
 

Applied and Computational Mathematics 
2018; 7(3): 173-179 

http://www.sciencepublishinggroup.com/j/acm 

doi: 10.11648/j.acm.20180703.24 

ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) 

 

General Distance Energies and General Distance Estrada 
Index of Random Graphs 

Nan Gao 

College of Science, Xi'an Shiyou University, Xi'an, China 

Email address: 
  

To cite this article: 
Nan Gao. General Distance Energies and General Distance Estrada Index of Random Graphs. Applied and Computational Mathematics.  

Vol. 7, No. 3, 2018, pp. 173-179. doi: 10.11648/j.acm.20180703.24 

Received: July 2, 2018; Accepted: July 31, 2018; Published: August 13, 2018 

 

Abstract: In 2000s, Gutman and Güngör introduced the concept of distance energy and the distance Estrada index for a simple 

graph G respectively. Moreover, many researchers established a large number of upper and lower bounds for these two invariants. 

But there are only a few graphs attaining the equalities of those bounds. In this paper, however, the exact estimates to general 

distance energy are formulated for almost all graphs by probabilistic and algebraic approaches. The bounds to general distance 

Estrada index are also established for almost all graphs by probabilistic and algebraic approaches. The results of this paper 

generalize the results of the distance energy and distance Estrada of random graph. 
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1. Introduction 

Let G  be a simple connected graph with vertex set 

{ }1 2, ,⋯ nv v v . Denote by ( ) ×= ∈ℝn nA A G  the adjacency 

matrix of G , and 1 2, ,⋯ nλ λ λ  are eigenvalues of ( )A G . The 

distance between vertices iv  and jv of G , denoted by ijd , 

is defined to be the length (i.e., the number of edges) of the 

shortest path from iv  to jv . The distance matrix of G , 

denoted by ( )D G , is the ×n n  matrix whose ( , )i j -entry is 

equal to ( , 1, 2, , )= …ijd i j n , (see [1], [2]). Note that 

0, 1,2, ,= = …iid i n . The eigenvalues of ( )D G  are said to 

be the D -eigenvalues of G . Since ( )D G  is a real 

symmetric matrix, the D -eigenvalues are real and can be 

ordered in non-increasing order, 1 2≥ ≥ ≥⋯ nρ ρ ρ  The 

Harary matrix ( )H G  of G  (see [3]), which can be regarded 

as a generalization of ( )D G  and is initially called reciprocal 

distance matrix, is a ×n n  matrix whose ( , )i j -entry is equal 

to 1

ijd
 if ≠i j  and 0  otherwise. The eigenvalues of the 

Harary matrix ( )H G are denoted by 1 2, , ,… nβ β β  and are 

said to be the H -eigenvalues of G . Since the Harary matrix 

is symmetric, its eigenvalues are real and can be ordered as 

1 2≥ ≥ ≥⋯ nβ β β
. 

For the Hückel molecular orbital approximation, the total 

π-electron energy in conjugated hydrocarbons is given by the 

sum of absolute values of the eigenvalues corresponding to 

the molecular graph G  in which the maximum degree is not 

more than three in general. In 1970s, Gutman [4] extended 

the concept of energy to all simple graphs G , and defined 

the energy of G as 

1

( )

n

i

i

G λ
=

=∑E . 

In theoretical chemistry, the energy of a given molecular 

graph is related to the total π-electron energy [5] of the 

molecule represented by that graph. The graph energy has 

been studied extensively by many mathematicians and 

chemists, and many results have been obtained on this 

invariant of graphs (see [6]).  

The distance energy, ( )D GE , of G  is defined as 

1

( ) | |

n

i

i

D G ρ
=

=∑E                (1) 

The concept of distance energy, Eq. (1), was recently 
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introduced [7]. This definition was motivated by the much 

older [8] and nowadays extensively studied [9, 10, 11, 12] 

graph distance energy. 

In [13], Estrada introduced another graph-spectrum-based 

invariant of graphs, which was later called the Estrada index, 

defined as 

1

( ) i

n

i

EE G eλ

=

=∑ . 

Since then, there were various applications of the Estrada 

index. Initially, it was used to quantify the degree of folding of 

long chain polymeric molecules, especially those of proteins 

[14, 15]. And later, a connection between ( )EE G  and the 

concept of extended atomic branching was established [16], 

which was an attempt to apply ( )EE G  in quantum chemistry. 

In addition, Estrada and Rodríguez-Velázquez showed that 

( )EE G  provides a measure of the centrality of complex 

networks [17, 18]. Recently, a information-theoretical 

application of ( )EE G  was put forward. Carbó-Dorca 

endeavored to find connections between ( )EE G and the 

Shannon entropy [19]. 

The distance Estrada index of a connected graph G  was 

introduced in [20] as 

1

( ) i

n

i

DEE G eρ

=

=∑ . 

Some upper and lower bounds for ( )DEE G  were 

established in [20] and [21]. 

In 2010, Güngör introduced the Harary energy and Harary 

Estrada index of a graph [22]: 

1

( ) | |

=

=∑
n

i

i

H G βE , 

1

( )

=

=∑ i

n

i

HEE G e
β . 

The Erdős-Rényi random graph ( )n pG , named after Erdős 

and Rényi [23], consists of all graphs on n vertices in which 

the edges are chosen independently with probability p , 

where p  is a constant and 0 1p< < . Recently, there have 

been a lot of work on chemical indices of random graphs. In 

[24], Du et al. have considered the energy of Erdős-Rényi 

model ( )n pG . They obtained that almost every graph ( )nG p  

in ( )n pG satisfies 

3
2

8
( ( )) (1 ) (1) . .

3
nG p p p o n a s

π
 = − + 
 

E       (2) 

In [25], Chen et al. have considered the Estrada index of 

Erdős-Rényi model ( )n pG . They obtained that almost every 

graph ( )nG p  in ( )n pG satisfies 

( )( )( ( )) (1) . .np O n
nEE G p e e o a s= +         (3) 

Du et al. also presented exact estimates of Lapacian-energy 

like invariant, incidence energy, and distance energy, and a 

tight bound of signless Laplacian energy for almost all graphs 

(see [26]). They obtained that almost every graph ( )nG p  in 

( )n pG satisfies 

3
2

8
( ( )) (1 ) (1) . .

3
nRD G p p p o n a s

π
 = − + 
 

E     (4) 

In [27], Shang established better lower and upper bounds to 

( )DEE G  for almost all graphs. He obtained that almost 

every graph ( )nG p  in ( )n pG satisfies 

2 3 ( )

2 3 ( )

( 1) 2

( ( ))

( 1) 1 . .

np n O n

n

n O n

e e n e

DEE G p

e n e a s

−

−

 + + − 

≤

 ≤ − + 

        (5) 

Throughout this paper, following the term introduced in 

Bollobás’s book [28]. Almost every (a.e. for short) graph ( )nG p

in ( )n pG  has a certain property Q if the probability that ( )nG p

has Q converges to 1 as n  becomes infinite. Sometimes, 

“almost all” can replace “almost every”. An event in a probability 

space holds asymptotically almost surely (a.s. for short) if its 

probability goes to one as n  tends to infinity. Evidently, almost 

every graph in ( )n pG  has Q  if the probability of random 

graphs satisfying Q  converges almost surely.  

Denote by ( )G∆  the diameter of G . The diameter of a 

random graph ( )nG p  has the following properties. 

Lemma 1 ([1]). Suppose that 
2 2 logp n n− → ∞  and 2 (1 )n p− → ∞  as n → ∞ . Then 

( ) 2 . .nG p a s∆ =  

Since p  is a constant with 0 1p< <  in this paper, it 

follows from Lemma 1 that a.e. graph ( )nG p  has diameter 2. 

The distance matrix of a random graph ( ) ( )n nG p p∈ G is 

denoted as 

( ( ))D D nG p= . 

Recall that the diameter of a graph G is the greatest 

distance between two vertices of G . Let ( ) ( )n np p′ ⊆G G  be 

a subset containing all graphs with diameter 2 and

( ) ( )n nG p p′∈G . Evidently, the entries of ( ( ))D nG p satisfy 

the following [14] 

0, if ;

( ) 1, if  and  are adjacent;  

2, if  and  are nonadjacent.

D

i j

i j

i j

v v

ij v v

v v

 =
= 



 

In order to study the more general form of distance energy 
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of random graphs, we introduce the concept of general 

distance matrix of a random graph ( ( ))nRD G pα , where 

( ) ( )n nG p p′∈G  and 0α ≠  is a real number. The entries of 

( ( ))nRD G pα satisfy the following 

0, if ;

( ) 1, if  and  are adjacent;  

2 , if  and  are nonadjacent,

i j

i j

i j

v v

RD ij v v

v v

α
α

 =
= 



    (6) 

Clearly, 1( ( )) D( ( ))n nRD G p G p= . Similar to the definition 

of the Harary matrix ( )H G  of G , we can give a definition 

of the Harary matrix 1( ( ))nRD G p−  of a random graph 

( ) ( )n nG p p′∈G . 

The goal of this paper is to formulate the exact estimates to 

general distance energy and establish bounds to general 

distance Estrada index for almost all graphs constructed from 

Erdős-Rényi random graph model. 

In Section 2, two exact estimates are formulated to 

( ( ))nRD G pαE  for almost all ( ) ( )∈n nG p pG , where ( )n pG is 

Erdös-Rényi model.  

i If 0>α , then 

3
2

8
( ( )) (2 1) (1 ) (1) . .

3

 = − − + 
 

nRD G p p p o n a sα
α π

E  

ii If 0<α , then 

3
2

8
( ( )) (1 2 ) (1 ) (1) . .

3

 = − − + 
 

nRD G p p p o n a sα
α π

E  

In Section 3, In Section 2, two asymptotically inequation 

are formulated to ( ( ))nRDEE G pα  for almost all 

( ) ( )∈n nG p pG .  

i If 0>α , then 

(2 1) 2 2 (2 1) ( )

2 2 (2 1) ( )

( 1) 2

( ( ))

( 1) 1 . .

− − − −

− − −

 + + −  

≤

 ≤ − +  

np n O n

n

n O n

e e n e

RDEE G p

e n e a s

α α α α

α α α

α  

ii If 0<α , then 

2 2 (1 2 ) ( )

(1 2 ) 2 2 2 (1 2 ) ( )

1

( ( ))

( 1) ( 2) . .

− + −

− − + −

 + −  

≤

 ≤ + + −  

n O n

n

np n n O n

e n e

RDEE G p

e e n e e a s

α α α

α α α α α

α  

2. General Distance Energies of Random 

Graphs 

This section starts by the definition of the adjacency matrix 

of the random graph and an important lemma which will play 

an important role in the proofs of our main results. General 

distance energies ( ( ))nRD G pαE  for random graphs shall be 

estimated.  

Let : ( ( ))n nA A G p=  denote the adjacency matrix of the 

random grap ( ) ( )n nG p p∈G . Apparently, ( ( ))nA G p  is a 

symmetric random matrix in which the diagonal entries are 

zeros while ( )ija i j<  is 1 or 0, with probability p  or1 p−
respectively. Evidently, the matrix (6) can be rewritten as 

( ( )) 2 ( ) (2 1)n n n nRD G p J I Aα α
α = − − − ,      (7) 

where nJ  is n n×  matrix in which all entries equal 1 and 

nI  is the unit n n×  matrix. 

Lemma 2 (Fan Ky’s inequality [29]). Let , ,X Y Z be real 

symmetric matrices of order n  such that X Y Z+ = . Then 

( ) ( ) ( )X Y Z+ ≥E E E . 

Theorem 1. Let ( ) ( )n nG p p∈G  and 0α ≠  be a fix real 

number. Then general distance energies of ( ) ( )n nG p p∈G  

can be given as follows. 

i If 0α > , then 

3
2

8
( ( )) (2 1) (1 ) (1) . .

3
nRD G p p p o n a sα

α π
 = − − + 
 

E     

ii If 0α < , then 

3
2

8
( ( )) (1 2 ) (1 ) (1) . .

3
nRD G p p p o n a sα

α π
 = − − + 
 

E  

Proof: Let ( ) ( )n np p′ ⊆G G  be a subset containing all 

graphs with diameter 2. In view of Lemma 1, it show to show 

our result for the graph ( ) ( )n nG p p′∈G . This problem can be 

explained according to the following proof.ⅰIf 0α > , (7) is 

equivalent to 

( )2

2 1 2 1
n n n

RD
A J I

α
α

α α= − −
− −

.          (8) 

The following results can be obtained from (7), (8) and 

Lemma 2. 

( ) 2 ( ) (2 1) ( )n n nRD J I Aα α
α ≤ − + − −E E E  

and 

2 1
( ) ( ) ( ).

2 1 2 1
n n nA J I RD

α

αα α− ≤ − + −
− −

E E E  

Thus, 

(2 1) ( ) 2 ( ) ( )

(2 1) ( ) 2 ( ).

n n n

n n n

A J I RD

A J I

α α
α

α α

− − − ≤

≤ − − + −

E E E

E E
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It is easy to see that ( ) 2( 1).n nJ I n− = −E  By (2), the 

following result can be obtained. 

3
12

3
12

8
(2 1) (1 ) (1) 2 ( 1) ( )

3

8
(2 1) (1 ) (1) 2 ( 1).

3

p p o n n RD

p p o n n

α α
α

α α

π

π

+

+

 − − + − − ≤ 
 

 ≤ − − + + − 
 

E

 

Consequently, a.e. graph ( )nG p in ( )n pG  satisfies 

3
2

( ( )) ( )

8
(2 1) (1 ) (1) . .

3

nRD G p RD

p p o n a s

α α

α

π

=

 = − − + 
 

E E

      (9) 

iii If 0α < , (7) is equivalent to 

( ( )) 2 ( ) (1 2 )n n n nRD G p J I Aα α
α = − + −      (10) 

and 

( )2

1 2 1 2
n n n

RD
A J I

α
α
α α= − −

− −
.          (11) 

The following two results can be obtained from (9), (10) 

and Lemma 2. 

( ) 2 ( ) (1 2 ) ( )n n nRD J I Aα α
α ≤ − + −E E E  

and 

2 1
( ) ( ) ( ).

1 2 1 2
n n nA J I RD

α

αα α≤ − +
− −

E E E  

Thus, 

(1 2 ) ( ) 2 ( ) ( )

(1 2 ) ( ) 2 ( ),

n n n

n n n

A J I RD

A J I

α α
α

α α

− − − ≤

≤ − + −

E E E

E E
 

i.e. 

3
12

3
12

8
(1 2 ) (1 ) (1) 2 ( 1) ( )

3

8
(1 2 ) (1 ) (1) 2 ( 1).

3

p p o n n RD

p p o n n

α α
α

α α

π

π

+

+

 − − + − − ≤ 
 

 ≤ − − + + − 
 

E

 

Consequently, a.e. graph ( )nG p in ( )n pG  satisfies 

3
2

( ( )) ( )

8
(1 2 ) (1 ) (1) . .

3

nRD G p RD

p p o n a s

α α

α

π

=

 = − − + 
 

E E

 

This completes the proof. 

It is easy to see that 

3
2

1

8
( ( )) (1 ) (1) . .

3

( ( )).

n

n

RD G p p p o n a s

D G p

π
 = − + 
 

=

E

E

 

The results of Theorem 1 generalize the results of Du et al. 

[25] on the distance energy of random graph. 

The concept of Harary matrix ( ( ))nH G p  of random graph 

can be introduced such as the Harary matrix ( )H G  of G . 

The entries of ( ( ))nH G p satisfy the following 

1( ) ( )

0, if ;

1, if  and  are adjacent;  

1 , if  and  are nonadjacent,
2

−=

 =
= 



i j

i j

i j

H ij RD ij

v v

v v

v v

      (12) 

Clearly, 1( ( ))− nRD G pE  is Harary energy  

( ( ))nH G pE  for random graphs in ( )n pG .  

By Theorem 1, the estimator of Harary energy of a random 

graph is obtained for the first time. 

Corollary 1. Let ( ) ( )n nG p p∈G . Then 

3
2

1 8
( ( )) (1 ) (1) . .

2 3
nH G p p p o n a s

π
 = − + 
 

E  

3. General Distance Estrada Index of 

Random Graphs 

In this section, general distance Estrada indices 

( ( ))nRDEE G pα for random graphs shall be estimated. 

Lemma 3 present the explicit information about the 

eigenvalues of ( )nA G . 

Lemma 3 (Chen [25] ). Let nA  is the adjacency matrix 

( ( ))nA G p  of the random graph ( ) ( )n nG p p∈G . Then, the 

eigenvalues of ( )nA G  satisfies 

1( ) ( ) . .nA np O n a sλ = +  

and for 2, , ,…i n=  

( ) ( ) . .i nA O n a sλ =  

The result of Lemma 4 will play an important role in the 

proofs of our main results.  

Lemma 4 (Weyl’s inequality [30]). Let ,X Y and Z  be all

n n×  real symmetric matrices such that X Y Z= + Suppose 

that , ,X Y Z  have eigenvalues, respectively, 

1 2( ) ( ) ( ),⋯ nX X Xλ λ λ≥ ≥ ≥ 1( ) ( ),⋯ nY Yλ λ≥ ≥  

1( ) ( ).⋯ nZ Zλ λ≥ ≥  Then for 1,2, ,…i n=  the following 

inequalities hold: 

1( ) ( ) ( ) ( ) ( )i n i iY Z X Y Zλ λ λ λ λ+ ≤ ≤ +  

Theorem 2. Let ( ) ( )n nG p p∈G  and 0α ≠  be a fix real 

number. Then general distance Estrada indices of 
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( ) ( )n nG p p∈G  can be given as follows. 

i If 0α > , then 

(2 1) 2 2 (2 1) ( )

2 2 (2 1) ( )

( 1) 2

( ( ))

( 1) 1 . .

np n O n

n

n O n

e e n e

RDEE G p

e n e a s

α α α α

α α α

α

− − − −

− − −

 + + −  

≤

 ≤ − +  

 

ii If 0α < , then 

2 2 (1 2 ) ( )

(1 2 ) 2 2 2 (1 2 ) ( )

1

( ( ))

( 1) ( 2) . .

n O n

n

np n n O n

e n e

RDEE G p

e e n e e a s

α α α

α α α α α

α

− + −

− − + −

 + −  

≤

 ≤ + + −  

 

Proof: The general distance Estrada index ( ( ))nRDEE G pα  

can be evaluated once the eigenvalues of nRD are known. 

i If 0α > , applying lemma 4 to (7) 

1

2 ( ) (2 1) ( )

( )

2 ( ) (2 1) ( )

i n n n n

i

i n n n

J I A

RD

J I A

α α

α
α α

λ λ
λ

λ λ

− + − −
≤

≤ − + − −

 

can be obtained. 

That is 

12 ( ) (2 1) ( )

( )

2 ( ) (2 1) ( ).

i n n n

i

i n n n n

J I A

RD

J I A

α α

α
α α

λ λ
λ

λ λ

− − −
≤

≤ − − − −

 

1

2 ( 1) (2 1)( ( ))

( )

2 ( 1) (2 1) ( )

n np O n

RD

n O n

α α

α
α α

λ
− − − +

≤

≤ − − −

          (13) 

and 

2 (2 1)( ( ))

( )

2 (2 1) ( )

n

np O n

RD

O n

α α

α
α α

λ
− − − +
≤

≤ − − −

            (14) 

can be deduced form Lemma 3 and 1( ) 1,n nJ I nλ − = −  

( ) 1 for 2, , .…i n nJ I i nλ − = − =  

Owing to Lemma 4 again,  

1

1 1

2 ( ) (2 1) ( )

( )

2 ( ) (2 1) ( )

n n n n i n

i

n n n i n

J I A

RD

J I A

α α

α
α α

λ λ
λ

λ λ

+ −

+ −

− − −
≤

≤ − − −

 

is very easy to get. 

Consequently, 

2 (2 1) ( )

( )

2 ( 1) (2 1) ( )

i

O n

RD

n O n

α α

α
α α

λ
− − −
≤

≤ − − −

         (15) 

for 2, , 1.…i n= −  

Combining (13), (14) and (15) the conclusion can be proved. 

That is 

( )

1

2 ( 1) (2 1)( ( ))

2 (2 1) ( )

2 (2 1)( ( ))

(2 1) 2 2 (2 1) ( )

( ( ))

( 2)

( 1) 2 . .

i

n
RD

n

i

n np O n

O n

np O n

np n O n

RDEE G p e

e

n e

e

e e n e a s

α

α α

α α

α α

α α α α

λ
α

=

− − − +

− − −

− − − +

− − − −

=

≥ +

− +

 = + + −  

∑

 

and 

( )

1

2 ( 1) (2 1) ( ) 2 ( 1) (2 1) ( )

2 (2 1) ( )

( ( ))

( 2)

i

n
RD

n

i

n O n n O n

O n

RDEE G p e

e n e

e

α

α α α α

α α

λ
α

=

− − − − − −

− − −

=

≤ + − +

∑
 

2 2 (2 1) ( )( 1) 1 . .n O ne n e a s
α α α− − − = − +  

 

ii If 0α < , applying lemma 4 to (7)  

1

2 ( ) (1 2 ) ( )

( )

2 ( ) (1 2 ) ( )

i n n n n

i

i n n n

J I A

RD

J I A

α α

α
α α

λ λ
λ

λ λ

− + −
≤

≤ − + −

 

can be obtained. 

Then, 

1

2 ( 1) (1 2 ) ( )

( )

2 ( 1) (1 2 )( ( ))

n O n

RD

n np O n

α α

α
α α

λ
− + −

≤

≤ − + − +

      (16) 

and 

2 (1 2 ) ( )

( )

2 (1 2 )( ( ))

n

O n

RD

np O n

α α

α
α α

λ
− + −
≤

≤ − + − +

         (17) 

Owing to Lemma 4 again,  

1

1 1

2 ( ) (1 2 ) ( )

( )

2 ( ) (1 2 ) ( )

n n n n i n

i

n n n i n

J I A

RD

J I A

α α

α
α α

λ λ
λ

λ λ

+ −

+ −

− + −
≤

≤ − + −
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is very easy to get. 

Consequently, 

2 (1 2 ) ( )

( )

2 ( 1) (1 2 ) ( )

i

O n

RD

n O n

α α

α
α α

λ
− + −
≤

≤ − + −

         (18) 

for 2, , 1.…i n= −  

Combining (16), (17) and (18) the conclusion can be proved. 

That is 

( )

1

2 ( 1) (1 2 ) ( )

2 (1 2 ) ( ) 2 (1 2 ) ( )

2 2 (1 2 ) ( )

( ( ))

( 2)

1 . .

i

n
RD

n

i

n O n

O n O n

n O n

RDEE G p e

e

n e e

e n e a s

α

α α

α α α α

α α α

λ
α

=

− + −

− + − − + −

− + −

=

≥ +

− +

 = + −  

∑

 

and 

( )

1

2 ( 1) (1 2 )( ( )) 2 ( 1) (1 2 ) ( )

2 (1 2 )( ( ))

(1 2 ) 2 2 2 (1 2 ) ( )

( ( ))

( 2)

( 1) ( 2) . .

i

n
RD

n

i

n np O n n O n

np O n

np n n O n

RDEE G p e

e n e

e

e e n e e a s

α

α α α α

α α

α α α α α

λ
α

=

− + − + − + −

− + − +

− − + −

=

≤ + − +

 = + + −  

∑

 

This completes the proof. 

It is easy to see that  

2 3 ( )

1

2 3 ( )

( 1) 2

( ( )) ( ( ))

( 1) 1 . .

np n O n

n n

n O n

e e n e

RDEE G p DEE G p

e n e a s

−

−

 + + − 

≤ =

 ≤ − + 

 

The results of Theorem 2 generalize the results of Shang [27] 

on the distance Estrada index of random graph. 

Clearly, 1( ( ))− nRDEE G p  is Harary Estrada index  

( ( ))nHEE G p  for random graphs in ( )n pG . By Theorem 2, 

the asymptotically inequation of Harary Estrada index of a 

random graph is obtained for the first time. 

Corollary 2. Let ( ) ( )∈n nG p pG . Then 

1 1 1
2 2 2

1 12
2 2 2 2

( )

( )

1

( ( ))

( 1) ( 2) . .
n

np n

O n

n

O n

e n e

HEE G p

e e n e e a s

− +

− +

 + −
 

≤

 ≤ + + − 
 

 

4. Conclusion 

In 1970s, Gutman introduced the concept of energy ( )GE

for a simple graph G , which is defined as the sum of the 

absolute values of the eigenvalues of G  and can be used to 

estimate the total π − electron energy in conjugated 

hydrocarbons. The concept attracted lots of attention and 

furthermore, some other similar notions were also considered 

such as Laplacian energy ( )L GE , signless Laplacian energy, 

( )L G+
E , incidence energy ( )I GE , and distance energy 

( )D GE . Moreover, many researchers established a large 

number of upper and lower bounds for those invariants. But 

there are only a few graphs attaining the equalities of those 

bounds. In the present paper, however, we present exact 

estimates of general distance energy for almost all graphs by 

probabilistic and algebraic approaches. 

In spite of the fact that the Estrada index of G , ( )EE G  

has numerous practical applications, investigations of its 

basic properties started only short time ago. The concept 

attracted lots of attention and furthermore, some other similar 

notions were also considered such as Laplacian  

Estrada index ( )LEE G , signless Laplacian Estrada index

( )LEE G+  incidence Estrada index ( )IEE G , and distance 

Estrada index ( )DEE G . It is rather hard, as well-known, to 

compute the eigenvalues for a large matrix even for ( )A G . 

So, in order to estimate these invariants, researchers 

established some lower and upper bounds by algebraic 

approaches in the last few years. However, there are, as 

examples given below, only a few classes of graphs attaining 

the equalities of those bounds. Consequently, one can hardly 

see the major behavior of these invariants for most graphs. In 

this paper, however, we establish bounds to general distance 

Estrada index for almost all graphs by probabilistic and 

algebraic approaches. 
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