ( ) is lebesgue measurablei tφ φ φ . We use the 

Pontryagin’s Maximum Principle [13], to solve for the 

optimal strategies. The systems (11) − (15)  can be 

converted into the Hamiltonian �, with respect to 1φ  and 2φ
where 

( )2 2
2 3 4 1 2 1 1 2 2 1 2 3 4

1
( , , , , , , , , , ) .

2

dS dE dI dR
H S E I R Q t B E B I d d

dt dt dt dt
λ λ λ λ φ φ λ λ λ λ= + + + + + + +               (17) 

where iλ  are adjunct variables to be calculated. 

Theorem 2.1: There exist an optimal control ( )* *
1 2,Q Qφ φ= ∈  such that ( ) ( )

( )
1 2

* *
1 2 1 2

,
, min ,

Q
J J

φ φ
φ φ φ φ

∈
=  subject to the control 

system (11) − (14) with initial conditions at � = 0. 

Theorem 2.2: Given that ( )* * * *, , ,S E I R  are optimal state solutions and ( )* *
1 2,φ φ  are associated optimal control variable for 

the optimal control problem (11) − (15), then there exists adjoint variables iλ  which satisfies  

( )( )( ) ( )

( )

( ) ( )( ) ( ) ( ) ( ) ( )

( )

1 1 1 2 12

2 1 2 3 2

3 2 1 1 2 3 4 3 4 2 32

4 1 4 4

1 1 ,

,

1 1 ,

,

E I R
I

N

B

E I R
B I

N

λ φ λ λ π λ α

λ λ λ κ λ α

λ φ λ λ π λ λ ρ λ λ φ λ ι α

λ λ λ θ λ α

+ +
′ = − − − + 


′ = − + − + 


+ + ′ = − + − − − + − + − + + 


′ = − + 

                  (18) 

with the boundary conditions 

( ) 0 for 1,2,3,4i t iλ = = .                        (19) 

In [2], the optimal control 
*
1φ  and 

*
2φ  are given as  
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( )2 1
*
1

1

1 ˆˆ

max min ,1 ,0

SI

d N

πλ λ
βφ

 − −     =    
   
     

     (20) 

( )4 3*
2

2

ˆ
max min ,1 ,0

I

d

λ λ
φ

  −   =    
     

.      (21) 

Theorem 2.1 and theorem 2.2 have been proved in [2], we 

use only the theorem for the optimal solutions. By 

substituting (20) and (21) into (11) − (14) we obtain 

( )2 1

1

1 ˆˆ
1

1 max min ,1 ,0

SI
dS

N R SI S
dt d N N

πλ λ µ
πββ θ α

β

  − −    −    = + − − −              

 (22) 

( )
( )

2 1

1

1 ˆˆ
1

1 max min ,1 ,0

SI
dE

SI E
dt d N N

πλ λ µ
πβ κ α

β

  − −    −    = − − +              

 (23) 

( )4 3

2

ˆ
max min ,1 ,0

   −    = − + + +    
      

IdI
E I

dt d

λ λ
κ ρ ι α  (24) 

( ) ( ) ( )4 3

2

ˆ
max min ,1 ,0

IdR
I I R

dt d

λ λ
ρ ι θ α

   −    = + + − +   
       

. (25) 

2.2. Analysis of the Dynamic Model 

To obtain the steady state of the model, we equate 

(7) − (10) to zero. We obtain that  

 
( )

( )

ˆ
ˆ

ˆ1

R
S

I

β β θ

π αβ

+
=

− +
                           (26) 

( ) ( )
( ) ( )

ˆ1
ˆ ˆ

ˆ1

R
E I

I

π β θ

κ α π αβ

− +
=

 + − + 

                 (27) 

( ) ( )( )
( )( )( )

ˆ1
ˆ

1

R
I

β κβ π α κ α ρ ι α θ
κ α π ρ ι α

 − − + + + + =
+ − + +

         (28) 

( ) ( ) ( )( )
( ) ( )( )( )( )

1
ˆ

1
R

ρ ι κβ π α κ α ρ ι α
ρ ι θ θ α κ α π ρ ι α

 + − − + + + =
+ − + + − + +

      (29) 

R̂  can be obtained using (29) or by using the equation 

ˆ ˆ ˆ ˆN S E I R= + + + . Therefore we obtain two steady – state;  

i When proper sanitation and the community is properly 

sensitized, the number of persons infected is zero i.e. 

ˆ 0I = , hence we obtain that ˆ ˆ ˆ, 0, 0S E R
β
α

= = = . 

Hence ( )0 0
ˆ ˆ ˆ ˆ, , , ,0,0,0E S E I R E

β
α
 =  
 

 is the disease 

free steady state. 

ii The endemic disease steady state is ( )1
ˆ ˆ ˆ ˆ, , ,E S E I R , 

where ˆ ˆ ˆ ˆ, , ,S E I R  are as in (26) − (29). 

The Basic Reproduction Number 

The basic reproduction number 0R  is the number of 

secondary cases which one case would produce in a 

completely susceptible population. We obtain 0R  by using 

next generation method and the spectral radius proposed in 

[10]. We can rewrite (2) − (5) in the system matrix form 

( ) ( )dx
F x V x

dt
= −                            (30) 

Where ( )F x  is the rate of new infection in a compartment 

and ( )V x  gives the transfer of persons from a compartment 

to another. Therefore the matrices �  and �  evaluated at 

0 ,0,0,0E
β
α
 
 
 

, 

( )
0 0 0

1
0 0

0 0 0

F
βµ π

α

 
 − =  
 
 
 

 and 

1
0

0 0

0

V

ρα
α

κ α
κ ρ ι α

− 
 
 

= + 
 − + +
 
 

. 

The basic reproduction number can be evaluate buy the 

formula [10]. 

( )1
0R p FV −=                                (31) 

Where p  is the spectral radius of 
1

FV
−

. Therefore  

( ) ( )

( )( ) ( ) ( )( )

( )( )

2 2

1

1 1

1
0 0

1
0

V

κ α ρ ι α κ π π κ α
α α α

ρ ι α
κ α ρ ι α

κ α π
κ

α

−

 + + + − − +
− − 

 
 = + +
 + + +

+ − 
 
 

and 

( )
( )( ) ( )

1

0 0 0

1 1
0

0 0 0

FV
βκ π µ π

α κ α ρ ι α α ρ ι α
−

 
 

− − =  + + + + +
 
 
 

. 

Thus,  

( ) ( )
( )( )

1
0

1
R p FV

κβµ π
α κ α ρ ι α

− −
= =

+ + +
.              (32) 

Theorem 3.3: The disease free equilibrium is locally 

asymptotically stable if �� < 1 and unstable if �� > 1. 
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2.3. Analysis of the Model 

Generally, the sign of the eigenvalues of a Jacobian matrix 

0J  determines the local stability of each of the steady state 

of a system of differential equations. The eigenvalues are the 

solutions of the characteristic equation 

( ) 0iJ E Iλ− =                                 (33) 

where ( )iJ E  is the Jacobian matrix at a given steady state 

iE , 1,2i =  and I  is the identity matrix of dimension 3 3× . 

i Disease free steady state, 0 ,0,0,0E
β
α
 
 
 

: The Jacobian 

matrix for the DFE is given as  

( )
( )

0

1
0

1
0

0

J

πα
α
πκ α

α
κ ρ ι α

− − − 
 

− = − + 
 

− + + 
 
 

 

The characteristic equation is given as  

( )
( )

0

1
0

1
0 0

0

J I

πα λ
α
πλ κ α λ

α
κ ρ ι α λ

−− − −

−− = − + − =

− + + −

 

Therefore 

( ) ( ) ( )( ) ( )2 1
2 0

κ π
λ α λ κ α ρ ι λ κ α ρ ι α

α
 −

+ + + + + + + + + − = 
  

. (34) 

From (34) we observe that � = −� < 0 and to obtain the 

remaining eigenvalues, we apply the Routh – Hurwitz criteria 

for stability [11]. From (34) we obtain that  

( ) ( )( ) ( )2 1
2 0

κ π
λ κ α ρ ι λ κ α ρ ι α

α
−

+ + + + + + + + − = . 

2
1 2 0a aλ λ∴ + + =                          (35) 

where  

1 2a κ α ρ ι= + + +                           (36) 

( ) ( ) ( )
2

1
a

κ π
κ α ρ ι α

α
−

= + + + − .                (37) 

By Routh – Hurwitz criteria for stability, if �
 > 0  and 

�� > 0 then the eigenvalues are negative. Clearly �
 > 0 and 

we can transform (35) as  

( )( )( )2 01a Rρ ι α κ α= + + + − .              (38) 

In (36)  �1 > 0  when �� < 1 , hence the DFE is 

asymptotically stable. 

ii Endemic State: The Jacobian matrix of the endemic 

disease steady state is given as  

( )

( )
1

1 1 ˆˆ 0

1 1 ˆˆ

0

I S

J I S

π πα
β β

π πκ α
β β

κ ρ ι α

− − − − − 
 
 − −= − + 
 
 − + +
 
 

 

The related eigenvalue problem is given as 

( )

( )
1

1 1 ˆˆ 0

1 1 ˆˆ 0

0

I S

J I I S

π πα λ
β β
π πλ κ α λ

β β
κ ρ ι α λ

− −− − − −

− −− = − + − =

− + + −

 

3 2
1 2 3 0r r rλ λ λ∴ + + + =                        (39) 

where 

( )
( )( )

( )
( )( )

( )
( ) ( ) ( )

( )
( ) ( )

( )
( )( ) ( ) ( ) ( )

1

2

2

3

1
2

1 1

1
1

1
1 .

r

r k

r

κ π
ρ α ι κ

κ α ρ ι α

κ π κ π
α ρ ι α

κ α ρ ι α κ α ρ ι α

κ π
κ π

ρ ι α

κ π
κ α ρ ι α ακ π

κ α ρ ι α

−
= + + + + + + + 


 − − = + + + +   + + + + + +  


− + − − + +  


 − = + + + − −   + + +  

 (40) 

We can rewrite (40) in terms of 0R , to obtain 

( )( ) ( ) ( )
( ) ( )( ) ( )

1 0

2 0 0 0

2

3 0

2

1

1 .

r R

r R k R R k k

r R

ρ α ι κ α

α α α ρ ι α α α π

α κ α ρ ι α ακ π

= + + + +



 = + + + + + + − −  

= + + + − − 

 (41) 

These eigenvalues are negative when the coefficients �
, �� 

and �! satisfy the Routh – Hurwitz criteria 

i �! > 0 

ii �
 > 0 

iii �!�� − �
 > 0. 

Clearly �
 > 0 , we consider �! , which is positive if 

( ) ( )( ) ( )2

0 1Rα κ α ρ ι α ακ π+ + + < − ; then for 
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( ) ( )( ) ( )
( )( ) ( ) ( )

2

3 2 1 0

0 0 0

0

1

1
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r r r R

R k R R k k

R

α κ α ρ ι α ακ π

α α α ρ ι α α α π

ρ α ι κ α

 − = + + + − − ×  

 + + + + + + − − 

− + + + +

 

Observe that  

( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

2

0

0 0 0

0

1

1

2 .

R

R k R R k k

R

α κ α ρ ι α ακ π

α α α ρ ι α α α π

ρ α ι κ α

 + + + − −  

 × + + + + + + − − 

> + + + +

 

Hence, 3 2 0.r r r− >  Then the three condition satisfied the 

Routh – Hurwitz condition, hence the endemic steady state is 

locally asymptotically stable. 

3. Numerical Results and Discussion 

The numerical simulation is considered in this section with 

the intent of obtaining the effect of control strategies on the 

transmission dynamics of the infection. The state systems of 

equations are solved using fourth order Runge – Kutta scheme. 

We study the control effects of proper sanitation and education 

of the educators; where the proper medication is administered 

on the spread of the infection. The effects of the control 

strategies is obtained by comparing numerically the results of 

the stated work with simulated values taken from [2] and [8] 

with initial condition �(0� � 1000, ��0� � 50, ��0� �

10, ��0� � 5, and the parameter values as given in the Table 1. 

 

Figure 1. Susceptible Pupils without control. 

 
Figure 2. Susceptible Pupils with control. 

 
Figure 3. Exposed Pupils without control. 

 

Figure 4. Exposed Pupils without control. 

 

Figure 5. Infected Pupils without control. 

 
Figure 6. Infected Pupils without control. 



 Applied and Computational Mathematics 2019; 8(2): 29-36 35 

 

 

Figure 7. Recovered Pupils without control. 
 

Figure 8. Recovered Pupils without control. 

Table 1. Parameters and values used in numerical simulation. 

Parameter Description Estimated Values References 

π  effectiveness of personal hygiene outside the school 0.28  Assumed 

β  birth rate of human population in a school 0.000456/day [2] 

ρ  recovery rate of persons who have seen the doctor 0.33 [8] 

κ  rate that the exposed become infected in a school 0.08333  [2] 

θ  rate of immunity after recovery is lost and the individual become susceptible again 0.01  [8] 

α  death rate of human population in a school 0.000456/day [2] 
µ  probability that virus transmitted from infected pupil to susceptible pupil. 0.004  [8] 

ι  recovery rate of persons who have not consulted the doctor 0.005  Assumed 

 

The values of ( )1 0.82=tφ  and ( )2 0.33=tφ  are varied to 

obtain the optimal solution while other parameters remain 

unchanged. To examine if it corresponds with the analytic 

solution, we obtained the eigenvalues and the basic 

reproduction number: 1 0.03254,= −λ  2 0.0002351,= −λ

2 0.00004352= −λ , 0 0.008539=R . These suggest that the 

endemic equilibrium is locally asymptotically stable since all 

the eigenvalues are negative and the basic reproduction 

number is less than one. Figure1 suggest that if proper 

sanitation is not observe in any public school, over time 

almost the entire population shall be infected by red eye 

infection which will have an adverse effect on productivity 

and learning. Figure 2 shows that if the controls are 

succinctly administered fewer pupils will leave the 

susceptible compartment to exposed. Figure 3 and Figure 4 

depict that if the controls are not in the system, more pupils 

will be exposed over time but the reverse is the case when the 

control is advocated and administered. Figure 5 and Figure 6 

shows that when the control is applied that the infected 

compartment is depopulated. Figure 7 and Figure 8 bring out 

the beauty of the work; when the control is administered the 

recovery rate lessens strictly because fewer pupils are being 

infected by the viral infection. 

4. Conclusion 

Conclusively, two controls functional were introduced to 

understand their efficacy in preventing the spread of 

haemorrhagic conjunctivitis disease using mathematical 

formulated model. In order to attain an optimal control 

measure, Maximum Principle was used in addition to the 

analytical and numerical simulation to obtain a feasible 

control strategy in conjunction with the therapeutic treatment. 

The study also showed that with the controls administered 

squarely, that there will be a gross reduction in the number of 

exposed and infected pupils in any public school. Since the 

basic reproduction number is less than unity, it suggests that 

the infection will fizzle out over some time. 
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