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Abstract: The aim of this paper is to describe an alternative way to think about the algebra of complex numbers that may be 

of pedagogical value for introducing related concepts such as linear transformations and convolutions. The method is to define 

a fixed linear transformation of complex numbers represented in vector form so that products can be evaluated elementwise in 

the transformed space. The principal results are concrete demonstrations that this can in fact be accomplished. 
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1. Introduction 

We present an alternative construction of the algebra of 

complex numbers that potentially provides insights not 

offered by conventional expositions of the topic. Specifically, 

we show how complex numbers can be represented as 

vectors with arithmetic operators defined in terms of a 

special convolution-like linear transformation. Although the 

principal goal of the exercise is pedagogical, the approach 

provides potentially interesting generalizations to higher 

dimensions.  

2. A Matrix Construction of the Algebra 

Complex Numbers 

The simplest generalization from the ordinary algebra of 

scalar variables to multiple dimensions is to define a vector 

of scalar elements and apply operators componentwise, e.g., 

addition and multiplication of 2-dimensional vectors would 

be:  

���� ⊕ ���� ≐ ���� + ����	= �� 	 �� 	 ��               (1) 

���� ⊗ ���� ≐ ���� ∘ �
�
��	= ������                  (2) 

where “∘” is the standard elementwise (Hadamard) product 

operator [2, 3]. In a sense this algebra is just a parallel 

application of ordinary scalar addition and multiplication to a 

collection of scalar variables. In other words, the vectors are 

just arbitrary collections of scalars that for all practical 

purposes are treated independently of each other. 

The most familiar algebra over intrinsically 2-dimensional 

objects is that of complex variables, a + bi, where i is the so-

called imaginary unit: i =√
1. Although the addition of two 

complex numbers is analogous to an elementwise operator, 

multiplication definitely is not [1]: 

(a + bi) · (c + di) → (ac − bd) + (ad + bc)i      (3) 

Thus, in the case of addition we could represent complex 

numbers as vectors: 

� 	 ��	 ≡ 	 ����                              (4) 

and apply simple elementwise vector addition to obtain the 

correct vector parameterization of the sum of two complex 

numbers. Of course elementwise multiplication won’t yield 

the correct result under this interpretation, but suppose there 

existed a matrix T that could be applied to transform vectors 

to a space where the product can be applied elementwise and 

then apply the inverse matrix T
−1 

to the result. For example, if 

vectors u and v are defined as 

                                                             

1  Alternatively, one could think of the transformation as decorrelating the 

components to form an orthogonal basis. 
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� = 	 ���� 	and	� = 	 �
�
��                                 (5) 

then the product would be evaluated as 

T
-1	��T�� ∘ �T���	→ ��� 
 ���� 	 ���                        (6) 

Does there exist such a matrix T? Yes, it can be verified 

that the following scaled unitary matrix will do the trick: 

T = �1 
�
1 	� �                                       (7) 

The details of this matrix, or how precisely it does what we 

need, is not really important. What is important is that it can 

be verified to evaluate the product of complex numbers 

represented in the form of simple vectors. Specifically, 

multiplication cannot be performed elementwise because the 

product of complex numbers involves a “mixing” of the the 

parameters/elements. What the matrix T provides is a means 

for transforming vectors to a space in which corresponding 

vector elements can be multiplied independently. The result 

can then be transformed back via T
−1

, and it is this 

transformation process where the mixing and then unmixing 

of the parameters occurs
1
. 

Instead of working with real vectors we could have 

retained the imaginary unit and defined our vectors as 

� = 	 � ���� 	and	� = 	 �
�
���	                           (8) 

for which the necessary transformation can be verified to be 

the real matrix 

�1 
1
1 	1 �                                      (9) 

It might be tempting to wonder if multiplication of the 4-

dimensional generalization of complex numbers, i.e., 

quaternions [4, 5], could be effected in a similar way. The 

answer is no because the elementwise product is 

commutative while quaternion multiplication is not. 

However, an infinitude of commutative convolutional 

algebras can be defined in any number of dimensions simply 

by choosing a particular nonsingular matrix T and defining 

the addition and multiplication operators in the way we’ve 

already considered: 

� ⊕ �	 ≐ 	� 	 �                                (10) 

� ⊗ �	 ≐ T
-1	��T�� ∘ �T���.                   (11) 

Of course the properties of the product will depend on the 

choice of matrix, e.g., instead of the Euclidean norm of the 

product being the product of the norms of the multiplicands – 

which holds in the case of complex numbers – there will be 

different properties determined by the specific choice of T. 

3. Conclusion 

We have considered a representation of complex numbers 

in the form of simple 2-dimensional vectors. What was 

observed is that addition could be performed elementwise 

while multiplication could only be performed elementwise in 

a different 2d space. This motivated the derivation and use of 

a transformation to that space to allow the product to be 

evaluated elementwise before transforming back to the 

original vector space. Although this approach is primarily of 

pedagogical interest, it is hoped that the exercise has 

provided interesting insights that may lead to useful 

generalizations. 

 

References 

[1] Lars Ahlfors, Complex Analysis (3rd ed.), McGraw-Hill, 1979. 

[2] J. Hadamard, “Resolution d’une question relative aux 
determinants,” Bulletin des Sciences Mathematiques Series, 2 
(17), pp. 240-246, 1893. 

[3] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge 
University Press, 1990. 

[4] W. Hamilton, ed., Elements of Quaternions, London (UK), 
1866. 

[5] I. L. Kantor and A. S. Solodvnikov, Hypercomplex Numbers: 
An Elementary Introduction to Algebras, New York: Springer-
Verlag, 1989. 

 


