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Abstract: This paper deals with the applications of mathematical growth functions such as monomolecular, time delay logistic 

and Gompertz functions to describe the dynamics of avascular tumor growth. In this case we analyze the steady state of the 

modified systems of the model using Jacobean matrix to show that it is stable on the nontrivial stationary points of each 

applications. Numerical simulation of the growth functions is implemented by using “ode45” in MATLAB and graphical outputs 

are presented to show differences in evaluation of tumor sub-populations. We also find that the tumor cells increases with time so 

that the nutrient is disproportional to the number of cells and they transform in to quiescent and necrotic cells that cause cancer. 
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1. Introduction 

The development of a solid tumor begins with a single cell 

that can be transformed as a result of mutation. Unlike the 

normal cell the transformed cell scope homeostatic 

mechanisms of the body with inappropriate proliferation and 

leads to override apoptosis. Every tumor cell divides freely to 

develop in to a cluster of tumor cells to form a massive tissue 

termed as spheroid. Further, growth and proliferation of the 

tumor leads to the development of an avascular tumors 

consisting of around 10
6
cells which feed only on the 

nutrients available in the local environment [12]. The 

avascular spheroids structurally consists of the outer most 

zone dominantly composed of proliferating cells, the inner 

most zone of the necrotic or dead cells and the middle layer 

largely composed of quiescent cells. As a starting point to 

minimize complexity of all stages of cancer, most literates 

agree that avascular tumor growth study is a basic foundation 

of the problem. 

Mathematical modeling and analysis of tumor growth 

processes give important insights on cancer growth 

situations. It is commonly believed that tumor growth under 

ideal conditions is a simple exponential process assumed that 

sufficient nutritional support is provided by the host. 

However, a survey of literature shows that exponential 

growth of tumors has been observed only rarely and for 

relatively brief periods mainly at its very early stage. When 

we consider tumors whose growth has been followed over 

time, they grow more and more slowly as their spheroid get 

larger [1]. Recently mathematical models and numerical 

simulation with different approaches have been developed to 

describe features of avascular tumor growth. For simplicity 

of mass balance clothing system, tumor cells are assumed to 

be identical [12, 15 – 17]. 

Therefore, this work assess the application of 

monomolecular, time delay logistic, and Gompertz growth 

functions and their numerical analysis for dynamics of 

avascular tumor growth model. Indeed numerical simulation 

of growth functions will be implemented by using MATLAB. 

2. Growth Model of Avascular Tumor 

2.1. Heterogeneous Model for Dynamics of Avascular 

Tumor Growth 

The increment in size of neoplasm, new and abnormal 

growth of tissue, caused by abnormaldivision among 
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malignant cells is one of the most feasible observations under 

the investigation of cancer. Such studies may answer as to 

how the size of a tumor increases through time. 

In the present work we find a modified heterogeneous 

model on dynamics of avascular tumor growth as 

combinations of models stated in [4, 5] on one hand and on 

the other hand are considered with the application of growth 

functions. We construct three compartmental models of 

growth functions that specifically predict time delay logistic 

growth, Gompertz growth and monomolecular growth 

functions for the number of cells N (t) in the tumor. 

Accordingly the following model is a general assumption for 

the application of growth functions. 

 

Figure 1. Schematic diagram for growth function of tumor cells. 

���� � �R 	  R
 	  μ�
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���� � R
P 	  �R� � R� �  μ��Q            (1b) 

���� � R�Q 	 μ�D                                   (1c) 

Here in the system (1), N=P+Q+D, N0= P0 + Q0 + D0= 1. 

Also the rate parameters are positive; P, Q, Dare 

proliferating, quiescent, dead or necrotic cells respectively, 

Ris proliferating rate or mitosis of cells, µp is natural exiting 

rate of proliferating cells or apoptosis, µqis natural exiting 

rate of quiescent cells apoptosis, µdis natural exiting rate of 

necrotic cells or apoptosis, R1 is transition rate from 

proliferating to quiescent cells, R2 is transition rate from 

quiescent to proliferating cells and R3 is transition rate from 

quiescent to dead or necrotic cells. 

2.2. Introduction to Basic Growth Functions 

Qualitatively, the growth of an animal can be divided into 

four stages such that early exponential growth, where the rate 

of growth is proportional to weight; linear growth, where 

more and more energy is devoted to maintenance; 

diminishing growth as a maintenance balance is approached; 

and antithesis through senescence which often disregarded 

since few or no observations are made [3]. It is commonly 

believed that ideally tumor growth is a simple exponential 

process. Exponential growth describes the ideal growth status 

in which cells population divide without constraint, and 

continue to double indefinitely. However, limitations of 

resources like availability of nutrients, oxygen and space 

imply that exponential growth is impractical for the long 

term growth of solid tumors. Hence this model is effective 

for early tumor growth stage called avascular and rate of 

population growth declines as population size increases. 

To overcome the problem of simple exponential growth 

and to fit with real world manifestation of cells growth so as 

to consider its saturation, Koya-Goshu [9] generalized 

biological growth is one way from which multiple growth 

functions such as Logistic, Generalized Logistic, logistic 

delay, Gompertz, Brody, Monomolecular, Mitscherlich, Von 

Bertalanffy, Richards, Generalized Weibull and Weibull 

functions can be derived. 

Koya-Goshu generalized growth function at integral 

constant � � 1 	 ������ !�� " #$
 is defined as 

%&'( � )* � &K 	 )*( ,1 	 C .��/�0��1 2345
          (2) 

Among all derivations of Koya-Goshu generalized 

biological growth model, this work is centered at the 

monomolecular, time delay logistic and Gompertz growth 

functions. These models together with their multiple response 

and multivariate generalizations are now widely used in 

applied research for modeling and forecasting behavior of 

population growth dynamics. Inequation (2) the parameters 

used are interpreted as shown in Table 1. 

Table 1. Parameters description for Koya-Goshu growth function. 

Parameters Description of parameters K: lim:;< %&'( � %< Upper asymptote (carrying capacity) of %&'( )* Lower asymptote of %&'( ):� � %&'�( Growth rate parameter of %&'( '� A constant time shift of %&'( = A constant time scale of %&'( >, @: >@ A 0 Shape parameters of the growth function 

3. Application of Basic Growth Functions 

Monomolecular, logistic time delay and Gompertz 

functions are applicable on the model for dynamics of 

avascular tumor growth. Basically cell densities of 
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proliferating, quiescent and necrotic cells are available in the 

outer, middle and inner zones of the tumor respectively 

which feed on the common nutrients around it. Applications 

of the growth functions are concentrated on the proliferating 

cells which are capable to reproduce and grow number of 

cells in the spheroid. 

The relative growth rate, growth function and their 

corresponding ODE of the three growth functions known as 

monomolecular, delay logistic and Gompertz is summarized 

in the following Table 2. 

Table 2. Summary on Mathematical expressions of growth functions. 

Model’s Name Relative growth rate Growth function Corresponding ODE 

Monomolecular C� � C / )%&'( 	 12 %&'( � )&1 	 C D�E:( 
F%&'(F' � C&) 	 %&'(( 

Delay Logistic C� � C ,1 	 %&' 	 G() 4 %&'( � )1 � C D�E: 
F%&'(F' � C%&'( ,1 	 %&' 	 G() 4 

Gompertz C� � CHIJ )%&'( %&'( � )D�KLM� &�E:( F%&'(F' � C%&'(HIJ )%&'( 

The nature of monomolecular, time delay logistic and Gompertz functions generate sigmoid curves as exemplified in figure 

2 which indicate the saturation of population growth applied for the growth of living thing such as cells inside the body. 

 

Figure 2. Sigmoid Growth of functions. 

3.1. Application of Monomolecular Function 

Monomolecular growth function %&'( � )&1 	 C D�E:( is 

one of Koya-Goshu general biological growth function that 

gives a growth rate of 
�N&:(�: � C&) 	 %&'((. Monomolecular 

function is a well-known model of biological population with 

saturation of their ecosystem like tumor growth. The 

monomolecular growth function is applicable on the 

heterogeneous model of avascular tumor growth proposed (1) 

for this work. Here the function has meaningful impact on 

the proliferating cells of the tumor in its spheroid that change 

first entity of the model. Now the model on dynamics of 

avascular tumor growth with the application of 

monomolecular function provides a rate change on its mitosis 

so that its first equation becomes 

���� � OR ��P 	 1" 	 R
 	 μ�Q P �  R�Q                 (3) 

3.2. Application of Logistic Delay Function 

A general class of models used for quantification of tumor 

growth kinetics has a sigmoid shape which is an increasing 

curve with one inflection point that asymptotically converges 

to maximal value, is basically logistic model [11]. The 

logistic growth function %&'( � �
RS T0U� which yields a rate 

of 
�N&:(�: � C%&'( �1 	 N&:�V(� "  at a delay time τ earlier is a 

good model of biological population growth in species which 

have grown relatively too large that they are near to 

saturating their ecosystem like tumor growth. This delay 

logistic expression is applicable on the model of avascular 

tumor growth proposed and as a result of altering the 

proliferating cells of the spheroid, the heterogeneous model 

of avascular tumor growth can be restated simply by setting 

ODE as 

���� � OR �1 	 P&��W(! " 	 R
 	 μ�Q P � R�Q       (4) 

3.3. Application of Gompertz Function 

The Gompertz function describes global dynamics of 

many natural processes including growth of normal and 

malignant tissue [10]. The Gompertz model became an 

accepted representation of growth processes in general and of 
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tumor growth in particular. The essential characteristic of the 

Gompertz model is that it exhibits exponential decay of 

relative growth rate. Dynamics of growth of normal or 

malignant cells is in general described by the Gompertz 

function (Winsor, 1932) defined as %&'( � )DKLM� (�E:) with 

a rate of 
�N(:)�: = C%(')HIJ �N(:)  which is applied in the 

heterogeneous model on dynamics of avascular tumor growth 

so as to modify the proposed model leads to the following 

change for (1a). 

���� = [R HIJ �P − R
 − µ�] P +  R�                (5) 

4. Stability Analysis 

In this section we analyze the general heterogonous model 

of avascular tumor growth together with the modified 

systems as the application of growth function using Jacobian 

matrix at their equilibrium point by Routh-Hurwith 

eigenvalues test evaluation. 

4.1. General Heterogonous Model 

4.1.1. Equilibrium Points of the Model 

Considering the heterogonous model (1) of this work, it is 

not tedious to find the Free State equilibrium point isZ* =(0,0,0). Moreover, the nontrivial equilibrium point derived 

from the relation
���� = ���� = ���� = 0 can be simply represented 

by   Z∗ = ([∗, \∗, ]∗). 

4.1.2. Stability Analysis of the Model 

Since a plenty of nutrient is available at the onset of tumor 

growth, tumor cells are expected to proliferate freely with no 

need to transform into the quiescent stage [4] and the exiting 

cells are not considerably counted. Hence we assume  R
(0) = 0. Based on this assumption and by considering the 

free equilibrium point, the local stability of Z* = (0,0,0)can 

be determined by system of Jacobian matrix. 

^(Z*) = _�` − R
 − µ�
 R� 0R
 −�R� + R� + µ�
 00 R� −µ�
a 

= b` R� 00 −[R� + R�] 00 R� −µ�c 

(R − d)(−R� − R� − d)(−µ� − d) = 0 d
 = ` > 0, d� = −[R� + R�], d� = −µ� 

Based on the Routh-Hurwith perspective, as all the 

eigenvalues of the Jacobian matrix have no negative real 

parts, the model at the free equilibrium point is saddle point 

which is not stable. Indeed the other derived models as the 

application of the biological growth functions are not also 

stable at the trivial state. On the other hand the nontrivial 

steady state of the model at Z∗ = ([∗, \∗, ]∗) is determined 

by the Jacobian matrix too. 

^(Z∗) = _[` − R
 − µ�] R� 0R
 −[R� + R� + µ�] 00 R� −µ�
a 

Now letf =  ` − R
 − µ�, and g = −[R� + R� + µ�]. At 

the equilibrium point of the model the Jacobian matrix 

becomes: 

^([∗, \∗, ]∗) = b f R� 0R
 g 00 R� −µ�c 

Using technique of determinant we can determine the 

eigenvalues of the system and they are: 

d
 = −µ� < 0, d� = (f + g) − i(f + g)� + 4R
R�2      
= (f + g) − (f + g)l1 + mn#no(pRq)o2 < 0 

d� = (f + g) + i(f + g)� + 4R
R�2
= (f + g) + (f + g)l1 + mn#no(pRq)o2 . 

Based on d�, Routh-Hurwith holds at: f + g =  ` − [R
 + µ� + R� + R� + µ�] < 0. 
Considering maximum proliferating rate R = 0.04 /day, 

apoptosis rate remains constant 0.02 per day at each state 

[13], we compute parameter values based on functional 

relations expressed by s = t uuR� (1 + α([ + \ + ])) , R
 =
� (1 − tanh (4s − 2), R� = 
� (R
) , R= βD|} [7, 12] provide R
 = 1,  R� = 0.48, R� = 0.5  at which the steady state of the 

systems are evaluated. Hence, the value of f + g is -1.98< 0 

that indicates the model is stable. Biologically the model is 

more suitable when the rates of quiescence and necrosis are 

not less than or simply exceeds the mitosis and the recurred 

quiescent cells for which nutrient reach and hence we can 

conclude the model fits with condition of tumor. 

4.2. Monomolecular Function 

4.2.1. Equilibrium Point of Monomolecular Model 

To find out the nontrivial equilibrium point Z∗ =([∗, \∗, ]∗)  we start from equation (1c) then we get\∗ =��n� ]∗ and from equation (1b) we have [∗ = [R� + R� +µ�] ��n#n� ]∗. Using these relations with equation (1a) based 

on the application of monomolecular growth function we 

determine [∗ , \∗  and ]∗  from RK − �R + µ� +  R

[∗ +R�\∗ = 0  as follow: 

]∗ =  n!n#n�[�nR��Rn#��noRn�R����n#no]��, 

\∗ =  n!n#�nR��Rn#��noRn�R����n#no, and 
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[∗ =  RK�R� + R� + µ���R + µ� + R
��R� + R� + µ�� − R
R� 

Now let � = n![�nR��Rn#��noRn�R����n#no]��. 

Thus the equilibrium point is given by ([∗, \∗, ]∗) = ��µ��R� + R� + µ�
, �R
, �R
R�� 

4.2.2. Stability Analysis of Monomolecular Model 

Based on the given functions of the model that matrix at 

any point including at Z∗will be ^([, \, ]) = ^([∗, \∗, ]∗) 

= _−[R + µ� +  R
] R� 0R
 −[R� + R� + µ�] 00 R� −µ�
a 

Now let f =  −�R + µ� +  R
� , and g = −[R� + R� + µ�] such that the eigenvalues becomes: 

d
 = −µ� < 0,   d� = (pRq)�(pRq)l
R��#�o(���)o� < 0, and 

d� = (f + g) + (f + g)l1 + mn#no(pRq)o2  

Considering the third eigenvalues d� ,  clearly f + g < 0 

implies that −[R� + R + µ� +  R
 + R� + µ�]  is negative 

and the model is stable. 

4.3. Delay Logistic Function 

4.3.1. Equilibrium Point of Time Delay Logistic Model 

Like in a monomolecular function the nontrivial 

equilibrium point Z∗ = ([∗, \∗, ]∗) of the time delay logistic 

we get relations  \∗ = ��n� ]∗ and [∗ = [R� + R� +µ�] ��n#n� ]∗. Now let   = = noRn�R��n#n� , so that the value of [∗ 

will reduce to[∗ = =µ�]∗. According to these relations and 

delay logistic proliferating component of the model for a 

small time delay, we have 
n! [∗� + �µ� + R
 − R�[∗ −R�\∗ = 0 and its equilibrium point yields: 

]∗ = K ��n�n#����R �o���on�� , \∗ = K ��n�n#����R �o���onn� , ��F    [∗ =
K ��n�n#����R �o���n . 

Suppose   � = ��n�n#����R �o��� ,  the equilibrium points of 

the tumor growth model with application of delay function 

are given by ([∗, \∗, ]∗) = �!�n , !��nn� , !��n��". 

4.3.2. Stability Analysis of Time Delay Logistic Model 

Based on the given functions of the model the matrix is: 

^([, \, ])
= �[−2RK [ + R − µ� − R
] R� 0R
 −[R� + R� +  µ�] 00 R� −µ�

� 

At the equilibrium point of the model the Jacobian matrix 

becomes ^([∗, \∗, ]∗) 

= _[−2� + R − µ� − R
] R� 0R
 −[R� + R� + µ�] 00 R� −µ�
a 

For   f =  −2� + R − µ� − R
 , and g = R� − R� − µ�, 
the eigenvalues of the matrix are: 

d
 = −µ� < 0,    d� = (pRq)�(pRq)l
R��#�o(���)o� < 0  and 

d� = (f + g) + (f + g)l1 + mn#no(pRq)o2 . 
From d� ,the model is stable at f + g < 0. 

Here f + g = −1.48 < 0  based on the rates used in the 

above systems (1 a-c). 

4.4. Gompertz Function 

4.4.1. Equilibrium Point of Gompertz Model 

Clearly \∗ = ��n� ]∗ and [∗ = [R� + R� + µ�] ��n#n� ]∗  for = = noRn�R��n#n� .Based on the relations above as well as the 

equation (1a) and
���� = 0 the proliferating component of its 

equilibrium point gives  P∗ = ).#�� �o�������n#"
. So that D∗ = �∗��� = ���� .#�� �o�������n#", and Q∗ = ��n� D∗ =

��n� .#�� �o�������n#"
.Let � = no�n� − µ� − R
, the equilibrium 

point is([∗, \∗, ]∗) = /).�� , ��n� .�� , ���� .��2. 

4.4.2. Stability Analysis of Gompertz Model 

The partial derivative of %  with respect to P is given 

by
�N�� = R HIJ �P − R − µ� − R
 . Based on the given 

functions of the model the Jacobian matrix will be ^([, \, ])
= �[R HIJ )P − R − µ� − R
] R� 0R
 −[R� + R� + µ�] 00 R� −µ�

� 

At Z∗,  proliferating value becomes:  [∗ =. R HIJ �! .(0�� ) − R − µ� − R
 = −� −  R − µ� − R
 . 

So that the Jacobian matrix at the equilibrium point is: 
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^([∗, \�, ]�( � _	X� � R � μ� � R
Y R� 0R
 	XR� � R� � μ�Y 00 R� 	μ�
a 

Forf � 	X no�n� 	 μ� 	 R
Y 	 ` 	 μ� 	 R
, and  g � 	XR� � R� � μ�Y, all the three eigenvalues are negative 

if f � g h 0,and the parameter values above match with this 

situation,  f � g � 	1.52 h 0  so that stability of the model 

exists. 

 

5. Simulation Study 

5.1. Growth Functions Calibration 

In this section, we compare the three biological growth 

functions stated above by observing their graphical results 

with an experimental data. In this discussion, the data chosen 

are the experimental results from [14] manipulated in a 

mouse used to compare the growth functions for carrying 

capacity K=150 x 10
7
 and rate of growth R=0.6 perday. 

Graphs of the data and results obtained from the calibrated 

growth functions are shown in Figure 3. 

 

Figure 3. Growth functions calibration at R=0.6. 

 

Figure 4. Growth functions calibration at R=0.3. 
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The results of growth functions compare quite well with 

the experimental data and they all have similar path with the 

direction of data growth. The time delay logistic growth 

function fits more closely with the data as in figure 3. 

Gompertz is the next and monomolecular is the least to fit 

with this particular data. However, this rate of proliferating is 

very high that may be when there are enough nutrients 

around the tumor. With the presence of nutrient limitation the 

rate becomes too less. For example, if the rate is reduced say 

to half (R=0.3), the data mostly fits with Gompertz as we 

show in figure 4. 

5.2. Model Simulation 

We notice the following phenomena of the three biological 

growth functions discussed above, which clearly shows 

avascular tumor growth. The functional forms and parameter 

values are chosen from earlier studies to validate the models 

stated in table 3 below. 

Table 3. Functional forms parameter values of the tumor growth model. 

Functional forms of parameters Reference Parameter values Reference 

R=R(c) = βD|} [7, 12] s* � 1 [7, 12] 

R
 � R
&s( � 12 &1 	 tanh &4s 	 2(( [7, 12] α � 0.2,β � 0.8,γ � 10 [7, 12] 

R� � R�&s( � 12 &R
( [7, 12] K � 10� [12] 

s =
t uuR� &1 � α&[ � \ � ](( [7, 12] μ� � μ� � μ� � 0.02 [13] 

R� � R�&s( � 12 &R
( 	 μ� Computed τ � 0.009 Assumption 

 

Our results confirm previous observations [1-14] that 

tumor growth is not a simple exponential function. The 

biological growth functions like monomolecular, delay 

logistic, and Gompertz functions give a better description of 

growth slowdown for the status of tumor growth. From figure 

5 we observe that in all cases proliferating subpopulation is 

dominant initially, but when time passes as a consequence of 

nutrient insufficiency the concentration of quiescent and 

necrotic cells exceed the reproductive proliferating cells as a 

result of their mutation. This is biologically justified to 

describe tumor growth as a cause of different cancer diseases. 

 

Figure 5. Tumor Growth with proliferating, quiescent and necrotic components. 

Despite the structural similarities of the three systems, 

there are important differences in their simulation outputs. In 

the system of the model with monomolecular function, there 

is high proliferating rate that leads to high rates of quiescence 

and necrosis too. However, the model with time delay 

logistic has slow rate and the Gompertz base model shows an 

average rate. 

6. Conclusions 

As stated in the introduction mathematical modeling and 

analysis of tumor growth processes give important insights 

on the most worldwide dangerous cancerdisease. Considering 

the three components of a tumor, the proliferating, quiescent 

and necrotic cells explicitly in its spheroidand our work deals 
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on a three compartmental model. We then applied three 

growth functions known as monomolecular, time delay 

logistic, and Gompertz which influence on mitosis parametric 

rate that affects the proliferating parts of the spheroid. 

Because of the fact that tumor cells are limited by resources 

mainly the nutrient supply, we use nutrient based parameters. 

Wehave analyzed the heterogonous model of avascular 

tumor growth together with the modified systems as the 

application of growth function using Jacobian matrix at their 

equilibrium by the Routh-Hurwith eigenvalues test. We find 

that the model at the free equilibrium point is saddle which is 

not stable, whereas the nontrivial steady state of the model is 

stable whatever any growth function is applied. 

The simulationsare done also in general have the 

proliferating growth of cells and as a result of spheroid 

enlargement which leads to the nutrient insufficiency 

resulting cells to mutate in to quiescent and then to necrotic 

stage. In early stages of the growth, the proliferating rate is a 

large fraction of the spheroid, however, as time passes the 

growth rate of proliferating cells is reduced drastically, 

whereas the numbers of dead cells maximize to be 

accumulated at the core of the spheroid that might be 

malignant tumor. 
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