
 

Applied and Computational Mathematics 
2017; 6(5): 215-221 

http://www.sciencepublishinggroup.com/j/acm 

doi: 10.11648/j.acm.20170605.11 

ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) 

 

Pricing European Put Option in a Geometric Brownian 
Motion Stochastic Volatility Model 

Kolawole Imole Oluwakemi
1
, Mataramvura Sure

2
, Ogunlade Temitope Olu

3
 

1School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, Scotland 
2Department of Mathematical Sciences, University of Cape Town, Cape Town, South Africa 
3Department of Mathematics, Ekiti State University, Ado-Ekiti, Nigeria 

Email address: 

topsmatic@gmail.com (O. T. Olu) 

To cite this article: 
Kolawole Imole Oluwakemi, Mataramvura Sure, Ogunlade Temitope Olu. Pricing European Put Option in a Geometric Brownian Motion 

Stochastic Volatility Model. Applied and Computational Mathematics. Vol. 6, No. 5, 2017, pp. 215-221. doi: 10.11648/j.acm.20170605.11 

Received: June 9, 2017; Accepted: June 26, 2017; Published: September 7, 2017 

 

Abstract: Stochastic volatility models were introduced because option prices have been mis-priced using Black-Scholes 

model. In this work, focus is made on pricing European put option in a Geometric Brownian Motion (GBM) stochastic 

volatility model with uncorrelated stock and volatility. The option is priced using two numerical methods (Crank-Nicolson and 

Alternating Direction Implicit (ADI) finite difference). Numerical schemes were considered because the closed form solution 

to the model could not be obtained. The change in option value due to changes in volatility, maturity time and market price of 

volatility risk are considered and comparison between the efficiency of the numerical methods by computing the CPU time was 

made. 
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1. Introduction 

Black-Scholes model is theoretically appealing and it has 

been embraced by many investors. However, after carrying 

out some empirical studies on the model, it has been revealed 

that the assumption of constant volatility is not sufficient in 

specifying the return on stock. Volatility itself is observed to 

have some variability and stochastic volatility models have 

been proposed to model this variability [8]. One of the 

proposed stochastic volatility models is Geometric Brownian 

motion (GBM). This model supports the limited liability of 

shareholders which means that the worse that can happen to a 

shareholder of a company going bankrupt is to lose their 

investment and they cannot be held responsible for the 

company’s debt. It is noted that GBM has a great advantage 

of the simplicity [1]. As opposed to the first model for stock 

price dynamics postulated by Bachelier in 1900, which had 

the change in the stock price itself proportional to a 

Brownian motion increment, since Brownian motion can take 

negative values, it then implies the stock can become 

negative [11]. The main source of randomness of a financial 

derivative in Black-Scholes model is the Brownian motion in 

the underlying asset, which is tradable. This means that any 

option can be hedged with the underlying and a risk-free 

asset, hence the model is said to be complete. However, 

stochastic volatility models are incomplete because there is 

an additional source of randomness (i.e. another Brownian 

motion in the volatility model.) that is not tradable, hence 

contingent claims (such as European options) cannot be 

priced by the no arbitrage principle. 

Due to the complexity of some models whose closed form 

solution does not exist, Finite Difference Method (FDM) has 

been employed in the valuation of options. And in instances 

where closed form solution exists, they seem difficult to 

compute and hence approximate methods are being 

considered appropriate [3]. The idea behind approximating 

partial differential equations using FDM is to approximate 

the derivatives using divided difference alongside some 

specified boundary conditions, these procedure transforms 

the PDE into an ordinary differential equation, this is called 

spatial discretization. Solving the evolving ordinary 

differential equation which is a function of time t, requires 

initial condition and it is called time discretization. 
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2. Dynamics of GBM Stochastic 

Volatility Model 

Consider the following GBM stochastic volatility model 

representing the dynamics of a stock and its volatility under a 

subjective measure ℙ 

����� = ������� + 
�������������						      (1) 

�
��� = �
����� + �
�������������				      (2) 

Where �����  and �����  are non correlated standard 

independent Brownian motions defined on the probability 

space �Ω, ℱ, ℱ� , ℙ�. The model (1)-(2) under consideration is 

called Geometric Brownian motion because the logarithm of 

the underlying ����  and 
���  follows Brownian motion 

respectively. To make complete the model (1)-(2) means 

there is need to first specify the market price for risk, which 

reflects the expected excess return per unit risk over the risk-

free rate [7]. The market price for risk is the bridge in-

between investors risk averting abilities. Having introduced 

the market price of risk, it is therefore sufficient that we 

apply a Girsanov change of probability measure theorem 

which leads to a martingale measure. 

In (1) we see that �  is the risky rate of return which 

depends on individual investors, hence by the concept of 

change of measure we want a risk-free rate of return	�, this 

can be achieved by removing the risk from the drift. 

Theorem. (Girsanov Theorem [10]) Let ����  for � ∈	[0; 	�]  be independents Brownian motion on a given 

probability space �Ω, ℱ, ℱ� , ℙ�. where ℱ� is a filtration on this 

Brownian motion. Let ���� be an adapted process 

�∗��� = ���� + � �������
  

!��� = exp	%−12� ������� −�
 � ����������

 ) 

Where !��� = *ℙ∗*ℙ  is the change in the probability measure 

called the Radon-Nikodym derivative. The new probability 

measure is given by, 

ℙ∗ = ∫,!����ℙ∀. ∈ ℱ 

The process �∗��� is a Brownian motion under the equivalent 

martingale measure ℙ∗, it has mean zero and variance �. 
Applying the Girsanov change of probability measure 

theorem to (1)-(2), the equivalent Brownian motions under 

the new probability measure are as follow: 

��∗��� = ����� + /012 �				                      (3) 

��∗��� = ����� + 3�                          (4) 

According to [9], the process, 3� = 4�5,2,��6  where 7��, 
, �� 
is the market price of volatility risk and � is the volatility of 

volatility. 

The change of probability measure 
8ℙ∗8ℙ  is given by 

!��� = exp	%−12� ������� + �������
 ��� − � �����������9

 −� �����������9
 ) 

Where ����� = /012 � and ����� = 3� 
The term 7��, 
, �� is called the risk premium factor or the 

market price of volatility, while 
/012  is stock market price of 

risk. Let 7 = 0	  and making appropriate substitution for ��∗��� and ��∗���, the model (1) and (2) in the risk neutral 

world is 

�� = ���� + 
����∗���                        (5) 

�
 = �
�� + �
���∗���                       (6) 

2.1. GBM Stochastic Volatility PDE 

In this section, derivation of the PDE for pricing 

contingent claims in a GBM stochastic volatility model (5)-

(6) was made. 

Portfolio Dynamics. Let us consider a port folio Π 

consisting of 1unit of option ;, 	<  units of option = and Δ 

units of the underlying asset � given by 

Π� = ; + Δ� + <=										                (7) 

Where the option U is used to hedge volatility, since 

volatility is not tradeable. The approach of setting up the 

portfolio (7) above is gotten from [9]. 

We assume the port folio is self financing, hence the 

change in the value of the portfolio is 

dΠ� = �; + Δd� + <�=								                 (8) 

Applying Ito's Lemma to V, the mixed derivative term is 

ruled out since the Brownian motions are not correlated (i.e. 

they are independent) this implies that @[���∗���. ���∗���] =0 and hence the correlation coefficient B = 0. 

The fact that volatility is not correlated with stock price is 

equivalent to the assumption that there is no influence on the 

stock return, and that there exist a constant volatility level [5]. 

Making appropriate substitution in �; we have, 

�; = CDC� �� + CDC5 E���� + 
����∗���F + CDC2 E�
�� + �
��∗���F + �� C
GDC5G �
������ + �� C

GDC2G �
������         (9) 

Similarly, the option =	 gives the following PDE 

�= = CHC� �� + CHC5 E���� + 
����∗���F + CHC2 E�
�� + �
��∗���F + �� C
GHC5G �
������ + �� C

GHC2G �
������     (10) 
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2.2. Riskless Property of the Portfolio 

For the portfolio to be hedge-able against the fluctuation in 

stock and volatility, this directly implies that the random 

terms must be equal to zero, we then have the following; 


� CDC5 + ∆
� + <
� CHC5 = 0	                     (11) 

�
 CDC2 + <
� CHC2 = 0	                        (12) 

The riskless change in portfolio dΠ� after substituting the 

hedge parameter Delta is 

dΠ� = �. + <����                          (13) 

2.3. Risk-Free Rate Earned by the Portfolio 

In the risk-neutral world, the expected return on all assets 

in the absence of arbitrage opportunities is the risk-free rate r. 

Therefore the portfolio (7) must earn a risk free rate �, (i.e. 

the change in portfolio dΠ� = �Π���). 
dΠ� = ��; + Δ� + <=���                      (14) 

Equating the two expression we have for the change in 

portfolio (13) and (14) to each other 

. + <� = �; − �� CDC5 − ��< CHC5 + �<=              (15) 

Making necessary simplification and factorization in (15) we 

get 

,01D015JKJLJKJM
= N01HO15JPJLJPJM

                   (16) 

The left-hand side of (16) is a function of V only, so also 

the right-hand side is a function of U only. If the equation 

above holds for any put option of any maturity and strike 

price, then the left-hand side and right-hand side must be 

independent from the type of option being considered. Hence 

it indicates that each side is equal to 7��, 
, ��, the volatility 

risk premium which indicates that we are faced with an 

incomplete market [7]. 

,01D015JKJLJKJM
= 7��, 
, ��		                    (17) 

Substituting the risk premium 7
  that the volatility 

premium is proportional to the volatility, we have 

. − �; − �� Q;Q� = 7
 Q;Q
 

Substituting . and R� into the above, gives us the partial 

differential equation for the model (1)-(2) under the 

equivalent martingale probability measure ℙ∗ in the risk-

neutral world as 

 

CDC� + �� CDC5 + R
 CDC2 + �� �
���� CGDC5G + �� �
���� CGDC2G − �; = 0                                                  (18) 

3. Finite Difference Method (FDM) 

FDM has been employed in the valuation of options due to 

the complexity of some models whose closed form solution 

does not exist. And in instances where closed form solution 

exist, they seem difficult to compute and hence approximate 

methods are being considered appropriate [3]. 

Having realized that the model (1)-(2) is not affine, and the 

closed form solution to such models rarely do exist, we 

therefore resort to numerical methods in solving (18) above. 

We consider Crank-Nicolson and Alternating Direction Implicit 

(ADI) finite difference methods in approximating the PDE (18). 

3.1. Crank-Nicolson Scheme 

This numerical scheme is a � scheme of the implicit type 

for which � = ��. It is centered in space and in time. It is 

unconditionally stable and convergent [2]. Crank-Nicholson 

FDM is the weighted average of both the implicit and explicit 

finite difference methods. 

Consider four boundary conditions, these conditions are 

based on the principle supporting European put option 

(i.e.the right is claimed only if the strike price K is greater 

than the stock price at maturity). The boundary conditions 

attached to the stock are the following; 

At S	 = 	0  Dirichlet boundary condition [6]. ;�0, T, U� =VW01� 
At S = SXYZ  [12], limZ→_ ;�S, T, U� = 0 

Note that ∞ in our case is SXYZ . This condition is realistic 

in the sense that if the stock price is at its maximum, the 

owner of a put option need not to exercise it.The 

aforementioned statement is valid because the maximum 

stock price are chosen to be greater than the strike price 

(SXYZ > V) for option pricing domain. 

The boundary conditions attached to the volatility are as 

follows; 

At T	 = 	0  Dirichlet boundary condition [12]. limb→_ ;�S, T, U� = max	�VW01� − S, 0� 
At y = TXYZ  Neumann boundary condition [6] limb→_ CDCb �S, T, U� = 0 

Replacing �  by S , 
	by T	and	�	by	U , we write the PDE 

(18) as 

CDCg − �S CDCZ − RT CDCb − �� �
�S�� CGDCZG − �� �
���� CGDCbG + �; = 0					                                             (19) 
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CDC� = .;							                                                                                 (20) 

.; = �S CDCZ + RT CDCb + �� �
�S�� CGDCZG + �� �
���� CGDCbG − �; = 0	                                                (21) 

For the grid, let the number of time steps be h, and the 

number of internal nodes on S − axis= M, Ti -axis =N 

respectively. All having equally spaced interval by ΔU = 9j , ΔS = Zklmn ,ΔT = bklmo . We make use of the approximatio ;p,q ≈ ;�Sp , Tp�		�s = 0,…u + 1, v = 0,…w + 1� 
The points SnO�  and ToO�  are the maximum stock price 

and volatility respectively. 

The two spaces to be discretized are stock price and 

volatility, we will make use of the second order central finite 

difference formula 

Q;QS ≈ ;pO�,q − ;p0�,q2∆S . Q�;QS� ≈ ;pO�,q − 2;p,q + ;p0�,q�∆S��  

Q;QT ≈ ;p,qO� − ;p,q0�2∆T . Q�;QT� ≈ ;p,qO� − 2;p,q + ;p,q0��∆T��  

This can then be used in place of the derivatives in (20) 

above 

We can write .;  as five stecil points ;p,q0�. ;p,q . ;p,qO�. ;p0�,q . ;pO�,q 
.; = xp,q;p,q0� + yp,q;p,q + zp,q;p,qO� + �p,q;p0�,q + Wp,q;pO�,q 			                                            (22) 

Where 

{|
||
||
}
||
||
|~ xp,q = − RTq2∆T + Tq���2�∆T��
yp,q = − Sp�Tq��∆S�� − Tq����∆T�� − �

zp,q = RTq2∆T + Tq���2�∆T��
�p,q = − �Sp2∆S + Sp�Tq��∆S��
Wp,q = �Sp2∆S + Sp�Tq��∆S��

 

Putting these together, the PDE can be written as 

CDCg = xp,q;p,q0� + yp,q;p,q + zp,q;p,qO� + �p,q;p0�,q + Wp,q;pO�,q                                           (23) 

To get the system of equation from this difference equation, we typically pick a point from the stock and run It through for 

each point of the volatility. When s	 = 	1, we run through v	 = 	1, …w 

Q;��QU = x��;� + y��;�� + z��;�� + ���; � + W��;�� 

Q;��QU = x��;�� + y��;�� + z��;�� + ���; � + W��;�� 

⋮ 
Q;�,oQU = x�,o;�,o0� + y�,o;�,o + z�,o;�,oO� + ��,o; ,o + W�,o;�,o 

This pattern continues until when s	 = 	u, running through v	 = 	1, …w. Therefore we have a system of uw unknowns. 

Create a square matrix uw to contain the coefficients of the 

unknowns and a column vector �	 of uw rows for the known 

values at the boundary. For the boundary condition T	 =	TXYZ , 
limb→_

Q;QT �S, T, U� = 0 

The point v	 = 	w	 + 1 is when volatility is at maximum. In 

a way to avoid having ghost point outside the domain, we use 

the backward difference to discretize the boundary condition. 

D�,���0D�,�∆b = 0                            (24) 

;p,oO� = ;p,o                             (25) 

Hence the unknown at the boundary point w	 + 	1 can be 

evaluated at point w. For the system of equation above, we 
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get a tri diagonal block square matrix of size u	 � u. Each 

block contains a square matrix of size w	 � w, 

 

Figure 1. The block tridiagonal matrix using Crank-Nicolson FDM. 

The column vector containing the known boundary points 

and the vector containing the initial condition are given 

below 

� =

�
��
��
��
��
�
x  ;� + ���; ����; �⋮x��;� 0⋮x��;� 0⋮xn�;n 0⋮ �

��
��
��
��
�

�
��
��
��
��
�

max�V & S�1�, 0�⋮max	�V & S�2�, 0�⋮max	�V & S�3�, 0�⋮max	�V & S�4�, 0�⋮max	�V & S�u & 1�, 0�⋮max	�V & S�u�, 0�⋮ �
��
��
��
��
�

 

After discretizing the space, .;	 in (20) becomes .;	 �	!;	 	 	� where � contains the boundary conditions. 

Crank-Nicolson FDM is said to be flexible with respect to 

the choice of time and this can be done in such a way to 

match cash-flow dates exactly near the option's maturity date 

[2]. The unconditionally stability of the scheme implies that 

there is no limitation to the choice of time step ∆�. After the 

space discretization, the evolved ordinary differential 

equation is given by 

�;�U � .; 

We make use of the forward difference formula for the 

derivative with respect to time 

�;�U � ;�O� & ;�
∆U  

;�O� � �� & ∆U�!�0�E�� 	 ∆U�1 & ��!�;� 	 �∆U���O� 	 ∆U�1 & �����F 

For �	 � ∆U …�	 and � is an identity square matrix of size uw. 

3.2. Alternating Direction Implicit (ADI) Scheme 

In the case of ADI spatial discretization, AV is split into 

two .;	 � .�; 	 .�;  It should be noted that AV would 

have been decomposed into three parts if there was 

correlation between the stock and volatility. The expression 

(14) becomes 

CDCg � ∑ .����� ;                             (26) 

In a way to achieving an efficient numerical solution, it is 

best to make use of an effective time discretization scheme 

[4]. Douglas scheme is considered here. The discretized 

space (ordinary differential equation) can be written as 

8D8g � �E�, ;���F, 0 � � � �. ;�0� � ;           (27) 

�E�, ;���F � ∑ !�;���� 	 �����                (28) 

The scheme is given as: 

� � ; 	 ∆U����0�, ;�0��                       (29) 

�� � ��0� 	 �∆UE�����, ��� & �����0�, ;�0��F����� � 1, 2�                                           (30) 

�� � ;�                                                                                     (31) 

The procedure (29) is repeated for � ∈ �0; 	��,	 the scheme is simplified using (27) as follows 

� � �� 	 ∆U�!��
���

�;�0� 	 ∆U�����0��
���

 

�� � �� & �∆U!��0��� & �∆U!�;�0� 	 �∆U����� & ����0��� 
�� � �� & �∆U!��0��� & �∆U!�;�0� 	 �∆U����� & ����0��� 
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And hence after the time has run through maturity ��	 = 	�� , we have �� = ;� 	= 	;9  which is the required 

value of the option for each discretized stock prices and 

volatility. 

4. ComparisonofResults 

The numerical solutions to be discussed in this section 

were obtained using MATLAB programming language. 

Maturity time is given in years and prices is Naira, unless 

otherwise stated the grids used are 

u	 = 	100(internal nodes on x-axis), SXYZ � 	200(maximum stock price), 

w	 � 	50	(internal nodes on y-axis),  TXYZ � 	1(maximum volatility). 

h	 � 	100(number of time step), 

The option value surface is given below using the 

following set of parameters V	 � 	100; 	�	 � 	0: 1; 	� �	0: 5; 	7 � 	0: 5; 	�	 � 	0: 4; 	�	 � 	1. 

The point when volatility is at minimum, the option value 

is equal to the pay-off. When at maximum, volatility is not 

used in hedging the stock and hence the option value 

decreases for stock prices that are far from the strike price. 

 

Figure 2. ADI Scheme. 

 

Figure 3. Crank-Nicolson Scheme. 

 

Figure 4. Timestep L=100. 

 

Figure 5. Timestep L=30. 

Table 1. Option value (ADI) increasing as volatilityincreases. 

StockPrice 
OptionPrice 

Volatility=0.02 Volatility=0.32 Volatility=0.42 

70 25.1190248419 25.9165682092 26.8692944300 

80 10.4709012713 16.4209502722 18.6628103500 

90 1.260192727 11.2037237320 13.9250683200 

100 0 6.4305729914 8.9777769026 

122 5.6221 � 100� 1.7072746508 3.4973606134 

130 8.5996 � 100¢ 2.2256777198 4.1879096405 

Table 2. Computationa ltime for the two numerical scheme at different grids. 

Grid ADI Crank-Nicolson 

(80,32,16) 0.8438 1.0156 

(100,50,100) 3.2188 10.9688 

(160,64,32) 3.5938 8.8906 

We compare prices relative to Black-Scholes Model. We make the 

comparison using the following parameters V	 � 	100; 	�	 � 	0.1; 	� �0.5; 	7 � 	0.5; 	�	 � 	0.4; 	�	 � 	 �G 
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Table 3. European put option value in GBM stochastic volatility model relative to Black-Scholes model. 

Moneyness StockPrice Volatility Black-Schole ADI Crank-Nicolson 

Deeply in 50 0.02 45.1229424501 45.1190248416 45.1190247699 

In 70 0.06 25.1229424500 25.1228574753 25.1228574121 

At 100 0.02 6.998869� 100£ 0 0 

At 100 0.32 6.56234593 6.4305767608 6.4305767608 

Out 114 0.08 0 0.0049215177 0.0049212421 

Deeply Out 122 1 0 0.7216412051 0.7216583719 

 

5. Conclusions 

The  model (1)-(2) which is a GBM stochastic volatility 

was used in pricing European put option numerically, due to 

the unattainable closed form solution of the model. It was 

shown that Option value in a GBM stochastic volatility 

model is an increasing function of volatility i.e.it increases as 

thevolatilityincreases. Irrespective of the moneyness of the 

option, this can be seen in Table 1. Option value reduces 

when time to maturity is long (i.e. the premium paid to the 

option writer is small), thereby profiting the option holder. 

ADI finite difference method is more efficient because it 

takes less time to compute and the structure of the system of 

equation in form of matrix is not as complex as that of 

Crank-Nicolson. In the absence of market price of volatility 

risk, the value of an option increases. 
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