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Abstract: Syllogistic reasoning is important due to the prominence of syllogistic arguments in human reasoning, and also to 

the role they have played in theory of reasoning from Aristotle onwards. Aristotelian syllogistic logic is a formal study of the 

meaning of four Aristotelian quantifiers and of their properties. This paper focuses on logical system based on syllogistic 

reasoning. It firstly formalized the 24 valid Aristotle’s syllogisms, and then has proven that the other 22 valid Aristotle’s 

syllogisms can be derived from the syllogisms ‘Barbara’ AAA-1 and ‘Celarent’ EAE-1 by means of generalized quantifier 

theory and set theory, so the paper has completed the axiomatization of Aristotelian syllogistic Logic. This axiomatization 

needs to make full use of symmetry and transformable relations between/among the monotonicity of the four Aristotelian 

quantifiers from the perspective of generalized quantifier theory. In fact, these innovative achievements and the method in this 

paper provide a simple and reasonable mathematical model for studying other generalized syllogisms. It is hoped that the 

present study will make contributions to the development of generalized quantifier theory, and to bringing about consequences 

to natural language information processing as well as knowledge representation and reasoning in computer science. 
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1. Introduction 

Most reasoning theorists agree that the appropriate theory 

of inference should be provided by formal logic. The logic 

can provide a computational level or competence theory of 

reasoning, in other words, the theory of what inferences 

people should draw ([1], p. 192). Syllogistic reasoning is the 

most intensively researched and theoretically important task 

in the study of logical reasoning [2-5]. It is important due to 

the prominence of syllogistic arguments in human reasoning, 

and also to the role they have played in theory of reasoning 

from Aristotle onwards. The completeness of various 

formulation of syllogistic logic has already been shown, for 

example by in Łukasiewicz [6], by in Martin [7] and Moss [8]. 

Syllogistic logic has already been studied from the perspective 

of generalized quantifier theory [9-12]. Although there are 

many other articles about Aristotelian syllogisms [13]-[18], 

we are not aware of axiomatization of Aristotelian syllogisms 

by means of generalized quantifier theory, and so this is a goal 

of the paper. 

This paper focuses on logical system based on syllogistic 

reasoning. A syllogism is a particular instantiation of a 

syllogistic scheme. One can interpret a syllogism such as the 

following example: 

All students in class 3 are running on the playground. 

Some students in red clothes are students in class 3. 

Some students in red clothes are running on the playground. 

The syllogism means that the sentences above the line 

semantically entail the one below the line. In other words, in 

every context or model in which All students in class 3 are 

running on the playground and Some students in red clothes 

are students in class 3 are true, it must be the case that Some 

students in red clothes are running on the playground is also 

true. 

A syllogism has two premises, one conclusion. It has the 

form Q1 (P, M) ∧ Q2 (M, S) ⇒ Q3 (S, P), where S is the set of 

things that the subject term denotes, P is the set of things that 

the predicate term expresses, and M is the set of things that the 

middle term signifies, each of Q1, Q2, Q3 in a Aristotelian 



168 Xiaojun Zhang:  Axiomatization of Aristotelian Syllogistic Logic Based on Generalized Quantifier Theory  

 

syllogism is one of the four Aristotelian quantifiers all, some, 

no, not all. The above example can be denoted by all (M, P) ∧ 

some (S, M) ⇒ some (S, P). The other cases are similar. 

Aristotelian syllogistic logic is a formal study of the 

meaning of the four Aristotelian quantifiers and of their 

properties. For example, the validity of the syllogism not all (S, 

M) ∧ all (P, M) ⇒ not all (S, P) show that the quantifier not all 

is monotone decreasing in the second argument. Aristotle 

derived all valid syllogisms from the two syllogisms ‘Barbara’ 

(i.e. all (M, P) ∧ all (S, M) ⇒ all (S, P) ) and ‘Celarent’ (i.e. no 

(M, P) ∧ no (S, M) ⇒ all (S, P)) ([19], p. 228]). In other words, 

Aristotelian syllogistic logic can be axiomatized on the basis 

of ‘Barbara’ and ‘Celarent’. How can one do that? The writer 

of this paper applies generalized quantifier theory to formalize 

Aristotelian syllogisms, and then to axiomatize the logic. To 

full appreciate the paper below, one will need basic 

familiarity with the language of first-order logic, with 

generalized quantifier theory, and with elementary set 

theoretic terminology. 

2. Preliminaries 

If Q is a generalized quantifiers, there are three important 

forms of its negation that appear in natural and logical 

languages, that is, outer negation ¬Q, inner negation Q¬, and 

dual negation Q
d
. There are two important generalized 

quantifiers in English, i.e., type 〈1〉 and type 〈1, 1〉. These two 

kinds of quantifiers are ubiquitous in the natural languages. 

The four Aristotelian quantifiers all, some, no, not all are just 

four instances of type 〈1, 1〉 generalized quantifiers. It is 

important to recognize that the latter are more basic than the 

former in the natural languages ([20], p. 12). The type 〈1〉 

quantifiers are properties of sets of things. The type 〈1, 1〉 

quantifiers are binary relations between sets of things or stuff. 

For instance, a quantified sentence ‘All cars of our brothers 

are running quickly’ states that all (S, P) holds, where S is the 

set of cars of our brothers, P is the set of things that are 

running quickly, and all is a relation between sets. The type 〈1, 

1〉 quantifier all is a particularly simple relation to describe: it 

is just the subset relation ⊆, i.e., S⊆P. In other words, all 

signifies the inclusion relation. 

By the same token, each of the other Aristotelian quantifiers 

stands for a particular binary relation between properties, i.e., 

a binary relation between of individuals. When S, P are 

arbitrary sets, these relations can be given in standard 

set-theoretic notations as the following: 

Definition 1: 

(1) all (S, P) ⇔ S⊆P; (2) no (S, P) ⇔ S∩P = ∅； 

(3) some (S, P) ⇔ S∩P ≠ ∅; (4) not all (S, P) ⇔ S−P≠∅. 

Definition 2: three forms of negation for type 〈1, 1〉 

quantifiers 

Let E be a given universe, and S, P⊆E, for a type 〈1, 1〉 

quantifier Q, 

(1) (¬Q)E (S, P) ⇔ not QE (S, P)； 

(2) (Q¬)E (S, P) ⇔ QE (S, E−P)； 

(3) (Q
d
)E (S, P) ⇔ ¬ (Q¬)E (S, P) ⇔ (¬Q)E¬ (S, P). 

For example, ¬all = not all, ¬some = no, all¬ = no, some¬ 

= not all, all
d
 = some, no

d
 = not all. The modern square of 

opposition (in which all is used without existential import) is 

composed of the four quantifiers Q, ¬Q, Q¬, and Q
d
. For 

example, the Aristotelian square of opposition is composed of 

the four Aristotelian quantifiers, all, not all, no and some as in 

figure 1 below. The modern square of opposition is closed 

under these forms of negation, namely, applying any number 

of these operations to a quantifiers in the square will not lead 

outside it ([20], p. 12), for example, ¬¬ (some
d
)¬ = (some

d
)¬ 

= all¬ = no. 

Definition 3: monotonicity for type 〈1, 1〉 quantifiers 

Let E be a given universe, and S, S′, P, P′⊆E, for a type 〈1, 

1〉 quantifier Q, 

(1) QE is right monotone increasing (denoted by Mon↑ or 

Q↑) iff the following holds: 

if P⊆P′⊆E, then QE (S, P) ⇒ QE (S, P′). 
(2) QE is right monotone decreasing (denoted by Mon↓ or 

Q↓) iff the following holds: 

if P⊆P′⊆E, then QE (S, P′) ⇒ QE (S, P). 

(3) QE is left monotone increasing (denoted by ↑Mon or↑Q) 

iff the following holds: 

if S⊆S′⊆E, then QE (S, P) ⇒ QE (S′, P). 

(4) QE is left monotone decreasing (denoted by ↓Mon or ↓Q) 

iff the following holds: 

if S⊆S′⊆E, then QE (S′, P) ⇒ QE (S, P). 

These local notions can be immediately extended to the 

global case: Q is right (or left) increasing (or decreasing) if 

each QE is. 

For example, 

(1) All cars of our brothers are running quickly. ⇒ All cars 

of our brothers are running. 

Then one can say that all is right monotone increasing, 

denoted by all↑. 

(2) No cars of our brothers are running. ⇒ No cars of our 

brothers are running quickly. 

Then one can say that no is right monotone decreasing, 

denoted by no↓. 

(3) Some black cars of our brothers are running. ⇒ Some 

cars of our brothers are running. 

Then one can say that some is left monotone increasing, 

denoted by ↑some. 

(4) All cars of our brothers are running. ⇒ All black cars of 

our brothers are running. 

Then one can say that all is left monotone decreasing, 

denoted by ↓all. 

The (right or left) monotonicity behavior of a type 〈1, 1〉 

quantifier completely determines the monotonicity behavior 

of the other negation quantifiers in its square of opposition, 

that is, as the following Fact 1 ([20], pp. 170-171). 

Fact 1: Let Q be any type 〈1, 1〉 quantifier: 

(1) Q is Mon↑ iff ¬Q is Mon↓; 

(2) Q is Mon↑ iff Q¬ is Mon↓; 

(3) Q is Mon↑ iff Q
d 
is Mon↑;  

(4) Q is Mon↓ iff ¬Q is Mon↑; 

(5) Q is Mon↓ iff Q¬ is Mon↑; 

(6) Q is Mon↓ iff Q
d 
is Mon↓; 

(7) Q is ↑Mon iff ¬Q is Mon↓;  
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(8) Q is ↑Mon iff Q¬ is ↑Mon; 

(9) Q is ↑Mon iff Q
d 
is ↓Mon;  

(10) Q is ↓Mon iff ¬Q is ↑Mon; 

(11) Q is ↓Mon iff Q¬ is ↓Mon;  

(12) Q is ↓Mon iff Q
d 
is ↑Mon. 

Proof For (1), let E be a given universe, let S, P, and P′ be 

any subsets of E. If a type 〈1, 1〉 quantifier Q is Mon↑, this 

means that Q is right monotone increasing, then for all 

P⊆P′⊆E, QE (S, P) ⇒ QE (S, P′) according to the clause (1) of 

Definition 3, thus for all P⊆P′⊆E, ¬QE (S, P′) ⇒ ¬QE (S, P), 

therefore ¬Q is right monotone decreasing by the clause (2) of 

Definition 3. That is, ¬Q is Mon↓, as desired. 

The proof of the other direction is similar. If ¬Q is Mon↓, 

this means that ¬Q is right monotone decreasing, then for all 

P⊆P′⊆E, ¬QE (S, P′) ⇒ ¬QE (S, P) according to the clause (2) 

of Definition 3, then for all P⊆P′⊆E, QE (S, P) ⇒ QE (S, P′), 
hence Q is right monotone increasing by the clause (1) of 

Definition 3. That is, Q is Mon↑, just as desired. 

The proofs of the other cases are similarly to this. 
As a result of the four Aristotelian quantifiers have been 

found to be just four instances of generalized quantifiers, 

therefore, the conclusion of Fact 1 is also suitable for the four 

quantifiers. The monotonicity of the four Aristotelian 

quantifies and their interrelations are as in Figure 1. 

 

Figure 1. Monotonicity of the four Aristotelian quantifies and their 

interrelations. 

Definition 4: symmetry for type 〈1, 1〉 quantifiers 

Let Q be a type 〈1, 1〉 quantifier, Q is symmetric if and only 

if for all universes E, and S, P⊆E, QE (S, P) ⇔ QE (P, S). 

For example, Some doctors are women. ⇒ Some women are 

doctors.  

Some women are doctors. ⇒ Some doctors are women.  

Therefore some is symmetric according to Definition 4. 

3. Formalization of Aristotelian 

Syllogisms 

In order to keep the symbolic language concise, the 

proposition ‘All S are P’ is denoted by all (S, P) and called by 

A proposition, ‘No S are P’ is denoted by no (S, P) and called 

by E proposition, ‘Some S are P’ is denoted by some (S, P) and 

called by I proposition, and ‘Not all S are P’ is denoted by no 

(S, P) and called by O proposition. 

According to the possible configurations of variables, 

Aristotelian syllogisms can be grouped into four different 

‘figures’(as shown in Table 1): 

Table 1. Four different ‘figures’ of Aristotelian syllogisms. 

(1) first figure (2) second figure (3) third figuree (4) fourth figure 

Q1 (M, P) Q1 (P, M) Q1 (M, P) Q1 (P, M) 

Q2 (S, M) Q2 (S, M) Q2 (M, S) Q2 (M, S) 

Q3 (S, P) Q3 (S, P) Q3 (S, P) Q3 (S, P) 

Here Q can be chosen among the quantifiers all, some, no, 

not all, so there are 4×4×4×4 = 256 syllogisms. A syllogism is 

valid if each instantiation of S, M and P verifying the premises 

also verifies the conclusion. For what choices of quantifiers 

are the above figures valid? For example, in the second figure, 

if we let Q1=all and Q2=Q2=no, then the syllogism all (P, M) ∧ 

no (S, M) ⇒ no (S, P) is valid. The syllogism can be denoted 

as AEE-2. Similarly, the syllogism ‘Barbara’ all (M, P) ∧ all 

(S, M) ⇒ all (S, P) can be denoted as AAA-1. 

Let E be any given universe. Now the 24 valid Aristotelian 

syllogisms can be formalized as follows ([21]): 

(01) AAA-1: allE (M, P) ∧ allE (S, M) ⇒ allE (S, P) 

(02) AAI-1: allE (M, P) ∧ allE (S, M) ⇒ someE (S, P) 

(03) AII-1：allE (M, P) ∧ someE (S, M) ⇒ someE (S, P) 

(04) EIO-1：noE (M, P) ∧ someE (S, M) ⇒ not allE (S, P) 

(05) EAE-1：noE (M, P) ∧ allE (S, M) ⇒ noE (S, P) 

(06) EAO-1：noE (M, P) ∧ allE (S, M) ⇒ not allE (S, P) 

(07)AEE-2：allE (P, M) ∧ noE (S, M) ⇒ noE (S, P) 

(08) AEO-2：allE (P, M) ∧ noE (S, M) ⇒ not allE (S, P) 

(09) EAE-2：noE (P, M) ∧ allE (S, M) ⇒ noE (S, P) 

(10) EAO-2：noE (P, M) ∧ allE (S, M) ⇒ not allE (S, P) 

(11) EIO-2：noE (P, M) ∧ someE (S, M) ⇒ not allE (S, P) 

(12) AOO-2：allE (P, M) ∧ not allE (S, M) ⇒ not allE (S, P) 

(13) EIO-3：noE (M, P) ∧ someE (M, S)⇒ not allE (S, P) 

(14) OAO-3：not allE (M, P) ∧ allE (M, S)⇒ not allE (S, P) 

(15) IAI-3：someE (M, P) ∧ allE (M, S) ⇒ someE (S, P) 

(16) AII-3：allE (M, P) ∧ someE (M, S) ⇒ someE (S, P) 

(17) AAI-3：allE (M, P) ∧ allE (M, S) ⇒ someE (S, P) 

(18) EAO-3：noE (M, P) ∧ allE (M, S) ⇒ not allE (S, P) 

(19) IAI-4：someE (P, M) ∧ allE (M, S) ⇒ someE (S, P) 

(20) EIO-4： noE (P, M) ∧ someE (M, S) ⇒ not allE (S, P) 

(21) AAI-4：allE (P, M) ∧ allE (M, S) ⇒ someE (S, P) 

(22) AEE-4：allE (P, M) ∧ noE (M, S) ⇒ noE (S, P) 

(23) AEO-4：allE (P, M) ∧ noE (M, S) ⇒ not allE (S, P) 

(24) EAO-4：noE (P, M) ∧ allE (M, S) ⇒ not allE (S, P) 

In Aristotelian syllogisms, it must be emphasized that the 

quantifier all in A proposition is used with existential import. 

So all (S, P) in effect means that all Ss are P and there are 

some Ss. Therefore the quantifier all in (02), (06), (08), (10) 

and (23) above is used with existential import, otherwise the 

corresponding syllogisms are invalid.  

4. Axiomalization of Aristotelian 

Syllogistic Logic 

The 24 above valid Aristotelian syllogisms can be derived 

from the two syllogisms ‘Barbara’ and ‘Celarent’ ([9], p. 228). 



170 Xiaojun Zhang:  Axiomatization of Aristotelian Syllogistic Logic Based on Generalized Quantifier Theory  

 

Is that true? How to prove? If it is true and the conclusion is 

proved, then one can say that she has completed the 

axiomatization of Aristotelian syllogistic logic. We are not 

aware of proof this conclusion by means of generalized 

quantifier theory, and so this is a goal of the paper. 

The validities of the two syllogisms ‘Barbara’ and ‘Celarent’ 

are proved by means of generalized quantifier theory. 

Proof: (1) The syllogism ‘Barbara’’form is allE (M, P) ∧ 

allE (S, M) ⇒ allE (S, P). Suppose that allE (M, P) and allE (S, 

M) hold, then allE (M, P) ⇔ M⊆P⊆E and allE (S, M) ⇔ 

S⊆M⊆E according to the clause (1) of Definition 1. Since 

M⊆P⊆E and S⊆M⊆E, and hence S⊆P⊆E. So it follows that 

S⊆P⊆E ⇔ allE (S, P) according to the clause (1) of Definition 

1 again. This proves the claim that allE (M, P) ∧ allE (S, M) ⇒ 

allE (S, P), as desired. 

(2) The validity of the syllogism ‘Celarent’ can be similarly 

proved. The syllogism ‘Celarent’’s form is no (M, P) ∧ no (S, 

M) ⇒ all (S, P). If noE (M, P) and allE (S, M) hold, then noE 

(M, P) ⇔ M∩P=∅ and allE (S, M) ⇔ S⊆M⊆E by the clause 

(2) and (1) of Definition 1 respectively. So it follows that 

M∩P=∅ and S⊆M⊆E, then S∩P=∅. Hence S∩P=∅ ⇔ noE (S, 

P) according to the clause (2) of Definition 1. So noE (M, P) ∧ 

allE (S, M) ⇒ noE (S, P), just as desired. 

Now the paper tries to axiomatize Aristotlian syllogistic 

logic by means of the above Definition 1-4 and Fact 1. 

4.1. The Valid Syllogisms Can Be Derived from the 

Syllogism ‘Barbara’ AAA-1 

That the syllogism ‘Barbara’ AAA-1 is valid means that allE 

(M, P) ∧ allE (S, M) ⇒ allE (S, P). It follows that allE (M, P) ⇔ 

M⊆P⊆E according to the clause (1) of Definition 1. Hence 

that allE (M, P) ∧ allE (S, M) ⇒ allE (S, P) is equivalent to that 

if M⊆P⊆E, then allE (S, M) ⇒ allE (S, P), and therefore all is 

right monotone increasing by the clause (1) of Definition 3. 

That is to say that the syllogism AAA-1 is valid if and only if 

that all is right monotone increasing. Then the following 15 

Aristotlian syllogisms can be derived from the validity of the 

syllogism ‘Barbara’ AAA-1. 

(1) It is easy to observe that all = ¬not all by the clause (1) 

of Definition 2. So one has the following: all is right 

monotone increasing, iff, not all is right monotone decreasing 

according to the clause (1) of Fact 1, iff, if P⊆M⊆E, then not 

allE (S, M) ⇒ not allE (S, P) by the clause (2) of Definition 3, 

iff, allE (P, M) ∧ not allE (S, M) ⇒ not allE (S, P) by the clause 

(1) of Definition 1. Therefore the syllogism AOO-2 is valid, 

just as desired. 

(2) One can similarly prove that the syllogism AOO-2 is 

valid. One has that all = no¬ by Definition 2. Then one has the 

following: all is right monotone increasing, iff, no is right 

monotone decreasing by virtue of the clause (2) of Fact 1, iff, 

if P⊆M⊆E, thus noE (S, M) ⇒ noE (S, P) by the clause (2) of 

Definition 3, iff, allE (P, M) ∧ noE (S, M) ⇒ noE (S, P) by the 

clause (1) of Definition 1. Hence the syllogism AEE-2 is valid. 

(3) It is easy to observe that noE (S, P) ⇒ not allE (S, P) 

since the O proposition is subalternate to the E proposition. 

And (2) has proven that allE (P, M) ∧ noE (S, M) ⇒ noE (S, P). 

Therefore allE (P, M) ∧ noE (S, M) ⇒ not allE (S, P). That is to 

say that the syllogism AEO-2 is valid. 

(4) One can easily check that no(S, M) ⇔ no(M, S), i.e., no 

is symmetric by Definition 4. If one substitutes noE (M, S) for 

noE (S, M) in ‘allE (P, M) ∧ noE (S, M) ⇒ noE (S, P)’ proved in 

(2), it follows that allE (P, M) ∧ noE (M, S) ⇒ noE (S, P). 

Therefore the syllogism AEE-4 is valid. 

(5) The proof of validity of AEO-4 is similar to that of 

AEO-2 in (3). It is easy to observe that noE (S, P) ⇒ not allE (S, 

P). And the paper has proven that allE (P, M) ∧ noE (M, S) ⇒ 

noE (S, P) in (4). Hence allE (P, M) ∧ noE (M, S) ⇒ not allE (S, 

P). In other words, the syllogism AEO-4 is valid. 

(6) The proof of validity of AII-1 is similar to that of AOO-2 

in (1). It is easy to show that all = some
d
 all by the clause (3) of 

Definition 2. Hence it can be proved the following: all is right 

monotone increasing, iff, some is right monotone increasing 

according to the clause (3) of Fact 1, iff, if M⊆P⊆E, then 

someE (S, M) ⇒ someE (S, P) by the clause (1) of Definition 3, 

iff, allE (M, P) ∧ someE (S, M) ⇒ someE (S, P) by the clause (1) 

of Definition 1. That is to say that the syllogism AII-1 is valid, 

as desired. 

(7) It is known to that (¬r ∧ p → ¬q) can be derived from (p 

∧ q → r) in which p, q and r are proposition variables. It 

follows that ¬someE (S, P) ∧ someE (S, M) ⇒ ¬allE (M, 

P))can be derived from ‘allE (M, P) ∧ someE (S, M) ⇒ someE 

(S, P)’ proved in (6). Then since M, S, and P are any variables, 

this is semantically equivalent to that ¬someE (M, P) ∧ 

someE(M, S) ⇒ ¬allE(S, P) by changing variables. It is clear 

that ¬some = no and ¬all = not all, hence noE(M, P) ∧ 

someE(M, S) ⇒ not allE(S, P). This means that the syllogism 

EIO-3 is valid. 

(8) The proof of validity of EIO-4 is similar to that of 

AEE-4 in (4). It is intuitively clear that noE(M, P) ⇔ noE(P, M), 

that is, no is symmetric by Definition 4. Now if one substitutes 

noE(P, M) for noE(M, P) in ‘noE(M, P) ∧ someE(M, S) ⇒ not 

allE(S, P)’ proved in (7), it follows that noE(P, M) ∧ someE(M, 

S) ⇒ not allE(S, P). So the syllogism EIO-4 is valid, as 

desired. 

(9) The proof of validity of EIO-1 is similar to that of EIO-4 

in (8). It is easily to check that someE(M, S) ⇔ someE(S, M), 

i.e., some is symmetric. Now if one substitutes someE(S, M) 

for someE(M, S) in ‘noE(M, P) ∧ someE(M, S) ⇒ not allE(S, P)’ 

proved in (7), it follows that noE(M, P) ∧ someE(S, M) ⇒ not 

allE(S, P). Hence the syllogism EIO-1 is valid, as desired. 

(10) One can observe that no is symmetric since it satisfies 

the scheme noE(M, P) ⇔ noE(P, M) as above. If one replaces 

noE(M, P) by noE(P, M) in ‘noE(M, P) ∧ someE(S, M) ⇒ not 

allE(S, P)’ proved in (9), it follows that noE(P, M) ∧ someE(S, 

M) ⇒ not allE(S, P). In other words, the syllogism EIO-2 is 

valid. 

(11) The proof of validity of AAI-4 is similar to that of 

EIO-3 in (7). It is can be showed that ¬not allE(S, P) ∧ allE(P, 

M) ⇒ ¬noE(M, S) can be derived from allE(P, M) ∧ noE(M, S) 

⇒ not allE(S, P). Therefore allE(S, P)) ∧ allE(P, M) ⇒ 

someE(M, S) since ¬not all = all and ¬no = some. It is 

intuitively clear that allE(P, M) ∧ allE(M, S) ⇒ someE(S, P). 

Hence the syllogism AAI-4 is valid, as desired. 

(12) The proof of validity of AAI-1 is similar to that of 



 Applied and Computational Mathematics 2018; 7(3): 167-172 171 

 

AEO-2 in (3). It is intuitively clear that allE(S, P) ⇒ someE(S, 

P) since the I proposition is subalternate to the A proposition. 

Then the validity of allE(M, P) ∧ allE(S, M) ⇒ someE(S, P) can 

be derived from that of AAA-1 allE(M, P) ∧ allE(S, M) ⇒ allE(S, 

P). In other words, the syllogism AAI-1 is valid. 

(13) The proof of validity of EAO-3 is similar to that of 

EIO-3 in (7). That ¬someE(S, P) ∧ allE(S, M) ⇒ ¬allE(M, P) 

is implied by that allE(M, P) ∧ allE(S, M) ⇒ someE(S, P) 

proved in (12). Then noE(M, P)) ∧ allE(M, S) ⇒ not allE(S, P) 

since ¬some = no and ¬all = not all. It is semantically 

equivalent to that noE(M, P)) ∧ allE(M, S) ⇒ not allE(S, P) by 

changing variables. This shows that the syllogism EIO-3 is 

valid. 

(14) The proof of validity of AII-3 is similar to that of 

AEE-4 in (4). One can observe that some is symmetric since 

someE(S, M) ⇔ someE(M, S). If one replaces someE(S, M) by 

someE(M, S) in ‘allE(M, P)∧ someE(S, M) ⇒ someE(S, P)’ 

proved in (6), it follows that allE(M, P) ∧ someE(M, S) ⇒ 

someE(S, P). So the syllogism AII-3 is valid, just as desired. 

(15) The proof of validity of EAO-4 is similar to that of 

EIO-3 in (7). That ¬someE(S, P) ∧ allE(P, M) ⇒ ¬allE(M, S) 

can be implied by that allE(P, M) ∧ allE(M, S) ⇒ someE(S, P) 

proved in (11). Therefore noE(S, P) ∧ allE(P, M) ⇒ not allE(M, 

S) since ¬some = no and ¬all = not all. Hence noE(P, M)) ∧ 

allE(M, S) ⇒ not allE(S, P) by changing variables. That is, the 

syllogism EAO-4 is valid, as desired. 

4.2. The Valid Syllogisms Can Be Derived from the 

Syllogism ‘Celarent’ EAE-1 

That the syllogism ‘Celarent’ EAE-1 is valid means that 

noE(M, P) ∧ allE(S, M) ⇒ noE(S, P). It follows that allE(S, M) 

⇔ S⊆M⊆E according to the clause (1) of Definition 1. Then 

that noE(M, P) ∧ allE(S, M) ⇒ noE(S, P) is equivalent to that if 

S⊆M⊆E, then noE(M, P) ⇒ noE(S, P), and therefore no is left 

monotone decreasing by the clause (4) of Definition 3. That is 

to say that the syllogism EAE-1 is valid if and only if that no is 

left monotone decreasing. Then the following 7 Aristotlian 

syllogisms can be derived from the validity of the syllogism 

‘Celarent’ EAE-1. 

(16) The proof of validity of IAI-3 is similar to that of 

AOO-2 in (1). It follows that no = ¬some according to the 

clause (1) of Definition 2. So one has the following: no is left 

monotone decreasing, iff, some is left monotone increasing 

according to the clause (1) of Fact 1, iff, if M⊆S⊆E, then 

someE(M, P) ⇒ someE(S, P) by the clause (3) of Definition 3, 

iff, someE(M, P) ∧ allE(M, S)⇒ someE(S, P) by the clause (1) 

of Definition 1. Therefore the syllogism IAI-3 is valid, as 

desired. 

(17) The proof of validity of IAI-4 is similar to that of 

AEE-4 in (4). The paper has proven that someE(M, P) ⇔ 

someE(P, M) as above. If one replaces someE(S, M) by 

someE(M, S) in ‘allE(M, P)∧ someE(S, M) ⇒ someE(S, P)’ 

proved in (6), it follows that allE(M, P) ∧ someE(M, S) ⇒ 

someE(S, P). So the syllogism IAI-4 is valid. 

(18) The proof of validity of OAO-3 is similar to that of 

AOO-2 in (1). It is easy to check that no¬ = not all according 

to the clause (2) of Definition 2. So it follows the following: 

no is left monotone decreasing, iff, not all is left monotone 

increasing according to the clause (8) of Fact 1, iff, if M⊆S⊆E, 

then not allE(M, P) ⇒ not allE(S, P) by the clause (4) of 

Definition 3, iff, not allE(M, P) ∧ allE(M, S)⇒ not allE(S, P) by 

the clause (1) of Definition 1. Hence the syllogism OAO-3 is 

valid, as desired. 

(19) The proof of validity of EAE-2 is similar to that of 

AEE-4 in (4). It follows that noE(M, P)⇔ noE(P, M) as above. 

If we substitute noE(P, M) for noE(M, P) in EAE-1 ‘noE(M, P) 

∧ allE(S, M) ⇒ noE(S, P)’, one can obtain that noE(P, M) ∧ 

allE(S, M) ⇒ noE(S, P). Hence the syllogism IAI-4 is valid. 

(20) The proof of validity of EAO-2 is similar to that of 

AEO-2 in (3). It follows that noE(S, P) ⇒ not allE(S, P) as 

above. And (19) has proven that noE(P, M) ∧ allE(S, M) ⇒ 

noE(S, P). Then noE(P, M) ∧ allE(S, M) ⇒ not allE(S, P). 

Therefore the syllogism EAO-2 is valid. 

(21) The proof of validity of EAO-1 is similar to that of 

EAO-2 in (20). It is clear that noE(S, P) ⇒ not allE(S, P). Then 

that noE(P, M) ∧ allE(S, M) ⇒ not allE(S, P) can be derived 

from EAE-1 noE(M, P) ∧ allE(S, M) ⇒ noE(S, P). That is to say 

that the syllogism EAO-1 is valid. 
(22) The proof of validity of AAI-3 is similar to that of 

EIO-3 in (7). That ¬not allE(S, P) ∧ allE(S, M) ⇒ ¬ noE(P, M) 

can be implied by that noE(P, M) ∧ allE(S, M) ⇒ not allE(S, P) 

proved in (20). Then allE(S, P) ∧ allE(S, M) ⇒ someE(P, M) 

since ¬not all = all and ¬no = some. It is equivalent to that 

allE(M, P)) ∧ allE(M, S) ⇒ someE(S, P) by changing variables. 

Hence the syllogism AAI-3 is valid. 

Now the paper has derived the other 22 valid Aristotelian 

syllogisms just from the two syllogisms AAA-1 and EAE-1. In 

other words, it has completed the axiomatiztion of Aristotelian 

syllogistic logic, just as desired. 

5. Conclusion 

This paper firstly formalized the 24 valid Aristotle’s 

syllogisms, and then has proven that the other 22 valid 

Aristotle’s syllogisms can be derived from the syllogisms 

AAA-1 and EAE-1 by means of generalized quantifier theory 

and set theory, so the paper has completed the axiomatization 

of Aristotelian syllogistic logic. In fact, these innovative 

achievements and the method in this paper provide a simple 

and reasonable mathematical model for studying other 

generalized syllogisms. It is hoped that the present study will 

make contributions to the development of generalized 

quantifier theory, and to bringing about consequences to 

natural language information processing as well as 

knowledge representation and reasoning in computer 

science. 

As it turns out, generalized quantifiers are an extremely 

versatile syntactic and semantic tool. As a future work, it 

would be interesting to formally study the validity of 

generalized syllogisms, and then to formally discuss on the 

validity of discourse reasoning in natural languages nested by 

two or more Aristotelian syllogisms or generalized ones.  
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