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Abstract: Memory and hereditary effects due to fractional time derivative are combined with the global behaviours due to 
space integral term. Haar wavelet operational matrix is adjusted to solve diffusion like equations with time fractional derivative, 
space derivatives and integral terms. The fractional derivative is understood in the Caputo sense. The memory behaviours is 
included in all the points of the domain due to the existence of space integral term and the inverse fractional operator treatment 
and this is ilustrated in error graphs introduced. A general example with four subproblems ranging from the simple classical heat 
equation to the fractional time diffusion equation with global integral term is proposed and the calculated results are displayed 
graphically. 
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1. Introduction 

Due to the developments in the environmental technology 
many mathematical models had been reformulated to recover 
the real situations. Integral equations models consider the 
global behaviors of the physical processes while differential 
equations models consider the local behaviors. 
Integrodifferential equations models is a vital step in the 
developments of mathematical models. Delay differential 
equations considers the back history of the phenomena under 
consideration it is a step towards realistic models. Many 
authors have considered integral or differential or 
integrodifferential equations with delay parameters. Recently, 
fractional order differential equations is used in modeling 
many physical and engineering processes such as anomalous 
diffusion, complex viscoelasticity and behaviors in 
mechatronic and biological fields. Fractional order differential 
equations consider the memory and hereditary effects in 
addition to the local behaviors. In previous works the authors 
have studided the dificulties of solving some problems related 
to the diffusion equation with different methods. In [1] the 
solution of the simple diffusion equation is considered by the 
use of with restrictive Chebyshev rational approximation. In 

[2] Rektorys considered the diffusion equations with integral 
terms appears in the non- homogeneous term or in the 
boundary conditions with the method of discretization in time. 
In [3] El-Sayed considered the fractional order diffusion wave 
equation. In [4] Youssef and Shukur considered use the 
method of lines to construct an approximate solution to a 
fractional time and space diffusion equation. In [5] Youssef 
and Shukur use the modified variational iteration method to 
construct an approximate solution to a fractional time and 
space diffusion equation. In [6] the authors considered the 
memory effects due to the existence of fractional time 
derivatives and a time dependent integral term via Haar 
wavelets treatment in the form 

���(�,�)��� = �
�(�,�)��
 + � 
  �� �(�, �)�� + �(�, �)    (1) 

Where 0 < � ≤ 1 , �  and �  are arguments; usually 0 ≤ � ≤ �  denotes time, 0 ≤ � ≤,  and � = 0  or 1 , with 
initial condition �(�, 0) = �(�)  and boundary conditions �(0, �) = ��(�) , �(1, �) = ��(�) . The motivation for such 
equations lies in different branches of physics, in rheology, 
and especially in the theory of heat conduction when inner 
heat sources are of special types [2]. 

In this work the memory and hereditary behaviors are 
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considered through fractional derivatives and the global 
behaviors through considering space integral terms. 

���(�,�)��� = �
�(�,�)��
 + � 
  �� �(�, �)�� + �(�, �)     (2) 

Where the fractional order derivatives is understood in the 
Caputo sense. 

Definition (1): The Caputo time fractional derivative of 
order � > 0 of the function �(�, �) is defined by [7, 8]: ∂ �(�, �)∂� = 1Γ(" − �) $  �

� (� − �)%& &� �%��% �(�, �)�� 

where � ∈ (" − 1, ") , " ∈ ( . If � ∈ ( , then this will 
coincide with the classical partial derivative. 

Equation (2) considers the memory effectis in time through 
the fractional time derivatives and the memory effects in space 
through the integral term. 

The number of publications about the fractional calculus 
has rapidly increased because of some physical processes as 
anomalous diffusion, complex viscoelasticity, behavior of 
mechatronic and biological systems, rheology etc. cannot be 
described adequately by the classical models [9]. The 
fractional derivatives is understood in the Caputo sense. 

As our treatment in [6] the fractional derivatives appears in 
equation (2) can be translated to the right hand side as 

��(�,�)�� = �)*���)*� +�
�(�,�)��
 , + � �)*���)*� 
  �� �(�, �)�� + �)*���)*� �(�, �) (3) 

Thus, the memory and hereditary effects due to the 
fractional time derivatives have enforced to the terms on the 
right hand side and this well be clear during the numerical 
calculations. 

Due to the developments in computational systems 
(techniques and devices) numerical methods are considered as 
the master methods for such problems. Among numerical 
methods the finite differences [4, 5, 7, 10, 11], the weighted 
residual methods specially the finite element method also 
spectral methods or combinations of them are heavily used in 
solving such problems. Recently, the wavelet methods are 
rapidly used and the Haar wavelet is the simplest known 
wavelet method. 

Haar wavelets are made up of pairs of piecewise constant 
functions and are mathematically the simplest among all the 
wavelet families. The Haar wavelet is the only real valued 
wavelet function which is symmetrical, orthogonal and has a 
compact support [12]. A good feature of the Haar wavelets is 
the possibility to integration analytically arbitrary times. The 
Haar wavelets are very effective for treating singularities, 
since they can be interpreted as intermediate boundary 
conditions [13], but the disadvantage of the Haar wavelets is 
their discontinuity since the derivatives do not exist in the 
breaking end points and it is not possible to apply the Haar 
wavelets for solving partial differential equations directly. 

Chen and Hsiao [14, 15], who first proposed a Haar product 
matrix and a coefficient matrix, they derived a Haar 
operational matrix for the integrals of the Haar function vector 
and put the application for the Haar analysis into the dynamic 

systems. The method technique is approximate the highest 
derivative of the differential equation with finite Haar wavelet 
series. Then integrate this approximation to get the lower 
order derivatives in the equation. Many authors use this 
technique to solve the differential and integral equations [16, 
17, 18, 19, 20]. 

2. Haar Wavelets 

The use of Haar wavelet in solving problems of calculus 
appears only from 1997, [16]. The technique is described in 
many publications [6, 14, 15] and the references cited there. 
The Haar wavelet family, ℎ%(�); 0 ≤ � ≤ 1 is used as bases 
and are defined as: 

ℎ�(�) = .1, 0 < � ≤ 1,0, /�ℎ0123�0               (4) 

the mother wavelets function ℎ�(�) is 

ℎ�(�) = 41, 0 ≤ � < �5 ,−1, �5 ≤ � < 1,0, /�ℎ0123�0             (5) 

and for " ≥ 2 the Haar wavelet is defined from ℎ�(�) by 
translation and dilation operations. That is ℎ%(�) = ℎ�(28� − 9); " ≥ 1           (6) 

Where " = 28 + 9, 0 ≤ :, 0 ≤ 9 < 28. The Haar wavelet 
functions are orthogonal in the sense 


  �� ℎ;(�)ℎ%(�)�� = 2&8<;% = =2&8 , > = " = 2&8 + 9,0, > ≠ "  (7) 

Accordingly, Haar wavelets are independent in the interval 
(0, 1). Wavelet analysis allows representing a function or 
signal in terms of a set of orthonormal basis functions called 
wavelets. Haar wavelets are a basis for @5[0, 1], for more 
details you can see [6] and the references there in. 

3. Function Approximation 

It is well known that any function C(�) ∈ @5[0, 1] can be 
written as C(�) = ∑  E%F� G%ℎ%(�)              (8) 

where the coefficients G% are determined by 

G% = 28 
  �� C(�)ℎ%(�)��, " ≥ 0        (9) 

with " = 28 + 9, 0 ≤ :, and 0 ≤ 9 < 28, [6]. Generally, the 
series in (8) can be truncated to a finite number of terms. C(�) = ∑  ;&�%F� G%ℎ%(�) = H(;)I J(;)(�)    (10) 

Where as usual the coefficient vector H(;)I  and the Haar 

function vector J(;)(�) are define as H(;)I = [G�, G�, ⋯ , G;&�]         (11) 
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J(;)(�) = [ℎ�(�), -����, -;&����BI      (12) 

Where � means transpose and > 	 28 . 

The first four Haar function vectors which � 	 A�L , ML , NL , OLB 
can be expressed the following [14] J�P��1/8� 	 A1, 1, 1, 0BI , J�P��3/8� 	 A1, 1, #1, 0BI , J�P��5/8� 	 A1, #1, 0, 1BI , J�P��7/8� 	 A1, #1, 0, 1BI 

this can be written in matrix form as V�P� 	 AJ�P��1/8�, J�P��3/8�, J�P��5/8�, J�P��7/8�B 
	 W1  1  1  11  1 #1 #11 #1  0  00  0  1 #1X             (13) 

Here V�;� denotes the Haar matrix with the components V �3, Y� 	 Ji��Y�  where �[ 	 A �5\ , M5\ , K , 5\&�5\ B  are the 

collecation points. In general, we have 

V�;� 	 ]J�;� + �5;, , J�;� + M5;, , K , J�;� +5;&�5; ,^  (14) 

where V��� 	 A1B, V�5� 	 ]1 11 #1^. 

The equation (6) can be rewritten as 

-%��� 	 _ 1 `� � � � `5#1 `5 � � � `M0 /�-0123�0           (15) 

where `� 	 a5b , `5 	 ac�.N5b  and `M 	 ac�5b . Introduce the 

following notations 

e%,���� 	 
 -%�������              (16) 

e%,f��� 	 
 e%,f&��������            (17) 

Then The integration of -%���  can be evaluated 
analytically using equation (15) and given by 

e%,���� 	 _� # `� `� � � � `5`M # � `5 � � � `M0 /�-0123�0      (18) 

e%,5��� 	
ghi
hj �5 �� # `��5 `� � � � `52&58&5 # �5 �`M # ��5 `5 � � � `M2&58&5 `M � � � 10 /�-0123�0

   (19) 

and for arbitrary k 

e%,f��� 	
ghi
hj 0 � � `� �f ! �� # `��f `� � � � `5�f ! m�� # `��f # 2�� # `5�fn `5 � � � `M�f ! m�� # `��f # 2�� # `5�f � �� # `M�fn `M � � 

 (20) 

The integration of the vector J�;���� is given by Chen and 
Hsiao method [14], who first proposed a Haar product matrix 
and a coefficient matrix 


  o� J�;������ 	 p�;�J�;����         (21) 

Where 0 � � � 1  and p�;�  is the > q >  operational 
matrix. proved that 

p�;� 	 �5; r2>p�;/5� #V�;/5�V�;/5�&� s t      (22) 

Where p��� 	 ]�5 ^ , p�5� 	 �P ]2 #11 0 ^ , p�P� 	
��u W8 #4 #2 #24  0 #2  21  1  0  01 #1  0  0 X and so on. 

 

Figure 1. Comparison between the exact solution and the approximate solutions of the partial differential equation for Case 1 equation (41) for > 	 8, 32, 64 

(> 	 16 is unstable). 
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4. Method of Solution 

Generally, the dominant derivative term appear in the 
problem can be written as a finite series in the form, [6] �x yy��, �� 	 ∑  ;&�%F� G%��z�-%��� 	 H�;�I J�;����   (23) 

The dominant derivative term means the term which 
contains the highest derivatives in only one term, the dot is 
used to denote derivatives with respect time and the primes 
means differentiation with respect to the space �. 

 

Figure 2. Comparison between the exact solution and the approximate 

solutions of the partial differential equation for Case 2 equation (44) for > 	 8, 16, 32, 64. 

divide the time interval A0, �{|%B into ( parts of length �� 
and expand the highest derivative �x yy��, �� terms of the Haar 
wavelet as equation (23). Where �z 	 � ��, � 	 1, 2, K , (. 
with assuming the row vector H�;�I  is constant in the 

subinterval A�z, �zc��. Integrating formula (23) with respect to � from �z to � and twice with respect to � from 0 to �, and 
using formula (21), the quantities �yy��, ��, �y��, ��, ���, �� 
and �x ��, �� can be expressed as: �yy��, �� 	 �yy��, �z� � �� # �z�H�;�I J�;���� (24) 

�y��, �� 	 �y��, �z� � �y�0, �� # �y�0, �z� � �� # �z� H�;�I  p�;� J�;����        (25) 

���, �� 	 �� # �z�H�;�I p�;�5 J�;���� � ���, �z� #��0, �z� � ��0, �� � �A�y�0, �� # �y�0, �z�B (26) �x ��, �� 	 H�;�I p�;�5 J�;���� � �x �0, �� � ��x y�0, �� (27) 

From the boundary conditions, we can get ��0, �z� 	����z�, ��1, �z� 	 ����z�, �x �0, �� 	 gx ����, �x �1, �� 	 gx ����, 
Putting � 	 1 in formula (26) and (27) to get �y�0, �� 	 �y�0, �z� # �� # �z�H�;�I p�;�5 J�;���� ������ # ����z� � ����z� # �����        (28) 

�x y�0, �� 	 #H�;�I p�;�5 ~ � gx ���� # gx ����      (29) 

Where the vector �  is defined as � 	 A1, 0, K , 0BI . 
Substituting formula (28) and (29) into equations (24) to (27) 
and rewrite the results by assuming � 	 �[ , � 	 �zc�  and �� 	 �� # �z� to obtain �yy��[ , �zc�� 	 �yy��[ , �z� � �� H�;�I J�;����   (30) 

�y��[ , �zc�� 	 �y��[ , �z� � �� H�;�I p�;�J�;����# �� H�;�I p�;�~ �����zc�� # ����z� � ����z� # ����zc��   (31) ���[ , �zc�� 	 �� H�;�I p�;�5 J�;���[� � ���[ , �z� # ����z� 

� ����zc�� � �[A#�� H�;�I p�;�~ � ����zc�� # ����z� � ����z� # ����zc��B       (32) �x ��[ , �zc�� 	 H�;�I p�;�5 J�;���[� � �x �0, �zc�� 

��[A#H�;�I p�;�5 ~ � gx ���zc�� # gx ���zc��B (33) 

and for the space integral term 


  �� ���, ���� 	 dt H�;�I p�;�M J�;���[� � x[A��x[ , tz� #g��tz� � g��tzc��B � x[5�#dt H�;�I p�;�~ � #g��tz� �g��tzc�� � g��tz� # g��tzc���          (34) 

The fractional derivative 
�����,�����  is understood in the 

Caputo sense defined above. Accordinglly, the fractional 

derivative 
�����,�����  can be rewritten as: 

�����,����� 	 ����& � 
  �� �� # ��& AH�;�I p�;�5 J�;���� �gx ���zc�� � �[A#H�;�I p�;�5 ~ � gx ���zc�� # gx ���zc��BB��   (35) 

which can be rearranged as ∂ ���, ��∂� 	 1Γ�1 # �� $  �
� �� # ��& A�[Agx ���zc�� # gx ���zc��B 

�gx ���zc��B �� � 1Γ�1 # �� �H�;�I p�;�5 J�;���� 

#�[H�;�I p�;�5 ~� ��)*��& �         (36) 

And 
�)*���)*� ]�
���,����
 ^ can be calculated as 

∂�& ∂��& r∂5���, ��∂�5 t 	 ∂ &����, ��∂� &� ��yy��, �z� � ��# �z�H�;�I J�;����� 
	 1Γ�1 # �1 # ��� $  �

� �� # ��&��& � ��� A�yy��, �z� 

��� # �z�H�;�I J�;������� 
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	 1Γ��� $  �
� �� # ��&��& �AH�;�I J�;����B�� 

	 &� �� � H�;�I J�;����             (37) 

then by Caputo definition of fractional derivative and equation 
(34) we get ∂�& ∂��& $  �

� ���, t��� 	 t Γ�1 � �� H�;�I p�;�M J�;���[� � �[gx ���zc�� 

��[5 ] &�����c � H�;�I p�;�~ � gx ���zc�� # gx ���zc��^   (38) 

Substitution equations (30), (34) and (36) in equation (2) it 
is found 

�����,����� 	 �yy��[ , �zc�� � � 
  �� ���, ���� � ���[ , �zc��  (39) 

And substitution equations (33), (37) and (38) in equation 
(3) it is found 

����,���� 	 �)*���)*� �yy��[ , �zc�� � � �)*���)*� 
  �� ���, ���� � �)*���)*� ���[ , �zc��                  (40) 

The Haar coefficients vector )(mC  are calculated from the system of linear equations (39) or (40). The solution is found 

according to equation (32). 

 

Figure 3. Comparison between the exact solution and the approximate solutions of the partial differential equation for Case 3 equation (46) for > 	8, 16, 32, 64 with � 	  0.9. 

 

Figure 4. Solution and the approximate solutions of the partial differential equation for Case 3 equation (46) for > 	 8, 16, 32, 64 with � 	  0.7. 
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5. The Average Error 

It is generally accepted that the error is understood as the 
difference between the exact and the calculated solutions. The 
error can be calculated at any point, let us denote by Δ�Y� to 

the error at the point �5[&�5; , �{|%� so 

Δ�Y� 	 ��� �2Y # 12> , �{|%� # � �2Y # 12> , �{|%� , Y 	 1, 2, 3, K , > 

The maximum error �� is defined as �� 	 ���|Δ�Y�| 

The average error �� can be defined as 

�� 	 ∑  [F;[F� |Δ�Y�|>  

Increasing number of collocation points not always give a 
better solution, in some cases by increasing the number of 
collocation points the coefficient matrix may turn out to be 
nearly singular, this increase error in coefficients matrix, for 
more details we recomined [6, 17, 18]. 

 

Figure 5. Comparison between the exact solution and the approximate solutions of the partial differential equation for Case 3 equation (51) for > 	8, 16, 32, 64 with � 	  0.9. 

6. Numerical Example 

We consider equation (2) with initial condition ���, 0� 	x # �5  and homogeneous boundary conditions ��0, �� 	��1, �� 	 0. In order to recognize the effect of the different 
terms we divided the problem to four cases and the force term ���, �� is used to adopt the exact solution to be ���, �� 	�� # �5�0&�. All results are given with Δ� 	 0.1, Δ� 	 0.0001 
and �{|% 	 0.001 

6.1. Case 1 

The classical (integer) diffusion equation with non 
homogenous term � 	 0, � 	 1, then equation (2) take the 
form 

����,���� 	 �
���,����
 � ��5 # � � 2�0&�       (41) 

Then equation (33) will be 

�x ��[ , �z� 	 H�;�I p�;�5 J�;���� # �[H�;�I p�;�5 ~   (42) 

Substitute equations (42) and (30) in equation (41) we 
obtain H�;�I p�;�5 J�;���� # �[H�;�I p�;�5 ~ # �� H�;�I J�;���� 

#�yy��[ , �z� # 0&���)��[5 # x[ � 2� 	 0      (43) 

and equation (3) take the same form of equation (2) 

6.2. Case 2 

The classical (integer) diffusion equation with space 
dependent integral term and non homogenous term, � 	 1, � 	 1 then equation (2) take the form 

����,���� 	 �
���,����
 � 
  �� ��s, ���� � ���M � �
5 # x � 2� 0&� (44) 

Calculate equation (34) and Substitute it with equations (42) 
and (30) in equation (44) to get 
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 ��;�I e�;�5 -�;���� # �[��;�I e�;�5 � # ����;�I -�;���� #  dt ��;�I e�;�M -�;���� # +o�M � o
5 # x � 2, 0&���) # �yy��[ , �z� � x[5 dt ��;�I e�;�� # �[���[ , �z� 	 0                  (45) 

and equation (3) take the same form of equation (2). 

 

Figure 6. Comparison between the exact solution and the approximate 

solutions of the partial differential equation for Case 3 equation (49) for > 	 8, 16, 32, 64 with � 	  0.7. 

6.3. Case 3 

The fractional time diffusion equation, when � 	 0 , 0 � � � 1 then equation (2) take the form 

�����,����� 	 �
���,����
 � �� # �5� ����� 0&� # 20&�      (46) 

Then equation (36) will be 

�����,����� 	 ����&�� �H�;�I p�;�5 J�;���� # �[H�;�I p�;�5 ����)*��& � (47) 

Substitute equations (47) and (30) in equation (46) we 
obtain 1Γ�1 # α� �H�;�I p�;�5 J�;���� # �[H�;�I p�;�5 �� � ��& 1 # �� # 20&���) 

#�� H�;�I J�;���� # uyy�x[ , tz� # ��[ # �[5� ����� 0&���) 	 0  (48) 

and equation (3) take the form 

����,���� 	 �)*���)*� +�
���,����
 , # �� # �5�0&� # 2 �)*���)*� 0&� (49) 

Substitute equations (42) and (34) in equation (49), it is 
found 

H�;�I p�;�5 J�;���[� # �[H�;�I p�;�5 ~ # ���) �� � H�;�I J�;���[�  

���[ # �[5 �0&���) # 2 �)*���)*� 0&���) 	 0       (50) 

 

Figure 7. Comparison between the exact solution and the approximate 
solutions of the partial differential equation for Case 4 equation (51) for 	 8, 16, 32, 64 � 	  0.9. 

6.4. Case 4 

The fractional time diffusion equation, when � 	 1 , 0 � � � 1 then equation (2) take the form ∂ ���, ��∂� 	 ∂5���, ��∂�5 � $  �
� ���, ���� � �� # �5� ∂ ∂� 0&� 

# +�
5 # ��M # 2, 0&�           (51) 

Use equation (34) with equations (47), (30) and substitute 
them in equation (51) to get 

����& � �H�;�I p�;�5 J�;���[� # �[H�;�I p�;�5 ~�����))*��& �  

#uyy�x[ , tz� # ��H�>�� J�>���Y� � �Y2dtH�>�� p�>�~ #dt H�;�I p�;�M J�;���[� # �[���[ , �z� 

� +�
5 # ��M # 2, 0&���) # �x[ # x[5� ����� 0&���)  (52) 

and equation (3) take the form ∂���, ��∂� 	 ∂�& ∂��& �∂5���, ��∂�5 � � ∂�& ∂��& $  �
� ��s, t��� 

# +�
5 # ��M # 2, �)*���)*� 0&���) # �x[ # x[5�0&���)   (53) 

Use equation (42) with equations (33) and (34) and 
substitute them in equation (53) to get H�;�I p�;�5 J�;���[� # �[H�;�I p�;�5 ~ � �[5 � Γ�1 � �� H�;�I p�;�~ # ��Γ��� H�;�I J�;���[� 

# �����c � H�;�I p�;�M J�;���[� � ��Y # �[5�0&���) � +�
5 # ��M # 2, �)*���)*� 0&���) 	 0   (54) 
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Figure 8. Comparison between the exact solution and the approximate 
solutions of the partial differential equation for Case 4 equation (51) for > 	 16, 32, 64 with � 	  0.7 (> 	 8 is unstable). 

7. Conclusion 

The use of memory terms in the form of fractional 
derivatives or integral forms is step towards realistic 
mathematical models. The fractional time derivative considers 
the memory and hereditary behaviours, while the integral 
terms considers the global effects of the variable under 
consideration (space). The use of inverse operator has 
improved the results significantly due to the memory effects of 
the fractional time derivatives which are extended to all other 
terms in the equation and affects on the global terms appears 
in the integral forms instead of only three terms (integer space 
derivatives). The use of operational matrix has facilitated the 
evaluation of the complicated integrals. In the numerical 
calculation section the complete problem is divided into four 
cases ranging from the classical integer case up to the 
fractional order with space dependent integral term. 

 

Figure 9. Comparison between the exact solution and the approximate 

solutions of the partial differential equation for Case 4 equation (53) for > 	 8, 16, 32, 64 with � 	  0.9. 

 

Figure 10. Comparison between the exact solution and the approximate 
solutions of the partial differential equation for Case 4 equation (53) for > 	 8, 16, 32, 64 with � 	  0.7. 

The calculated results illustrate that the wavelet techniques 
can be applied to many other problems. Recently, many 
modification in using different bases functions is used to 
increase the accuracy as required. and this will be our 
objective in a subsequent work. 

The numerical calculations illustrated the reliability of the 
wavelet technique in solving PDE as shown in the figures 
from 1 to 10. Also, the use of the inverse operator has moved 
the memory effects appears in fractional derivatives to the 
overall domain. 
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