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Abstract: Various authors have discovered formulae for numerical integration approximation. However these formulae
always result to some amount of error which may differ in size depending on the formula. It’s therefore important that a
formula with highest precision has been discovered and should be implemented for use in numerical integration
approximations problems, especially for the definite integrals which cannot be evaluated by applying the analytical techniques.
The present paper therefore explores the derivation of the N-point Definite Integral Approximation Formula (N-point DIAF)
which amounts to the discovery of the 2-Point DIAF. This formula will assist in almost accurate evaluation of all definite
integrals numerically. The proof of the formula is given, a specific test problem is then solved using the discovered 2-Point
DIAF to obtain the solution numerically, which has the highest precision compared to other numerical methods of integration.
Further the error terms are obtained and compared with the existing methods. Finally, the effectiveness of the proposed formula
is illustrated by means of a numerical example.
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obtained in numerical integration are approximate, there is
usually error of approximation which is a measure of the
deviation of the approximate solution from the exact value.

Thus the best solution is that which converges to the exact
solution.

In calculus and engineering mathematics courses, we
learnt many methods to solve the integral problems,
including change of variables method, integration by parts
method, partial fractions method, trigonometric substitution
method, and so on [2]. In this paper, we present a formula to
approximate definite integrals.

1. Introduction

Integrals of most analytical functions can be evaluated as
b
I=£f(x)dx=F(b)—F(a) (1)

where F(x) is differentiable function whose derivative is

() ie.

F/(x)= 1) @)
Often need arises for evaluating the definite integral of 2. ObJeCtIVe
functions that does not have explicit antiderivative, in other
circumstances the function is not known explicitly but is

given empirically by a set of measured or tabulated values.

In circumstances where the integral cannot be evaluated
analytically, numerical integration is wused to give
approximate solution to the definite integral. Since solutions

To approximate the definite integral [ w(x)f(x)dx , where
a

the weight function, w(x) >01in a closed interval [a,b] using

the newly developed N-point Definite Integral
Approximation Formula (N-point DIAF) and discuss the
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accuracy, convergence and stability of the method. Here, a
and b are the limits of integration.

3. Literature Review

[4] notes that Numerical integration is the study of how the
numerical value of an integral can be found. Also called
quadrature, which refers to finding a square whose area is the
same as the area under a curve, it is one of the classical topics
of numerical analysis. Of central interest is the process of
approximating a definite integral from values of the integrand
when exact mathematical integration is not available. Many
methods are available for approximating the integral to the
desired precision in Numerical integration. A new set of
numerical integration formula of Open Newton-Cotes
Quadrature with Midpoint Derivative type is suggested,
which is the modified form of Open Newton-Cotes
Quadrature [9]. Numerical integration is the process of
computing the value of a definite integral from a set of
numerical values of the integrand. The process of evaluation
of integration of a function of a single variable is sometimes
called Mechanical Quadrature. The computation of a double
integral of a function of two independent variables is called
Mechanical Cubature. There are many methods are available
for numerical integration [8].

Integral Calculus is a fundamental field of study in
Mathematics and is widely used to model physical processes
by scientists and engineers [3]. It has widespread uses in
science, engineering and economics and can solve many
problems that Algebra alone cannot [1]. Most of the models
are always definite integrals which need to be evaluated in
order to get a solution that provide a basis for drawing a
conclusion. Most of the integrals are easy to evaluate using
analytical methods. However, some integrals cannot be
evaluated analytically and therefore need to be approximated.
This means that we have to apply numerical methods in order
to get an approximate solution. This is referred to as
numerical integration.

Several authors have discovered formulae for
approximating such integrals which can only be evaluated
numerically. [5] reiterate that some of the great
mathematicians and scientists such as Romberg, Simpson,
Gauss-Legendre, Gauss-Chebyshev, Newton-Cotes, for
instance, have made remarkable contribution in this area. Sir
Isaac Newton made use of forward difference operator and
forward difference table to simplify the calculations involved
in the polynomial approximation of functions which are
known at equally spaced data points. Thus, the Newton
Forward Difference Interpolating Polynomial (NFDIP) of
degree 4 provides a basic foundation upon which the N-point
DIAF is based [6]. It is worthwhile to note further that the
choice of the variables used in the N-point DIAF, stated in
the next section below, does not in any way suggest any
correlation with the neighborhood method used in Regression
Analysis (i.e. the k-Nearest Neighbours Regression
algorithm).

3.1. Statement of the Formula

Suppose f(x) is a function of the equally spaced

argument X, which may be given explicitly or as a tabulated
data. Then we evaluate definite integral in closed interval [a,

b b
blas I = [ f(x)dx we can define the integral jw(x) f(x)dx
a a

b —
where w(x) is the weight function. Let & = 4_Na , where h is

the length the interval [xl. } and N is the number of

X+l
sub-intervals and w(x)=1 then the N-point DIAF for

b
J w(x) f(x)dx is given by:
a

? dx = 2h 4N/1 +kh 3
CJJW(X)f(X) X_Ekéo i (a+kh) (3)

where the weights are given by

) :{7,if(k:{0,4N}) “
y,otherwise
where
Sk 4k
N=123., y= 32+(_1)k‘1 ( 2 ) (5)

y 2kl ) 2K
LA I
25 2)9

and 7 =kmod4 (that is r is the remainder when £k is
divided by 4).

It is important to note that the proof of this formula is
explored in the next section below, and it explains the genesis
behind it in detail.

3.2. Formula Proof

Let h:b a
4

and w(x) =1, then to approximate the

b
definite integral [ w(x) f'(x)dx :
a

We subdivide the interval [a,b] into 4N subdivisions of
equal width /4 and then fit a polynomial of degree 4 on
[xo:x4]s[x4sxg]:[xgsx12 ]a---s[x41v74ax4]v] . Here,

X > X2 X s Xg5eees Xy oy o X g py ATC suitable points in the
interval of integration.

Using the NFDIP (Newton Forward Difference
Interpolating Polynomial), we approximate
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s(s=D(s-2) .3

A3y Neglecting the error term, RN , as it is too small hence
3! 0

1= fy sty + 2202 s

+s(s—1)(s 2)(s—=3) A4
4!

b

b
negligible, we then approximate [w(x)f(x)dx in each 4
a

fO +R N
subdivisions and then summing them up as follows:

. X—a .
where R NS the error term, s 27, and A is the forward

difference operator (i.e. Afk = fk i fk , by definition).

b
jf(x)dx=11+1 v+l =L+ ]+ 4]
a

2 73 7 °N 1 72 73 7N

"4 3 2
= [ fdx+ | f(x)dx+ [ f(x)dx+..
XO x4 x8
W
+ [ f(x)dx
Y4N-4

Sy * sty + A%+

s(s 1)
2!
x —

1 2 1
:>I = If(x)d ~hI %A:;fo dS,(Sil’lCG,Szx_ha = dszzdx’x():a)

s(s D(s—=2)(s—3)
4!

4
AfO

2 3 2
(s°=5) 2 (57 =3s"+2s) .3
fO +sAfO +—2 A fO +—6 A fO

4
=1 =h| ds

7% +(s4—6s3+11s2—6s)A4f
24 0

302 4 i
s0 8" ST 3,2 4
§2 302, 4
N NN NSy
2 To 6

o+ B * 2,

5
S——és4 +Es3 —3s2
5 2 3

4 0
A
24 To

+

Ny ~h[4f0+8AfO+_A2fO+ A3f0 A4f0}

4y R~ )+ Uy =2+ S 3y =3y +3K - fy)

=1 =h
1

+%(f4—4f3 +6f2 —4f1 +f0)

64
=/ ~hLSfO o 45f2 45f3 45f4)}

2%
=1 ~4—5[7f0 32, 121, +32f, +7f4)]

. _2h 2
Similarly, 12~E[7f4+32f5+12f6+32f7+7f8)] 13~—[7f8+32f9+12f10+32f11+7f12)] e
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T * Ian) * 12Uy +Jg * Sig * o Tan—2)
jf(x)dx--j—5 2SSt g+t Syt an—) (6)
Ay Tyt Jyn-g)

b _2h 4N B
:lew(x)f(x)dx—“—skéoﬂkfk , but fk —f(xk) and
X, = (xp +kh) = (a+kh) . Therefore,

{ =220 i 7
= (W= 3 A @k ()

which conforms to the statement of the N-point DIAF so long
as we can find the values for the weights, A k 's’s

Now, from equation (6) it can be clearly seen that the
weights /]k =7 whenever k=0, k=4N ; Or /]k =y
whenever 1<k<4N-1; y

4 o rir(k={o.an})
ko lyifisk<an-1

y , oscillate back and forth between 12 [ 32 - 14

is dependent on k , ie.

where the values of the multiplier,

starting counting from k£ =1 at 32 then Left-Right manner in
steps of 1 respectively until the last count reaches
k=4N —1.[Here, k =1(1)4N —1]. This means that

Ay =T.A =324, =124, =32,
Ay =gy =144 3 =32, (8)
Ay T12 Ay =32

Our main task is to find the expression for y as follows.
If we subtract each /lk value from 32 [i.e. (32 —/lk) ], then

it follows that

a
A, =y =32+(-DF {—k] (99)

b

k
where @, and b depend on k.

“k
The values of | —
bk

20 <00 <0-18
lie, (32-12) «0-(32-32) <0~ (32-14) |

Jnow oscillate back and forth between

starting

counting from k =1 at 0 then Left-Right manner in steps of 1
respectively until the last count reaches kK =4N —1 [Here,

k=1()4N

above. This means that we can compile a table for the values

—1], to yield the same values of A k 's’s as in (8)

a
of k against {b—k] for equation (9) as shown in Table 1 below
k

Table 1. Values of k against {b
k

] for equation (9a).

22+(—2)2_20
2 o -
5
. 23+(—2)3:0
1
o e af 8
4 >4
9
8w
s 2 +(-2)
1
26+(—2)6_20
6 s
5
T rn
; 7
1
28+(—2)8_18
8 P
9
PNy gtV
4N -4 AN
9
4N-3 4N-3
4N -3 2 +(2) =0
1
4AN-2 AN-2
2 +(-2) -0
4N -2 AN
5
4N-1 4N-1
4N -1 2 +(2) =0
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From the Table 1.0 above, it’s evident that

a, =2F +(2)f (9b)
and the values of b ; form the sequence:
1 4 5 8
172_7172_7172_7172_7"”]"
5 9 5 9
k-l ok (10)
+g— |+,....,+1
P57

p and g take values 0 and 1 alternating [i.e. when p =0,
g=1and whenp=1,4=0].

Thus the k[h term, bk , is given by

+q?,zf(kmod2—0) (1)

r 5
1, otherwise

where p and g are dependent on kand are to be evaluated as
follows

If we now let » =kmod4 (i.e. ris the remainder when kis
divided by 4), then it follows that when »r =2 = p =1and
q =0, so that bk :T, which satisfy the sequence (11)

above.
ok
Also when r=0= p=0 and ¢g=1 so that bk :? ,

which also satisfy the sequence (11) above.
Thus, there is a linear relationship between rand p which
transforms the discrete extreme points[1,0]in p onto [2,0] in

r,i.e
[L,0] - [2,0]. (12)
If we let this relationship to be
p=mr + q (13)

where 7 and ¢ are constants to be evaluated for

relationship (12) to hold.
Plugging the values of (12) into (13) yields

p== (14)

This is because,

(14a)

and

O=Oml+c (14b)

1
Solving (14a) and (14b) simultaneously yields (14).
Similarly, there is a linear relationship between rand ¢
which transforms the discrete extreme points [1,0] in g onto
[2,0] inr,i.e.

[0,1] - [2,0]. 5)
If we let this relationship to be
q=myr+c, (16)

where My and c, are constants to be evaluated for

relationship (15) to hold.
Plugging the values of (10) into (11) yields

p
q= (1 _Ej a7)
This is because,
2=0m2 +ey (17a)
and
0=1n12+c2 (17b)

Solving (17a) and (17b) simultaneously yields (17)
Substituting equations (14) and (17) into equation (11) and
neglecting all the values for bk =1, as they are insignificant

in the final result for y , yields

k-1 k
b =l 2 41112
25 2)9

Substituting equation (11) and (18) into equation (9)

(18)

yields
(2" +(-2)k )

r 2k_1 r Zk
_ +{1-— |—
2 5 2)9

3.3. Numerical Illustration

(19)

as required.

Approximate the integral

1

| ——dx ; using

0ox+1

1) Gauss-Chebyshev 3 point formula.

2) Gauss-Legendre 3 point formula.
3) Simpson’s 3/8 rule with 8 subdivisions.
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4) Trapezoida rule with 1, 2, 4, and 8 subdivisions. Hence,
use Romberg approximation to obtain a most accurate
solution.

5) Using Boole’s rule withn=4, 8

6) Using weddles ’s rule withn=6

7) The 2-point DIAF.

Hence calculate the absolute relative true error, |Dt| R

involved in each approximation.

Solution
I

The exact solution of j—+1dx analytically is
0x

1
[In(x +1)] - In(2) - In(1) = 0.69314718
Using Gauss-Chebyshev 3 point formula

1
IZJde (20)
0x+1

We first transform the interval [0,1] onto [—1,1] using the

b—a]ﬁ_(lﬁa] where a=0 and
2 2 )

transformation x = (

b=1:>x=lt+l
2

2
1
=dx= Edt} 21
Substituting equation (ii)* into (7)* yields,
I
I= [ —dt.
213+t
Then by  Gauss-Chebyshev 3  point formula

I:_}lf(t)dt:g{f[ﬁ]+f(0)+f[—§]] . here

2

1 1
Then by Gauss-Legendre 3 point formula 7 = [ f(¢)dt = 5
-1

1 1 1 1
Thus, =/ =—| 5| —— |+8| = |+5| —=
9 3 3 3
3-,07 34,7
5 5

10.69314718-0.693121693|
| 0.69314718 |

Using Simpson s 3/8 rule with 8 subdivisions

x100%=(3.6771x10‘3)%

=0.693121693

fl) _ 1
1—2 3+t
2
1=t
=0=75
Thus,
V3
:1=7—T + + 2
IECISIEE
2 2
= 0729864959 _
|Dz| _[0.69314718-0.729864959| 100%
| 0.69314718 |
= (5.297256) %

Using Gauss-Legendre 3 point formula
1

[:Jde

22
I (22)

We first transform the interval [0,1] onto [—1,1] using the

- +
transformation x = (b 5 a ]t + (—b 5 a] where a =0and
_ 1 1 1
b=l=x=—t+— = dx=—dt (23)
2 P 2
I
Substituting equation (ii)* into (i)* yields,I = | mdt .
-1

{5f{—£}+8f(0)+5f(\/§]] ,here f(¢) :%.

0| =|0:69314718 - 0.693121693|
0.69314718 |

x100%

=(3.6771x10‘3)%
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Table 2. Values of X against f (x) =

x+1
1 1 3 1 5 3 7
x 0 = = = 5 = = = 1
8 4 8 2 8 4 8
8 4 8 2 8 4 8 1
@ 5 5 il 3 i3 7 is 3
Then by Sympson’s 3/8 rule.
? s = Jo 3 H Ity st T gt T iy
x x —_——
a 8\Han- D 23 et ot T i)t Sy
Thus for 8 subdivisions we have,
el 3hnﬁxn+5+a+g+@>
=[——dx=
0x+l +2(f3+f6)+f8
3 LY+ 3(8+4+2+i+ij+
8 9 5 3 13 15
=1/=—= =0.684854208
8 8 43, 1
2| —+— |+=—
1 7) 2
|Dt| _ |0.69314718—O.684854208| X100%
| 0.69314718 |
=1.196423%
Using Romberg Approximation
1-0 1
h=——=— x)=——
g s f(0= 1
. _ 1
Table 3. Values of X against f(x) el
1 1 3 1 5 3 7
x 0 = = = 5 = = = 1
8 4 8 2 8 4 8
8 4 8 2 8 4 8 1
@ 5 5 i1 3 i3 7 is 2
Using trapezoidal rule with 1 subdivision.
h :;O 1

n = I—ac=Lan(fy )
1 0x+1 2 0 -8
=T =%(1)[1+%] =0.75

Using trapezoidal rule with 2 subdivisions.

1-0

h=——
2

N | =



Francis Oketch Ochieng’ ef al.: The N-Point Definite Integral Approximation Formula (N-POINT DIAF)

T }dezl(h)(f +2f +f)
2705 S W\ g 274 g

+1
=T, =l(l) 1+2 2 +l =0.708333333
22 3) 2
Using trapezoidal rule with 4 subdivisions.

h:ﬂ:
4

=

T, :(})ﬁdx=%(h)(f0 +2(f2 /4 +f6)+f8)

:>T4:l(l) 1e2( 24204 L2 6697023800
24 5 3 7)) 2
Using trapezoidal rule with 8 subdivisions.
p=1=0_1
8 8
1 N+t s+
Ty = [——dv=s(| fy+2| 1 23S g
0x+l1 2 f6+f7

=T :l(l) 1+2(§+i+i+z+i+i+i]+l
8 2°8 9 5 11 3 13 7 15

=0.69412185

Now, using Romberg approximation, we apply the iterative formula below to obtain the Romberg extrapolates as shown
below

4T, . =Ty, .
T _ "2N,i "N,

2N+l ~ 3

Table 4. Romberg Integration lterative Formula.

N Ty Tona Tona Tons
1 0.75
0.694444444
2 0.708333333 0.692857142
0.693253967 0.693209465
4 0.697023809 0.693121384
0.69315453
8 0.69412185

0.69314718 - 0.693209465|
o] = x100%
| 069314718 |

~ (8.985847 x10"3)%

Using Boole s rule with n = 4

1
h=—=025
4

I=‘21r—g(7y0 +32y,+12y, +32y, +7y4)
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;= 2%(0.25)
45

(7x1+32x0.8+12x0.66667 +32x0.571429 + 7 x0.5)
1=0.693175

0.69314718 - 0.693175|
0| = x100%
| 069314718 |

= (4.013578 x10 )%

Using Boole s rule with n = 8

1
h=—=0125
8

2h
1:4_5[7)70 +32(yy +ys +ys ) H12(y, + ) +14y, +7y8]

_ 2%(0.125)
45

1 [(7 x1)+32(0.88889+0.727273 +0.615385 +0.53333) +12(0.8 + 0.571429) + (14 x0.66667) + (7 x 0.5)]

1=0.693148

ol _|0.69314718 - 0693148
71 069314718

= (1.04088 x10™* )%

x100%

Using weddles s rule withn = 6

1
h=—=0.16667
6

3h
I=E[y0 Oy ty, +6y; ty, +0y; +J/6]

_3x0.1667
10

I [1+5%0.857143+0.75 +6x0.66667 +0.6 +5x0.545454 +0.5]

1=0.693149114

_[0.69314718 - 0.693149114]

5| x100%
| 0.69314718
= (2.79072x107* )%
Using the 2-point DIAF
N p= 0] LI
=2h=———=—f(x)= ; w(x) =
a2 87T
1
So that, 1 2(8) 8 ok
ST s W

7.if (k ={0.8})

Then for the 2-point DIAF, the weights are given by A "
y,otherwise
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e (2" +(—2)k)

r Zk_l r Zk
—_ +1-— |—
2 5 2)9

where y =| 32+ (—1

and » =kmod4
x0:7
1 1
_ (2 +(-2) ) 2 2
My = 32+(—1)1 ! 2-1 (2 +(-2) )
1 o1 1 o] ry =] 32+ (-1) > 5
S b e 22+(1_2)2
2 5 2)9 5 5 2] g
0 23
=32+ — o~ |=32 =32-| —|=12
120 ﬁ
2 5 5
3 3
NS (2% + -2%)
3 3 237" ( 3)23
[ — 1_i R
2 5 2) 9
=32+ 0 32
3 237" ( 3)23
- + 1_i R
2 5 2) 9
- (24 +(—2)4)
g =|32+(-1) pp 2
02" (1_0j2
2 5 2) 9
5
=32- 2—4 =14
27
9
Similarly, it follows that on substitution:
7‘5:32’7‘6:12’7‘7232’}”827

Thus,
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=>[=—-%432 +14

+12 +32

=0.693147901

o _|0.69314718 - 0.693147901
a] 0.69314718

~ (1.0394x10‘4)%

x100%

2

J.xw/x +1dx

1
The exact solution of

2

I= IX\/X +1dx
1
analytically is as follows

Using integration by parts, put

U=x dv =-/x+1dx
:du:dx 3\):%()(4'1)%

Then by integration by parts, it follows that

2 2
1=%x(x+1)%L (% Pra
1

2

:»z{%x(xﬂ)%-%(xﬂ)%}

=2.771281292 —-0.3771236166
= 1 =2.394157675

1

Using Gauss-Chebyshev 3 point formula

2

1= Ixﬁdx

1

b- b+
We first transform the interval [1,2] onto [—1,1] using the transformation x = ( a jt +( a

and b=2 :>x=%(t+3)

:dx:%dt

j where a =1

24

(25)

(26)

27

11
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1
]
Substituti tion (ii)* into (i)* yields, /= ! (+3)(e+5) 2 dr
ubstituting equation (i) * into (i)* yields ;[A\/E( )( )

Then by Gauss-Chebyshev 3 point formula I= } £ (t)dt :”{ f[‘/gJ + f(O) + f[_‘/gﬂ , here
-1 30 2 2

J%:%ﬁ(’+3)(t+5)% |
3f(t):%ﬁ(t+3) (t+5)(1_t2)

o]

:lzg.%ﬁ +(0+3) (o+5)(1—02)

_|2.394157675 -2.510109434]

Thus 2 |‘9’|_| 2.394157675 |><100%
’ (-] [[-L s |1 -2 '
2 2 2 =4.843112898,
o 4.68173:3381+6.708203932 7
T 1242 +2.16941756
=2.510109434
Using Gauss-Legendre 3 point formula
2
1= [x/x+ldx (28)
1
We first transform the interval [1,2]onto [—1,1]
. . _(b-a b+a
using the transformation x = > t+ —
where a =1
and b=2 :x:%(t+3)’
= dx :%dt 29)
1
Substituti tion (if)* into (i)* yields, /= [ 1 +3)(t+5) 2 dr
ubstituting equation (i) * into (i)* yields ;[A\/E( )( )
1
Then by Gauss-Legendre 3 point formula I=]| f(t)dt:é[sf(_\/g]+8f(0)+5f[\]§ﬂ , here
-1
=1 P
t)= t+3)(t+5 .
f@= ) le+3)(e+3)
Thus,

; 5),s) 2
{818
31:1.%\5 +8(0+3)(0+5)% y
+5(\E+3](\E+5J ’

1 {22.87245718 + 53.66563146}

T 3642 | +45.35251595
=2.394157585
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_[2.394157675 -2.394157585|

Using Simpson s 3/8 rule with 8 subdivisions

&, x1009,
2.394157675
=3.74926%107° o/
2-1_1
h=—— =§;f(x) =xy/x+1

Table 5. Values of X against f(x) =xvx+l,

13

x 1 2 s 2%
8 4 8
S(x) V2 1.63995522 1.875 2119017314
3 13 7 15
2 B 4 3 2
2.371708245 2.632800909 2.902046692 3.17921718 23
Then by Sympson’s 3/8 rule.
Iff( ). 3h(f0 UL I st +"‘+f3N—2J
x x —_——
a 8\ M) 23 et ot T i) fay
Thus for 8 subdivisions we have,
L[Nt
2 f +3
I=jx\/x+1d =% o [+f5+f7
1 2L+ )+
1.63995522 +1.875
2
B 3|2 +3| 42371708245 +2.902046692 |+
1‘!““1""‘@ +3.17921718
2(2.119017314 +2.632800909) +2+/3
1=2.357143764
&= |2.394157675-2.357143764| %1009/
| 2.394157675 |
=1.546009746 %,
Using Romberg Approximation
2-1_ 1
h=—— :g;f(x) =xJx+1
Table 6. Values of X against | (X) =xvx+1 for Romberg Integration.
9 5 11
) ! 8 4 3 2
f(x) V2 163995522 1.875 2.119017314 2/3
3 13 7 L
2 8 4 8
2.371708245 2.632800909 2.902046692 317921718
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Using trapezoidal rule with 1 subdivision.
h= g =1

]'i :jxﬁd)(:%h(ﬁ) +‘f;4)
1

=2.439157589

Using trapezoidal rule with 2 subdivisions.

2-

h=——=

_
N | —

7, =[x ldc = h(fy +21,+ £)

=T, :%(%)(\5+2(2.371708245) +2.3)
=2.405432917

Using trapezoidal rule with 4 subdivisions.

h:E:

ENE

T, =jx#x+1dx=%h(fo +2(fy+ fi+ 1)+ 1)
L1 :%(%)(ﬁ+2(1.875+2.371708245j+2ﬁJ

+2.902046692
=2.396978131

Using trapezoidal rule with 8 subdivisions.

p=2"1-1
8
2 1 f+ i+,
E:Ix,/xﬂdngh fo¥2|+fi+ fi+ 1o |+ £
1 +f‘7

1.63995522 +1.875+
| 2.119017314+2.371708245
= =—(1 ) 2+2
$T2 % +2.632800909 +2.902046692
+3.17921718

=2.394862894

Now, using Romberg approximation, we apply the iterative formula below to obtain the Romberg extrapolates as shown
below
_ N vy

Ly == 3
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Table 7. Values of X against f(x) =xyx+1 for Romberg Iterative Integration.

15

N Ty Tona Tonp Tons
1 2.439157589
2.39419136
2 2.405432917 2.394149372
2.394159869 2.394159716
4 2.396978131 2.39415713
2.394157815
8 2.394862894

2

So the Romberg approximation gives [ = .[x\/x +1dx =2.394159716

1

| :|2.394157675—2.394159716|x100%
| 2.394157675 |

~8.5249x10™ ¢/

Using Boole's rule with n = 4

1
h=—=025
4

I= j—’;(wo +32y,+12y, +32y, +77,)

/= 2%(0.25)
45

1=2.394158

] = 12.394157675 - 2.39415777| %1009/
| 2394157675 |

~3.97451x107° ¢/

Using Boole s rule with n = 8
1
h=—=0.125
8

45[7)/0 +32(y; + ys s ty,) H12(y, + ) 14y, +7y8]

1

_ 2x(0.125)(7x1414214) +32(1,639955+2 119017 +2632801+3.179217)
T 45 | +12(1.875+2.902047) +(14x2.371708) + (7 x3.464102)

1=2.394158

_[2.394157675 - 2.394158|
2 _‘ 2.394157675 ‘xloo%

=3.97451x107° o/

Using weddles s rule withn = 6

(7><1.414214 +32%x1.875+12x2.371708 +32x2.902047 +7><3.464102)
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1
10 +2.721729+5%3.086037 +3.464182
2.394157675 —2.394703395
& | - |><100%
| 2.394157675 |
~2.2793832x1072 9/
Using the 2-point DIAF
=2 o S T o) =
=2; h—4(2) . S(x)=xJx+1; wx) =1
2 2( ) s
So that, I :J‘xﬁx+1dx = (é) Z/‘kf(1+£j
1 45 = 8
7,if (k=10,8
Then for the 2-point DIAF, the weights are given by Ak :{ lf( { }) where
v, otherwise
(! (2k+(—2)k)
y=132+(-1
r Zk_1 r 2k
- +1-2 |2
2 5 2)9
and » =kmod4
A =7
1 1
al e
h =] 82+ (1 11 1 2-1 (22 +(‘2)2)
12 (4-1)2 hy =| 32+ (-1 2 >
2 5 2 22 ( _2j2
2 5 2)9
=32+ 0 =32 23

Francis Oketch Ochieng’ ef al.: The N-Point Definite Integral Approximation Formula (N-POINT DIAF)

1
h=—=0.16667
6

3h
]:ﬁ[YO +5y, +y, +6y; +y, +5y;, +)/6]

1414214 +5x1.717349+2.036766+6x2.37177
_3x0.1667 5x 349+2.036766+6x%2.3 8}1:2'394703395
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R B R,
Ao =| 32+ (-1
3 3 2371 3) 23
[ — 1_i _
2 5 2) 9
=32+ 0 32
3 2371 3) 23
— +|1-—|—
2 5 2) 9
4 4
ay =32+ (-1)* (2 e )
) 024! (—jz“
2 5 2) 9
5
—32-| 2 =14

Similarly, it follows that on substitution:

7»5 = 32,7»6 = 12,7»7 = 32,%8 =7
Thus,
N +32( yﬂ)

8
+12( i

(y) /\/7 +32[ 1l l%n)
:>1:2458 +14(%W
Vallan

)
j+32(138 1%4.1)
il

+32 158 1%4.1)
+70242+1)

7(ﬁ)+32(1.63995522)+12(1.875)
1| +32(2.119017314)+14(2.371708245)

(
" 180 +32(2.632800909) +12(2.902046692)
(

+32(3.17921718) +7(243)
=2.394157677

e ‘_\2 394157675 - 2394157677\)(1007
| 2.394157675 | °

=8.3537x10"% ¢

The exact solution of

17

(30)
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analytically is as follows

= du =2xdx

L } __________ (if) €2))

Then substituting (ii) into (i) yields
1
1= I%e“du
0
:I:A[e“]i, :%(6—1)
= 1=0.8591409142

Using Gauss-Chebyshev 3 point formula

1
I= J.xe”~ dx (32)

0

- +
We first transform the interval [0,1] onto [—1,1] using the transformation x = (b 2 a ]t + ( b 2 a] where a =0

and b =1 :x:%t+%’
=dv=Vdr (33)

1 JAGE
Substituting equation (i7)* into (i)* yields, 7 = j%(fﬂ).e dt.
-1

1
Then by Gauss-Chebyshev 3 point formula [ = | f(¢)dt = g[f[g} +f(0) +f[—§ﬂ ,
-1

f(t) - %(f +1).€%(H1)2

here V1-#° .
= f= 14(t+1).e%*(’”)z (1-2)

= %(2.228160234 +1.284025417 +0.06728856552)

=0.9371041584
|E|_|o.8591409142—0.93>71041584|)(1007
1 0.8591409142 | °
~9.07455842/

Using Gauss-Legendre 3 point formula
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I= j‘xe”2 dx

0

We first transform the interval [0,1] onto [—1,1]

b- b+
using the transformation x :( 5 a )t +( 5 a) where a =0

and b =1 :>x=%t+%,

=1
=dx 2dt

%(H—l)2

1
Substituting equation (ii)* into (i)* yields, / = j%(rﬂ).e dr .
-1

19

(34)

(35)

1 Vi
Then by Gauss-Legendre 3 point formula 7 = [ f(¢)dt 25{5]{—\/%} +8f(0) +5f[\/§ﬂ ,here f(¢)= /4(t + 1).eA(m) .
-1

Thus,

R

= 1 =2 /] +8(0+1).

o T

_1]1.14142294 +10.27220333
36| +19.49795163
=0.8586549417

)= 0.8591409142 - 0.8586549417|
a 0.8591409142 |

=5.6564938x107" ¢/

x1009/

Using Simpson’s 3/8 rule with 8 subdivisions

1-0 1 B
h=—8 :g;f(x)=xe"

Table 8. Values of X against f (x) =xe" for Simpson s 3/8 rule with 8 subdivisions.

1 1 3
X — — =
8 4 8
f(x) 0.1269684636 0.2661236147 0.4316223543
1 5 )
2 8
0.6420127083 0.9236901221 2.718281828

Then by Sympson’s 3/8 rule.

? s = Jo 3 H It Iy st T gt T iy
xX)dx =—
a Sty P2t gt fot ==t iy 3 iy
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Thus for 8 subdivisions we have,
T G
I=.[xe'r dx=? ' it S
' R+ )+

0.1269684636 +0.2661236147
3 | 0+3| +0.6420127083 +
64 0.9236901221+1.881545676

+2(0.4316223543+1.316290993) +2.718281828

1=0.8313342317

|£|:|0.8591409142—0.8313342317|x1007
a 0.8591409142 | ’
=3.2365683057,

Using Romberg Approximation

1_ 2
h= ) = e

0| —

2
Table 9. Values of X against | (x) =xe" for Romberg Approximation with 8 subdivisions

1 1 3
x 0 - - 2

8 4 8
f(x) 0 0.1269684636 0.2661236147 0.4316223543
1 5 3
2 8 4
0.6420127083 0.9236901221 1.316290993

Using trapezoidal rule with 1 subdivision.
1-0

1
2 1
1= [xe”dv=—hlf, + £,)
0

1
:>T1=E.1(O+e)

=1.359140914

Using trapezoidal rule with 2 subdivisions.

[
N\.
o
1
| —

1
c o1
T, = [xe* dx:Eh(f0+2f4 +£,)
0

=T, =%(y2)(o +2(0.6420127083)+2.718281828)
=1.000576811
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Using trapezoidal rule with 4 subdivisions.

1-0 1
h=——=—
4 4
1, |
Ty = [xe® dv=—h(fo+2f2+ fa+ o)+ )
0
0.2661236H47
:374:104 0+2 +e
2 +0.6420127083+1.3162909%
=0.8958920576
Using trapezoidal rule with 8 subdivisions.
1-0 1
h=——=—
8 8
1 2 . 1+ /2 +f3
18 = [xe™ ds = h| 0 +2| + f4 + f5 + f6 |+ /8
0 + /7
0.12696846 36 + 0.26612361 47
. 049 + 0.43162235 43 + 0.6420127083
= T8 = ? 18 + 0.92369012 21 + 1.31629099 3

+ 1.88154567 6

= 0.8684243558

Now, using Romberg approximation, we apply the iterative formula below to obtain the Romberg extrapolates as shown
below

_4T2N,i_T .

N,i
T 4= :
2N,l+1 3

Table 10. Values of X against f (x) = )cexz for Romberg Approximation Iterative formula with 8 subdivisions.

N Ty Tona Tona Tong
1 1.359140914
0.8810554433
2 1.000576811 0.8543110386
0.8609971398 0.8601526231
4 0.8958920576 0.858692227
0.8592684552
8 0.8684243558

So the Romberg approximation gives

2
I=|xe® dv =086015262 31

O — =

2 _[0.8591409142 —0.860152623]|x1007
A 0.8591409142 | 0

=1.17758199><10_1%
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Using Boole s rule with n = 4

1
h=—=0.25
4

I=‘21—g(7y0 +32y,+12y, +32y, +7y4)

/- 2x(0.25)(

45 7x0+32x0.266124 +12x0.642013 +32x1.316291+7 x2.718282)

1=0.859659919

| = 0.8591409142 - 0.859659919) <1009/
t 0.8591409142 | 0

=6.041x107 9/

Using Boole s rule withn = 8

1
h=—=0125
8

2h
1:4_5[7J/o +32(yy +ys +ys ) H12(y, + ) +14y, +7y8]
7= 2x(0.125)( 7x0+32(0.126968 +0.431622 + 0.92369 +1.881246)
45 +12(0.266124 +1.316291) + (14 x0.642013) + (7 x2.718282)
1=0.859153

_|0.8591409142 - 0.859153|
o | 08591409142 |x100%

=1.431129%107 9/

Using weddles s rule withn = 6

1
h=—=0.16667
6

3h
Izﬁ[yo Oy ty, +6y; ty, +0y; +J/e]

_3x0.1667
10

1 [0 +5x0.171397 +0.372597 + 6 x0.642205 +1.040142 + 5x1.669628 + 2.719913]

1=0.859568
e _|0.8591409142 - 0.859568|

U1 08591409142 |
=4.968x107> 9/

x1009,

Using the 2-point DIAF
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So that, 7 = jxexz dx = %i&f (%)
k=0

0

. . . 7.if (k ={0.8})
Then for the 2-point DIAF, the weights are given by A = where
v, otherwise
e (2k+(—2)")
y={32+(-1
r Zk_l r 2k
- 4| ]-— | =
2 5 2)9
and » =kmod4
7‘0 =7
1 1
)
ry =32+ (-1 = . - (22 +(-2)2)
12 12 ry =] 32+ (-1) > 5
2 5 2 2277 (1_2)2
2 5 2)9
=32+ 0 =32 23

0
=32+ =32
3 2371 3) 23
_ + 1_i _
2 5 2) 9
4 4
Ay =32+ ( 1)4_1 (2 T )
) 024" (_OJZ“
2 5 2) 9
5
=322 =14



24 Francis Oketch Ochieng’ ef al.: The N-Point Definite Integral Approximation Formula (N-POINT DIAF)

Similarly, it follows that on substitution:

k5 :32,7\.6 :12,}\.7 :32,%8 =7
Thus

7(0e02J+3z %e(%)z
+12 %e(%)z +32 %e(%)z
" +14 %e(%)z +32 %e(%)z

+12 %e(%)z +32 Ve(%)z +7(e1j

8

7(0)+32(0.1269684636) +
1 [12(0.2661236147) + 32(0.4316223543)

180 +14(0.6420127083) +32(0.9236901221)
+12(1.316290993) +32(1.881545676) + 7(e)

=0.8591532096
&= 0.8591409142 - 0.8591532096| 1004/
| 0.8591409142 |
=1.431123x107* A
m
I e* cos xdx
0
The exact solution of
%
1= I e* cos xdx (36)
0
analytically is as follows
Using integration by parts, put
U =cosx dv=e'dx
= du = -sinxdy =y =" 37)

Then by integration by parts, it follows that

x 77 % Xl
I=e cosx]02 + _[e' sin xdx
0

u=sinx dv=e"dx
Further put

=du=cosxdx =>v=e"



Applied and Computational Mathematics 2017; 6(1): 1-33 25

A
- je" cos xdx
0

=1= %[ex cosx+e” sinx];% = %(e% —1)
= 1=1.90523869

7

=1I= [ex cosx+e” sinx]02

Using Gauss-Chebyshev 3 point formula

I =

7
j e” cos xdx (38)
0

- +
We first transform the interval [0, 7% ] onto [—11] using the transformation xZ(bzajt+(bTaj where a =0 and

2
b=ﬂ2:>x=%(t+l)

=dx= %dt ————————————— (i) * (39)

1
Substituting equation (ii)* into (i) * yields, I = J%.eﬁ(m) cos(%(t +1))dt .
-1

m

1
Then by Gauss-Chebyshev 3 point formula 7 = Il Sf(de = _[}{\BJ +f(0) +f[_gﬂ ’

317 2
O ()
= f)= %.e%(ﬁl)\/l - cos(%(t +1))

By 2
( ? 1—[—?} co{%(—%ﬂ}]
31=%T.% + %(OH)WCOS(%(O+1))

AL 1_(? T co{%(gﬂn

T [0.5524070987 +1.550883 197}

e

7
e

Thus, =—
12 | +0.22738974

=1.916907495

1.90523869 ~1.916907495| 7
1.90523869 | ’

=6.12458943x107"

Using Gauss-Legendre 3 point formula

/=

7
j e cos xdx (40)
(4]

- +
We first transform the interval [0, %] onto [—1,1]using the transformation x = (b > a )t + (bTa) where a =0
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and bzﬂzjx:%(tﬂ)’

1
Substituting equation (ii)* into (i) * yields, / = J%.eﬁ(m) cos(%(t +1))dt .
-1

1
Then by Gauss-Legendre 3 point formula 7 = [ f(¢)dt = é{Sf{—\/gJ +8f (0) + Sf(\/gﬂ ,
-1

here f(¢) = %.e%(lﬂ) cos(%(r +1)).
Thus,

i o 7241
— =17 +86%(0+1)c0s(% (0+1)
S )

_ 11| 5.875062405 +12.40706558
36| +3.548573471
=1.905088092

e _[1.90523869 —1.905088092|x100y
a 1.90523869 | ’

=7.90443%x107 ¢/

Using Simpson’s 3/8 rule with 8 subdivisions

h—i%_o—ﬁ
T8 16.f(x)=e"cosx

Table 11. Values of X against f (X) =e"cosx for Simpson’s 3/8 rule with 8 subdivisions.

(41

nw V4 RY/4 /4
X 0 —_ — — —

16 8 16 4
f(x) 1 1.19356881 1.368240338 1.498535197 1.550883197
S 3m m 7
16 8 16 A
1.482881951 1.243027662 0.7711704511 0

Then by Sympson’s 3/8 rule.

lff( N To 3yt Ia+fst 7+ g *t——"*fanp
a 8 ey T3t fgtlgt =~ fay3) T fay
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Thus for 8 subdivisions we have,

% il fo+3 n+n
1= '[ excosxdx:§ : tfa+f5+f7
0 +2(f3+ f6)*+ 8
,7 1.19356881+1.368240338
2 . 37| 1+3| +1.550883197 +1.482881951
1= .[ e’ cos xdx =—
0 128 +0.7711704511

+2(1.498535197 +1.243027662) +0
1=1.883730368

| 11.90523869 —1.883730368)
T 1.90523869 |
~1.1289043257,

%100,

Using Romberg Approximation

/-0
h:L:E;f(x):excosx
8 16

Table 12. Values of X against | (X ) =e"cosx for Rombeg Integration with 8 subdivisions.

27

n 4 3m
X 0 = & uddd

16 8 16
f(x) 1 1.19356881 1.368240338 1.498535197
V4 Sm 3 7 Pr
4 16 8 16 A
1550883197 1482881951 1.243027662 0.7711704511 0

Using trapezoidal rule with 1 subdivision.

1

h:%_oz%

=0.7853981634

Using trapezoidal rule with 2 subdivisions.

/-0
h:AT:%
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o

T,=|e cosxdx=%h(fo +2f1, +f8)

[}

1
=T, ZE(%)(I +2(1.550883197) +0)
=1.610759896

Using trapezoidal rule with 4 subdivisions.

Ty =

"
|

e” cos xdx :%h(fo +2(f2 + fa+ f6)+ 1R)

1 1.368240338 +1.550883197
=Ty =— % | 1+2 +.0
2V/8 +1.243027662

=1.830822494

Using trapezoidal rule with 8 subdivisions.

n/ -9
hzé =76

8

7 fit 2+ 3
Ty= [ ¥ cosxde=_hl fo+2 +fa+fs+fe |+ 13
0 *fy
1.19356881+1.368240338

1 +1.498535197 +1.550883197 +
=Tq =— 77 1+2
16 1.482881951 +

1.243027662+0.7711704511
=1.886586787

Now, using Romberg approximation, we apply the iterative formula below to obtain the Romberg extrapolates as shown
below
. LN T
2N,l+1 3
Table 13. Values of X against f (x) =e"cosx for Rombeg Iterative formula with 8 subdivisions.
N Ty Tong Tony Tons
1 0.7853981634
1.885880474
2 1.610759896 1.910275433
1.904176693 1.903918343
4 1.830822494 1.905507615
1.905174885
8 1.886586787

So the Romberg approximation gives / =

VA
j e* cos xdx =1.903918343
0
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_[1.90523869 - 1.903918343|
i | 1.90523869 IXIOO%

=~ 6.930089x10 2 %

Using Boole s rule with n = 4

h:z:
4

oo |3

I=‘21—g(7y0 +32y,+12y, +32y, +7y4)

= 2><(0.392857)(7><1+32><1 .368367 +12><1.550883]

45 +32x1.242193+7x-0.00304

1=1.905396

_[1.90523869 ~1.905396|
i _‘ Loos23se | 0%

~8.26x107 9/

Using Boole s rule withn = 8

hel2om
8

16
2h
]:EP)’O +32(y, + v, + 25 + 1) H12(0, + yg) H 14y, +T 5]

7x1+32(1.193644 +1.498653 +1.482591
+0.769451)+12(1.368367 +1.242193) | 1=1.90524
+(14x1.550883) +(7x~0.00304)

|- 2X(0.196429)

_|1.90523869 —1.90524|
o= oosaee0 | 00%

~9.38631x107> 9/

Using weddles s rule withn = 6

h:yzﬂ

6 12

3h
1=ﬁ[yo +5y,+y, +6y;, +y, +5y, + ]

= 3x0.261905| 1+5%1.255091+1.462061+6%1.550883
- 10 +1.424387 +5%0.956886 +-0.00304

1=1.905246
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| = 1.90523869 —1.905246|
1

1.90523869 | x1009%
=~4.0x107" 9/
Using the 2-point DIAF

]T. = p* . =
22) E,f(x) e'cosx; w(x)=1

0

YA b
So that, 1 = fe" cos xdx = 2(‘é6) Zglﬁkf(%j
k=0

. . . 7,if (k={0,8})
Then for the 2-point DIAF, the weights are given by )lk =

v, otherwise

k k
- 2" +(=2)
where y = 32+(—1)k ! ( )

r 2k_1 r Zk
[ o I T
2 5 2)9

and » =kmod4

o 3
=32+ =32 =32- =12
el 8

205
Ay =[32+(-1) (23+(_2)3)
= +(-1
3 32371 3323
22 4122
2 s 2)9
=32+ 0
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PNEESY

RO

/15 =32,/l6 =12,/l7 =32,A

Similarly, it follows that on substitution:
g =7

Thus,

et +32(e’%" (7o)

7(1) +32(1.19356881)
+12(1.368240338)
+32(1.498535197)
= I =——| +14(1.550883197)
32(1.482881951)
)
1

+

+12(1.243027662
+32(0.7711704511) +7(0)
=1.905241431

w
[N
(e
—_~ o~ —~ —~ —~

R |_|190523869 1.905241431| %1009/
| 1.90523869 | ’

=1.43843%x107 ¢

Table 14. Summary of the Test Results.

31

Integral Formula Integral Value

Error

2-Point DIAF 0.693147901
Gauss-Chebyshev 3 Point 0.729864959
Gauss-Legendre 3 Point 0.693121693
Simpson’s 3/8 Rule with 8 Subdivisions 0.684854208

1.0394 x 10%
5.30%
3.6771x10°%
1.20%
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Integral Formula Integral Value Error
Romberg Approximation 0.684854208 8.985847x 10°%
Trapezoidal rule with 4 subdivisions 0.697023809 5.59279344 x10™%
Trapezoidal rule with 8 subdivisions 0.69412185 140615158 x10™'%
Boole’s rule with n = 4 0.693175 4.013578 x10°%
Boole’s rule with n = 8 0.693148 1.40615158 x10™'%
Weddles’s rule withn =6 0.693149114 2.79072 x10™%
2-Point DIAF 2.394157677 8.3537x10°%
Gauss-Chebyshev 3 Point 2.510109434 4.84%
Gauss-Legendre 3 Point 2.394157585 3.74926x10%%
Simpson’s 3/8 Rule with 8 Subdivisions 2357143764 1.55%
Romberg Approximation 2.394159716 8.5249 x10°%
Trapezoidal rule with 4 subdivisions 2.396978131 1.17805774843x10™%
Trapezoidal rule with 8 subdivisions 2.394862894 2945582938684 x107%
Boole’s rule with n = 4 2.394158 3.97451 x10°%
Boole’s rule withn =8 2.394158 3.97451 x10°%
Weddles ’s rule withn =6 2.394703395 22793832 x107%
2-Point DIAF 0.85915321 1.431123 x10°%
Gauss-Chebyshev 3 Point 0.937104158 9.07%
Gauss-Legendre 3 Point 0.858654942 5.6564938 x107%
Simpson’s 3/8 Rule with 8 Subdivisions 0.831334232 3.24%
Romberg Approximation 0.860152623 1.17758199 x10™'%
Trapezoidal rule with 4 subdivisions 0.895892058 4.28%
Trapezoidal rule with 8 subdivisions 0.868424356 1.08%
Boole’s rule withn =4 0.859659919 6.041 x107%
Boole’s rule with n = 8 0.859153 1.431129 x10°%
Weddles ’s rule withn =6 0.859568 4.968 x10°%
2-Point DIAF 1.90524143 1.43843 x10™%

Gauss-Chebyshev 3 Point
Gauss-Legendre 3 Point

Simpson’s 3/8 Rule with 8 Subdivisions
Romberg Approximation

Trapezoidal rule with 4 subdivisions
Trapezoidal rule with 8 subdivisions
Boole’s rule with n = 4

Boole’s rule with n = 8

Weddles ’s rule with n = 6

1.916907495 6.12458943 x10™'%

1.905088092 7.90443 x10°%
1.883730368 1.13%
1.903918343 6.930089 x10%
1.830822494 3.91%

1.886586787 9.7897986 x10"'%

1.905396 8.26x107%
1.90524 9.38631x10°%
1.905246 4.0x10%

4. Precision and Stability

Definition 4.1: The degree of accuracy or precision of a
quadrature formula is the largest positive integer n such that

the formula is exact for x* ,foreachk =0,1,2,...... .

Trapezoidal rule has degree of accuracy one while
Simpson’s rule has degree of accuracy three.

Remark: The degree of precision of a quadrature formula
is n if and only if the error is zero for all polynomials of
degreek =0,1,......,n, but is NOT zero for some polynomial
of degreen+1.

Remark: N is even, degree of precision is N +1. N is odd,
degree of precision is N

For the N-point Definite Integral Approximation Formula
(N-point DIAF), if N =2 then the degree of precision is
three while if N =3 then the degree of precision is three.

In addition to having a stable problem, i.e., a problem for
which small changes in the initial conditions elicit only small
changes in the solution, there are two basic notions of
numerical stability. The first notion of stability is concerned
with the behaviour of the numerical solution for a fixed value
t>0ash - 0.

Definition 4.2 A numerical integration method is zero
stable if small perturbations in the initial conditions do not
cause the numerical approximation to diverge away from the
true solution provided the true solution of the initial value

problem is bounded.

For a consistent s-step method one can show that the
notion of stability and the fact that its characteristic
polynomial p satisfies the root condition are equivalent.
Therefore, as mentioned earlier, for an s-step method we
have convergence < consistent & stable.

This concept of stability also plays an important role in
determining the global truncation error. In fact, for a
convergent (consistent and stable) method the local
truncation errors add up as expected, i.e., a convergent s-step

method with O(h” ”) local truncation error has a global

error of orderO(h" ) .

The N-point Definite Integral Approximation Formula (N-
point DIAF) is stable order p =0 and unstable at p = N +1.

Thus, N-DIAF method is only conditionally stable, i.e., the
step size has to be chosen sufficiently small to ensure
stability.

5. Conclusion

From the above tests, it is evident that the 2-Point DIAF
has the lowest relative error compared to other numerical
integration techniques. As such it gives a better approximate
solution to the integration i.e. it easily converges to the exact
value [10] and is more stable.
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Recommendations

A comparison with other numerical integration
methods, such as according to [7] Gauss-Legendre 3 point
formula, Gauss-Chebyshev 3 point formula, Simpson’s
Rule, and Romberg method, demonstrated that the N-point
DIAF gives a better precision, as depicted by the test
problem above. The error involved in using the N-point
DIAF is the least. It is therefore recommended that the N-
point DIAF should be implemented by Scientists and
Engineers to help in approximating definite integrals
especially those that cannot be evaluated using analytical
techniques.
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