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Abstract: In this paper three oscillating viscous flows are studied by applying the Adomian decomposition method (ADM). 

Major improvement is on the choice of the assignment of the first term of the decomposition series. Different from past studies in 

which the initial velocity profile of the whole domain is assigned as the first term of the decomposition series, the assignment in 

present study is simply the boundary velocity for Stokes’ second problem and the pressure gradient for pulsatile flows. This 

improvement demonstrates and implies that ADM is not only good in approaching the known exact solution, but also possesses 

the practicability in treating realistic problems. The derived approximate solutions accurate up to any order can be obtained after 

two key parameters are determined. Present results show an excellent agreement with those calculated by the exact solutions. 

Based on the present results, more periodic problems can be analyzed by ADM with the help of Fourier analysis. 
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1. Introduction 

Adomian decomposition method (ADM) [1-2] is a 

powerful method to analyze mathematical and practical 

problems. Without the requirements of discretization, 

linearization and perturbation, ADM can be applied to solve 

linear or nonlinear, ordinary or partial differential equations 

and integral equations for either initial-value or 

boundary-value problems. A great deal of efforts has been 

devoted to the applications of ADM [3-11], the improvement 

associated with Padé approximation [12-14], and the 

examination of the convergent behavior [15-16]. 

Recently, Liu [17] applied ADM to investigate Stokes’ 

second problem and planar pulsatile flow in a semi-infinite 

domain. He assigned the first term of the decomposition 

series from the known exact solutions [18-19] of the velocity 

and the shear stress at the plate for Stokes’ second problem, 

and the pressure gradient for pulsatile flow. Using the 

differential operator with respect to the spatial coordinate, 

the derived solution is displayed in terms of powers in 

spatial variable. Similarly, Farkhadnia et al. [20] also 

applied ADM and other two methods to study Stokes’ 

second problem. The starting assignment of the first term of 

the decomposition series (Eq.(64)) is the velocity profile at 

0=t  which is directly adopted from the exact solution 

[21-22]. Different from Liu’s solution [17], the solution is 

shown in terms of powers in time due to the different 

definition of the differential operator they chose. Though 

Liu and Farkhadnia et al. successfully validated the 

efficiency and accuracy of ADM by assigning the first term 

of the decomposition series acquired from the exact solution, 

however, the ability of ADM for simulating realistic flows 

by simply assigning the given boundary velocity (for Stokes’ 

problem) or the pressure gradient (for pulsatile flow) as the 

first term of the series is not well examined. 

Due to aforementioned demonstration, Stokes’ second 

problem in a finite-depth domain, pulsatile flows between 

plates and in a circular tube will be studied by applying ADM. 

Results for three cases are respectively shown in Sections 2 to 

4. Each Section includes the derivation processes of the ADM 

solution and the examination of convergent behavior of two 

key parameters. The derived solution will be compared with 

the exact solution to verify the efficiency and accuracy of 

ADM. Conclusions are made in Section 5. 
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2. Stokes’ Second Problem in A 

Finite-Depth Domain 

Stokes’ problem [23], also known as Rayleigh problem [24], 

describes that a viscous fluid which occupies a semi-infinite 

domain is driven by a moving plate below. The plate moving 

in a constant speed or in an oscillation type is named as the 

first or second problem. Analytical solutions to the flow 

velocity [18-19, 25] and the wall stress [19] were well 

investigated and discussed. Extended from the semi-infinite 

domain of fluid, Stokes’ problem for a fluid in a finite-depth 

domain was studied [26]. The flow considered is bounded by 

a free surface above and a moving plate below. Solutions of 

the first and second problems are derived and shown in the 

form of infinite series. For the second problem, the exact 

solution can be separated into the steady-state and the 

transient parts. In addition to analytical investigation, 

numerical methods based on discretization schemes, which 

include finite-difference method [27], finite-element method 

[28] and mesh-free numerical scheme [29], are performed to 

analyze the semi-infinite Stokes’ problems. In general 

numerical results show a good agreement with analytical 

solutions.  

In this section, ADM is applied to solve Stokes’ second 

problem in a finite-depth domain by simply assigning the plate 

velocity to the first term of the decomposition series instead of 

those adopted in [17] and [20]. Consider a fluid of kinematic 

viscosity ν  which is bounded by a plate located at 0=y  

and a free surface at hy = . The fluid is driven by the 

oscillating plate with the speed tu ωcos0 . The momentum 

equation and boundary conditions for the velocity u  are 

2
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u
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Dimensional parameters 
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are defined and applied to Eqs.(1) to (3). The results are 
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The value of λ  will be assigned to be unity henceforward 

without loss of generality. To apply ADM, a differential 

operator  

( ) ( )⋅
∂
∂≡⋅

2

2

L
Y

Y .                    (8) 

is defined and then Eq.(5) can be shown as 

T

U
UY ∂

∂=L .                       (9) 

Applying the inverse operation of Eq.(8) 

( ) ( )∫ ∫ ⋅=⋅−
Y Y
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to Eq.(9) results in  
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The solution of U  is assumed to be 
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By using the boundary condition Eq.(6), the first term 0U  

is assigned as 

( )TFYTU ⋅+= cos0 ,             (13) 

where ( )TF  represents the velocity gradient at 0=Y  

which is an unknown function of T  and will be determined 

later. The remaining terms at the right-hand side of Eq.(12) 

can be recursively calculated by 
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Now 1U  to 4U  are shown below for clear 

comprehension 
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where the superscript ( )i  demotes the i-th differentiation 

with respect to T , and !  the factorial. Therefore the 

complete solution can be written as 
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Inserting Eq.(16) into Eq.(7) gives  
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As the plate oscillates steadily, ( )TF  is assumed to be 

( ) TbTaTF sincos += ,                                                 (18) 

where a  and b  are constant parameters to be determined. Substituting Eq.(18) into Eq.(17) results in 
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Consider the approximate solution collecting terms up to nU , we define 

( )∑
=

=Φ
n

i

nn TYU
0

, .                                                     (20) 

Now parameters a  and b  for nΦ  can be solved by  

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )












+
−=−⋅+

+
−⋅

+
−=

+
−⋅+−⋅

∑∑∑

∑∑∑

−≤

=

≤

=

−≤

=

+

−≤

=

−≤

=

≤

=

4
1

222
1

2

4
3

22
1

22

000

1

000

!14

1

!4

1

!24

1

!34

1

!24

1

!4

1

nnn

nnn

i

i

ii

i

ii

i

i

i

i

ii

i

ii

i

i

ii
b

i
a

ii
b

i
a

.                          (21) 

For example, if 2Φ  is considered, parameters a  and b  

can be determined by 
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and the corresponding solutions are 










≅=

−≅−=

8915.0
673

600

2912.0
673

196

b

a

.            (23) 

Based on above derivation, the approximate solution 

Eq.(20) accurate up to any order can be solved after 

parameters a  and b  are determined by Eq.(21).  

Based on the derived solution, the convergent behavior of 

parameters a  and b  is firstly examined. The solution pairs 

of ( )ba,  for 1Φ  to 6Φ  by solving Eq.(21) are listed in 

Table 1. In each column, the decimal is the approximate value 
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and the fraction in the bracket is the exact value solved from 

Eq.(21). It is clearly found that solutions of a  and b  will 

converge when n  becomes large.  

Next, the approximate solutions 1Φ , 2Φ , 4Φ  and the 

exact solution [26] 

∑
∞

=

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TU , π

2

12 += n
N ,               (24) 

are plotted in Figure 1 for comparison. Velocity distributions 

along Y  at 0=T , 6π , 3π  and 2π  are 

respectively displayed while the period of oscillation is π2 . 

1Φ , 2Φ  and 4Φ  are respectively drawn in green, blue and 

red solid lines and exactU  is displayed in black dash line. It 

shows that 4Φ  provides the best behavior than 2Φ  while 

1Φ  is the poorest one. The corresponding quantitative 

measurement of errors is displayed in Figure 2. Error iE  for 

each approximate solution iΦ  is defined by 

exact

exacti
i

U

U
E

−Φ= , 4,2,1=i .       (25) 

In this figure 1E , 2E  and 4E  are displayed in green, 

blue and red curves, respectively. It is found that 1E  is 

around 0.1 while 2E  is smaller than 0.01 for most time 

domain. 4E  is much smaller than 2E  and 1E  which 

indicates again the rapid convergence of the present ADM 

solution. 

Table 1. Values of parameters a and b. 

 a  b  

1
�  0.4000�  

2

5

� ��� ��� �� ��� �
 0.8000  

4

5

������������
 

2
�  0.2912�  

196

673

� ��� ��� �� ��� �
 0.8915  

600

673

� ��� �� �� ��� �
 

3
�  0.2868�  

173526

604981

� ��� ��� �� ��� �
 0.8855  

535740

604981

� ��� �� �� ��� �
 

4
�  0.2870�  

544479944

1897297697

� ��� ��� �� ��� �
 0.8854  

1679959792

1897297697

� ��� �� �� ��� �
 

5
�  0.2870�  

259429955210

904006762613

� ��� ��� �� ��� �
 0.8855  

800453511540

904006762613

� ��� �� �� ��� �
 

6
�  0.2870�  (neglected) 0.8855  (neglected) 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 1. Velocity profiles for Stokes’ second problem: (a) 0=T , (b)

6π=T , (c) 3π=T  and (d) 2π=T . 

 

Figure 2. Errors of approximate solutions for Stokes’ second problems. 

3. Pulsatile Flow Between Horizontal 

Plates 

A flow with periodic variation is known as pulsatile flow. It 

is commonly observed in arterial blood circulation, hydraulic 

machines and motor engines. Exact solutions of pulsatile 

flows between plates and in a circular tube are well known 

and are referred to [30] and [31]. In this section, a 

pressure-driven pulsatile flow bounded by two fixed 

horizontal plates is studied by ADM. An oscillating pressure 

gradient is the only driven force for the flow system. Liu [17] 

studied the same problem by assigning the velocity and its 

derivative at the middle plane between two plates. For the 

sake of simulating a real flow, the pressure gradient will be the 

only assignment in present study.  

Consider a fluid of density ρ  and kinematic viscosity ν  

bounded by two plates at hy ±= . The momentum equation is 

2

21

y

u

x

p

t

u

∂
∂+

∂
∂−=

∂
∂ ν

ρ
,           (26) 

where the pressure gradient is given by  

ωtp
x

p
cos0=

∂
∂

.                 (27) 

As the flow velocity at plates is zero, the corresponding 

boundary conditions are 

( ) 0=±= hyu .                  (28) 

Applying the following dimensionless variables 

ωh

u
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h

y
Y = , tT ω= ,         (29) 

to Eqs.(26) and (28), the results are 
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where  
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In the following analysis 1== ςη  will be assigned 

without loss of generality. The boundary conditions at both 

plates become 

( ) 01 =±=YU .               (32) 

Now applying the operator defined in Eq.(8) to Eq.(30) 

leads to 
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T

U
TUY ∂

∂+= cosL .                (33) 
Applying the inverse operator of Eq.(10) to above equation 

results in 
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As the flow is symmetrical to 0=Y , it implies that 

( )0=YUY  has to be zero. The velocity at 0=Y  is 

assumed to be ( )TG  which will be determined later. Now 

the starting term of the decomposition series is given by 
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,
2

0 += .        (35) 

The remaining term can be recursively calculated by 

Eq.(14). It gives 
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The complete solution is shown as 
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Now the boundary condition at the upper plate, ( ) 01 ==YU , is adopted to calculate ( )TG . The result is  

( )( )
( )

( )
( )

( )
( ) 0

44

1
sin

24

1
cos

2 0

1

00

=
+

−⋅+
+
−⋅+ ∑∑∑

∞

=

+∞

=

∞

= i

i

i

i

i

i

i
T

i
T

i

TG

！！！
.                       (38) 

As the pressure gradient is oscillatory and so as the flow, ( )TG  is assumed to be of the form  

( ) TdTcTG sincos += ,                                      (39) 

where c  and d  are unknowns to be determined. Substituting Eq.(39) into Eq.(38) gives 
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For the approximate solution nΦ , parameters c  and d  can solved by 
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Solution pairs of c  and d  for the first four approximate solutions are shown in Table 2. It is also found that c  and d  

rapidly converge when the order of Φ  grows. Figure 3 shows a comparison of 1Φ , 2Φ , 4Φ  and the exact solution [30] 
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As the parameters c  and d  converge very quickly, very slight difference exists between 2Φ , 4Φ  and the exact solution. 

This is also observed in Figure 4 which displays the quantitative measurement of errors defined by Eq.(25). 

Table 2. Values of parameters c and d. 

 c  d  

1
�  0.4167�  

5

12

� ��� ��� �� ��� �
 0.1667�  

1

6

� ��� ��� �� ��� �
 

2
�  0.4268�  

8617

20190

� ��� ��� �� ��� �
 0.1792�  

603

3365

� ��� ��� �� ��� �
 

3
�  0.4272�  

14474521

33878936

� ��� ��� �� ��� �
 0.1788�  

3029413

16939468

� ��� ��� �� ��� �
 

4
�  0.4272�  

72953433841

170756792730

� ��� ��� �� ��� �
 0.1788�  

15268176017

85378396365

� ��� ��� �� ��� �
 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3. Velocity profiles for planar pulsatile flow: (a) 0=T , (b) 6π=T , 

(c) 3π=T  and (d) 2π=T . 
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Figure 4. Errors of approximate solutions for planar pulsatile flow. 

4. Pulsatile Flow in a Circular Tube 

The problem studied in this section is almost the same as 

that in previous section, except the geometry is changed from 

a planar type to a circular type. Consider a viscous flow in a 

circular tube of radius a  driven by a pressure gradient, the 

momentum equation reads 










∂
∂+

∂
∂+

∂
∂−=

∂
∂

r

u

rr

u

x

p

t

u 11
2

2

ν
ρ

,      (43) 

where the pressure gradient is given by Eq.(27). As the flow 

velocity around the tube is zero due to viscosity, the 

corresponding boundary condition is  

( ) 0== aru .                     (44) 

Besides, according to the symmetrical geometry of the tube, 

it implies another boundary condition 

( ) 00 ==
∂
∂

r
r

u
.                   (45) 

Applying the following dimensionless variables 

ωa

u
U = , 

a

r
R = , tT ω= ,          (46) 

to Eqs.(43) and (45), it results in  










∂
∂+

∂
∂+−=

∂
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R

U
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U
T

T
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2

2
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( )





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∂
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00

01

R
R

U

RU

.                (48) 

where 










=

=

2

2

0

a

a

p

ω
νς

ρω
η

.                    (49) 

In the following analysis 1== ςη  will be assigned 

without loss of generality. Now we define the differential 

operator 

( ) ( )






 ∗
∂
∂

∂
∂=∗

R
R

RR
R

1
L ,           (50) 

and its inversion 

( ) ( ) dRdRRR
R R

R ∗⋅=∗ ∫ ∫
−−

0 0

11L ,          (51) 

and then apply the operator to Eq.(50), it gvies  

T

U
TUR ∂

∂+= cosL .                 (52) 

Applying the inverse operator to above equation results in  

( ) ( ) ( ) 




 +
∂
∂+⋅+= − T

T

U
TURTUTRU RR cosL,0,0, 1                   (53)

which can be further written as 

( ) ( ) 






∂
∂++= −

T

U
TRTHTRU R

12 Lcos
4

1
,                                (54) 

where ( )TH  indicates the velocity at 0=Y . Now the first term of the decomposition series is assigned by 

( ) ( ) T
R

THTYU cos
2

,
2

2

0 += .                                         (55) 

The remaining terms can be recursively calculated and are shown below 
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The complete solution is displayed 
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Using the boundary condition ( ) 01 ==RU  gives  
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where 
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Similar to the idea adopted in previous section, ( )TH  is assumed to be  

( ) TfTeTH sincos += ,                                            (60) 

where e  and f  are unknowns to be determined. Substituting Eq.(60) into Eq.(58) results in  
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Now e  and f  for nΦ  can be determined by  
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Similar to the analysis in previous section, the convergence behavior of e  and f  shown in Table 3 is excellent. Figure 5 

displays the velocity profiles along R  at four different times. Both 4Φ  and 2Φ  are almost the same as the exact solution 

while 1Φ  behaves slightly poor.  
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Table 3. Values of parameters e and f. 

 e  f  

1
�  0.2390�  

65

272

� ��� ��� �� ��� �
 0.0441�  

3

68

� ��� ��� �� ��� �
 

2
�  0.2420�  

4089

16900

� ��� ��� �� ��� �
 0.0456�  

1733

38025

� ��� ��� �� ��� �
 

3
�  0.2420�  

84786625

350364736

� ��� ��� �� ��� �
 0.0455�  

3984199

87591184

� ��� ��� �� ��� �
 

4
�  0.2420�  

23592966311

97494058300

� ��� ��� �� ��� �
 0.0455�  

44345783

974940583

� ��� ��� �� ��� �
 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5. Velocity profiles for pulsatile flow in a circular tube: (a) 0=T , (b)

6π=T , (c) 3π=T  and (d) 2π=T . 
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5. Concluding Remarks 

In this paper three types of oscillating viscous flows are 

examined by applying Adomian decomposition method. 

Different from previous studies for the same problem, the 

assignment of the first term of the decomposition series is 

simply the plate velocity for Stokes’ second problem and the 

pressure gradient for pulsatile flows. In each case 

approximate solution accurate up to any order can be easily 

acquired after two constant parameters are determined. It is 

found that two parameters and the corresponding approximate 

solution converge very rapidly for all cases. Present results 

show an excellent agreement with the exact solution which 

demonstrates the capacity of ADM for simulating realistic 

flows. Based on the present method, more complicated 

initial-value and boundary-value problems with periodic 

variations can be simulated or solved by ADM associated 

with the Fourier analysis in the future. 
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