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Abstract: A new approximation method for conic section by quartic Bézier curves is proposed. This method is based on the 
quartic Bézier approximation of circular arcs. We give the upper bound of Hausdorff distance between the conic section and the 
quartic Bézier curve, and also show that the approximation order is eight. And we prove that our approximation method has a 
smaller upper bound than previous quartic Bézier approximation methods. A quartic G2-continuous spline approximation of 
conic sections is obtained by using the subdivision scheme at the shoulder point of the conic section. 
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1. Introduction 

It is well-known that besides the straight line, the conic 
sections are the simplest geometric entity. Conic sections are 
widely used in the fields of CAGD or CAD/CAM. Since the 
most of conic sections cannot be accurately represented by 
polynomials in explicit form, the parameter polynomials are 
used to approximate the conic sections. Bézier curves and 
surfaces [1-4] are the modeling tools widely used in 
CAD/CAM systems. Most of the previous work on conic 
sections approximation is based on quartic Bézier curves. 

In 1997, Ahn and Kim [5] presented the approximation of 
circular arcs by quartic and quintic Bézier curves with 
approximation orders eight and ten. The approximation of 
circular arcs by quartic Bézier curves with approximation 
order eight were represented in [6-8]. Fang [9] presented a 
method for approximating conic sections using quintic 
polynomial curves. The constructed quintic polynomial curve 
has G3-continuity with the conic section at the end points and 
G1-continuity at the parametric mid-point. Floater [10] found 
that the approximation of the conic section by Bézier curve of 
any odd degree n has optimal approximation order 2n. Ahn 
[11] presented two methods of the quartic Bézier 
approximation of the conic section. Hu [12] gave a method for 
approximating conic sections by constrained Bézier curves of 
arbitrary degree. In 2014, Hu [13] provided a new 
approximation method of conic sections by quartic Bézier 

curves, which has a smaller error bound than previous quartic 
Bézier approximations.  

The outline of this paper is as follows: In section 2, we 
present a new approximation method for conic sections by 
quartic Bézier curves, and give an upper bound on the 
Hausdorff distance between the conic section and the quartic 
Bézier curve. It is shown that the approximation order is 
eight. And we prove that our approximation method has a 
smaller error bound than previous quartic Bézier 
approximations. Finally, we illustrate our results by some 
numerical examples. 

2. Quartic Bézier Approximation of 

Conic Sections 

In this section, we give a new highly accurate 
approximation method of conic section by quartic Bézier 
curves. The conic section can be represented as [14] 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2
0 0 1 1 2 2

2 2 2
0 1 2

B t B t B t
t

B t B t B t

+ ω +
=

+ ω +
p p p
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where 0p , 1p , 2p  are the control points, 0ω >  is the 

weight associated with 1p , ( )2
iB t  is the quadratic Bernstein 

polynomial given by 
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It is also well known that ( )tc  is an ellipse when 1ω < , a 

parabola when 1ω =  and a hyperbola when 1ω > . 
The quartic Bézier curve used to approximate the conic 

section ( )tc  is given by 

( )
4

4
i i

i 0

t B (t),
=

=∑b b  

where ( )i 0 i 4≤ ≤b  are the control points, 

( ) ( )4
iB t 0 i 4≤ ≤  are the quartic Bernstein polynomials 

defined by 

( ) ( )4 i4 i
i

4
B t t 1 t , i 0,1, 2,3, 4.
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− 
= − = 
 

 

Lemma 1. [15] Suppose that ( ) [ ]t , t 0,1∈ ，h  is any 

continuous curve which lies entirely inside the (closed) 

triangle 0 1 2∆p p p  such that ( ) 00 =h p  and ( ) 21 =h p . Then 

( )
[ ]

( )( )H 0 1 22 t 0,1

1 1
d , max ,1 max f t 2

4 ∈

 ≤ − + ω 
h c h p p p ,  (1) 

where ( )Hd ,h c  is the Hausdorff distance [12] defined by 

( )
[ ] [ ]

( ) ( )
[ ] [ ]

( ) ( ){ }H
s 0,1 t 0,1t 0,1 s 0,1

d , max max min t s ,max min t s
∈ ∈∈ ∈

= − −h c h c h c
, 

and f: 0 1 2 R∆ →p p p  is a function defined by  

( ) 2 2
1 0 2f x 4= τ − ω τ τ ,              (2) 

where 0 1 2, ,τ τ τ  are the barycentric coordinates with respect 

to 0 1 2∆p p p . Any point 0 1 2x ∈ ∆p p p  can be expressed as 

0 0 1 1 2 2x = τ + τ + τp p p . The curve ( )tc  satisfies the equation 

( )( )f t 0=c  for [ ]t 0,1∈ . 

The control points of the approximation curve ( )tb  can be 

expressed as  

0 0=b p , ( )1 0 11= − α + αb p p , ( )2 11= − β + βb m p , 

( )3 2 11= − α + αb p p , 4 2=b p , 

where 0 2

2

+
=

p p
m  is the midpoint of 0p  and 2p . In order 

to ensure that the approximation curves ( )tb  is contained in 

0 1 2∆p p p , α  and β  must satisfy 0 1< α <  and 0 1< β < . 

The point 
1

2
 
 
 

b  lies on the line segment joining two 

points 1p  and m, and ( )tb  has the barycentric coordinates 

with respect to 0 1 2∆p p p  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )

2 2 2
0

2 2
1

22 2
2

1 t 1 t 4 1 t 1 t 3 1 t ,

2t 1 t 2 1 t 3 t 1 t 2 t ,

t 3 1 1 t 4 1 t 1 t t .

  τ = − − + − α − + − β
 

  τ = − α − + β − + α  


 τ = − β − + − α − +
 

  (3) 

Obviously ( )i i 0,1,2τ =  satisfy

( ) ( ) ( ) ( )0 2 1 1t 1 t , t 1 tτ = τ − τ = τ − . Substituting Eq.(3) into 

Eq.(2), we can get  

( )( ) ( ) ( )22f t 4t 1 t A B C ,= − − + +b         (4) 

where 

( )( )
4

22 1
A 1 4 3 t ,

2
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( ) ( )
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( ) ( ) ( ) ( )1
C 8 4 4 1 8 4 3 1 .

16
= ω − α + β + ω ω + α + β − ω        

Suppose ( )( )f tb  has zeros at 
1

t
2

= . Then from 

1
f 0

2

   =  
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b
 
it follows 

2 3

1 4

ωα = − β
ω ±

. But 

2 3

1 4

ωα = − β
ω −

 will tend to infinity as ω  tends to 1, which 

does not meet our requirement. So we choose 

2 3

1 4

ωα = − β
ω +

.                (5) 

Substituting Eq.(5) into Eq.(4), we can get 

( )( ) ( )
( )

( )
2

22

2

q t 1
f t 4t t 1 t

21

β  = − − 
 ω+

b ,      (6) 

where  

( ) ( ) ( ) ( ) ( )2 22 2q t 4 1 3 1 4 t 1 t 9 1β = ω − ω+ β − ω − + ω+ β    

( )( ) ( )2 2 212 1 4 4 3 6 13+ ω ω + ω + ω − β − ω ω + ω − .   (7) 

The approximation curve ( )tb
 
contacts with the conic 

( )tc  at 
1

t 0,
2

=  and 1 with multiplicity at least two 

respectively. If 
1

t
5

=  and 
4

t
5

=
 
are the roots of 

( )( )f t 0=b , we can get 
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( )
( ) ( ) ( )( )i2

i 2

7 25 68 1 5 1 1 9 912
,i 1, 2.

3 1 16 9

ω − ω + − − ω − ω + ω +ωβ = ⋅ =
ω + ω +

 (8) 

By Eqs. (6), (7) and (8) we can get the leading coefficient 

( )iu ω  of ( )( )f tb  as follows 

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

23 i2

6 2
i 22

1 5 2 1 9 91 1
u 2 5 ,i 1,2.

1 16 9

 ω − ω ω + + − ω + ω +
 ω = =

ω + ω +
 

Since the approximation curve ( )tb  is chosen to contact 

with the conic ( )tc  at 
1 1 4

t 0, , , ,1
5 2 5

=  with multiplicity 

2,1,2,1 and 2, we have  

( )( ) ( ) ( )
2

22
i i

1 1 4
f t u t t t t t 1 .

5 2 5
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b  

From ( )( ) ( )( )2 1f t f t>b b , it follows 

( )( ) ( )( ) ( ) ( )
2

22
1 1

1 1 4
f t f t u t 1 t 1 t t .

2 5 5
    = = ω − − − −    
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b b  (9) 

The value of ( )( )f tb  is only determined by ω . If we 

want to determine an upper bound on the Hausdorff distance 
between the approximation curves and the conics, we need to 
obtain the range of ω  to ensure that the approximation curve 

( )tb  lies inside 0 1 2∆p p p . 

Theorem 1. If the weight ω  satisfies 10 ′< ω < ω , then the 

curve ( )1 tb
 
lies inside 0 1 2∆p p p , where 1( ) 1′α ω =  and 

1 5.8331′ω ≈ . 

Proof. According to the convex hull property of Bézier 

curves, the quartic Bézier curve ( )1 tb
 
lies inside 0 1 2∆p p p

 
when 0 1< α <  and 10 1< β < . 

Substituting 1β = β  into Eq. (5), we can get  

( )( ) ( ) ( )( )
( ) ( )2

1 57 32 5 1 9 91 1

2 1 16 9

 ω ω + ω − − ω − ω + ω +
 α =

ω + ω +
. 

Differentiating α  with respect to ω  gives 

( ) ( )( ) ( )( )

2 4 3 2

2 22 2

d 256 513 144 2560 12090 14030 5535 4095

d 16 9 2 1 16 9 9 91 1

α ω + ω − ω − ω − ω − ω += +
ω ω + ω + ω + ω + ω +

 

Since the equation 
d

0
d

α =
ω

 has no real roots, there are only 

two possibilities, either 
d

0
d

α >
ω

, or 
d

0
d

α <
ω

 for all 

0 < ω < ∞ . 

From 
0

d
lim 0.8721 0

dω→

α ≈ >
ω

, it follows 
d

0
d

α >
ω

 for all 

0 < ω < ∞ . Therefore α  is a monotonically increasing 

function with respect to ω  for 0 < ω < ∞ . It is easy to get 

0
lim 0
ω→

α = , lim 1.3125 1
ω→∞

α ≈ > . Let ( )1 1′α ω = . Then 

( ) ( )
1 1

3 3

1

14615 6i 5006517 14615 6i 5006517 7
5.8331

15 15 3

− +
′ω = + + ≈ . 

Similarly, differentiating 1β  with respect to ω  gives 

( ) ( )
4 3 2

1
22 2

d 2 512 2050 1124 450 612

d 3 1 16 9

β ω − ω − ω − ω+= ⋅
ω ω+ ω +

 

( )
( ) ( )

4 3 2

22 2

1 2560 12090 14030 5535 40952
+ .

3 9 91 1 16 9

ω + − ω + ω + ω + ω −
⋅

ω + ω + ω +
 

The equation 1d
0

d

β
=

ω
 has a unique zero 2  9.9106′ω ≈ . 

Since 1 2( ) 0.9514,′β ω ≈
 1 1

0
lim 0, lim 0.9167
ω→ ω→∞

β = β ≈ , we 

have 1 1 20 ( ) 1′< β < β ω <  for any (0, )ω∈ +∞ . 

In summary, we have 0 1< α < , 10 1< β <  for 

10 ′< ω < ω . 

Theorem 2. For 10 ′< ω < ω , the Hausdorff distance 

between the conic section (t)c  and the approximation curve 

1(t)b  is bounded as 

( ) ( )H 1 0 1 2d , 2≤ δ ω − +b c p p p ,        (10) 

where 

( )
( ) ( )( )

( )( )

232

13 6 2 22

1 5 2 9 91 150053 95489 2329 1
max ,1

2 5 1 16 9

 ω − ω ω+ − ω+ ω++    δ ω =  ω  ω+ ω +

 

Proof. The polynomial ( )
2

22 1 1 4
t 1 t 1 t t

2 5 5
    − − − −    
    

 

has the maximum 
17 8

50053 95489 2329

2 5

+
 at 

1 17 137
t

2 40

+= ±  in the interval [0, 1]. By Eq.(1) and 

Eq.(9), we can get the value of ( )δ ω . The proof of Theorem 2 

is completed. 

Floater [15] gave the result that 1ω −  and 0 1 22− +p p p  

are ( )2hο , where h  is the maximum length of the 

parametric interval under subdivision. So according to the 
error bound, the approximation order of the approximation 
curve 1(t)b  in Theorem 2 is eight. The error of Hu’s 

approximation method [13] is smaller than that of other 
previous quartic Bézier curve approximation methods. Next, 
we will prove our error bound is smaller than that of Hu’s 
method. 

Hu showed in [13] that for 20 5.753038< ω < ω ≈  



43 Zhi Liu et al.:  A Highly Accurate Approximation of Conic Sections by Quartic Bézier Curves  
 

( ) ( )H 2 0 1 2d , 2 ,≤ λ ω − +Q p p p p       (11) 

where  

( )
( ) ( ) ( )( )

( ) ( )

232

19 2 22

1 2 2 1 153 471 133 57 1
max ,1

2 1 3 1

 ω ω− ω+ − ω + ω ++    λ ω =  ω  ω+ ω +

. 

Theorem 3. For ( )2 1 20 min , = 5.753038′< ω < ω ω ω ≈ , the 

upper bound on the Hausdorff error (10) by our method is 

smaller than that by Hu’s method, i.e., ( ) ( )δ ω < λ ω . 

Proof. Comparing ( )δ ω  in (10) with ( )λ ω  in (11) 

reveals that to show ( ) ( )δ ω < λ ω  is equivalent to proving 

the following inequality 

( ) ( ) ( )( )
( ) ( )( )

( )
( )6

64 50053 95489 23295 2 9 91 1
2.0764.

2 2 1 15 5 3 471 133 57

+ω + + ω + ω +
η ω = > ≈

ω + + ω + ω + × +

 

It is obvious that 
d

0
d

η >
ω

 for ( )2 1 20 min , =′< ω < ω ω ω
 

according to Fig 1. Therefore 

( ) ( )0 2.4818 2.0764η ω > η ≈ >  

as asserted. 

 

Fig. 1. The graph of ( )η ω . 

3. Numerical Examples 

Example 1. Let the conic section ( )tc  be given with the 

control points 0 (0,0)=p , 1 (120,150)=p , 2 (100,0)=p  

and the weight 0.5ω = , as shown in Fig 2(a). The quartic 
Bézier 1 (t)b  has the control points 0 0 (0,0)= =b p , 

1 (37.9560,47.4450)=b , 2 (82.6970,70.0650)=b , 

3 (106.3260, 47.4450)=b , 4 2 (100,0)= =b p , as shown in 

Fig 2(b). The Hausdorff error bound is  

-3
H 1d ( , ) 1.7 10≤ ×b c  

by Theorem 2 in our method. Obviously, this error bound is 
smaller than that with Hu’ s method, which is  

-3
H 2d (Q , ) 2.413908 10≤ ×p  

obtained by (11). 

 

(a) the conic section ( )tc  

 

(b) the quartic Bézier approximation 1(t)b  

Fig. 2. The quartic Bézier approximation of conic section with 0.5ω = . 

Example 2. Let the conic section ( )tc  be given with the 

control points 0 (0,0)=p , 1 (120,150)=p , 2 (100,0)=p  

and the weight 3ω = , as shown in Fig 3(a). The quartic 
Bézier 1 (t)b  has the control points 0 0 (0,0)= =b p , 

1 (99.6360,124.5450)=b , 2 (112.5100,133.9500),=b  

3 (116.6060,124.5450),=b  4 2 (100,0)= =b p , as shown in 

Fig. 3(b). The Hausdorff error bound is  

-1
H 1d ( , ) 0.993 10≤ ×b c  

by Theorem 2 in our method. Obviously, this error bound is 
smaller than that with Hu’ s method, which is 

-1
H 2d (Q , ) 1.471996 10≤ ×p  

obtained by (11). 
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(a) the conic section ( )tc ; 

 

(b) the quartic Bézier approximation 1(t)b  

Fig. 3. The quartic Bézier approximation of conic section with 3ω = . 

In addition, if the bound on the Hausdorff error H 1d ( , )b c  

is larger than a user-specified error tolerance, we can consider 
the subdivision scheme for ( )tc , consisting of alternately 

subdividing at the shoulder point ( )0.5c  and normalizing 

each subcurve, as stated in [15]. Using this subdivision 
scheme, the composite curve of the quartic Bézier 
approximation curve 1 (t)b  is globally G

2 continuous. 

Suppose the conic section ( )tc  is subdivided at ( )0.5c  

into two parts ( )1 tc  and ( )2 tc . Then ( )1 tc  and ( )2 tc  

have control points as 

( )
1 1 1 2 2 20 1 0 1 2 2 1
0 0 1 2 0 1 2 2

2
, , , ,

1 2 1 1

+ ω + ω + + ω
= = = = = =

+ ω + ω + ω
p p p p p p p

p p p p p p p p
 

and the weight 
1

2

ω+ω=  associated with the control points 

1
1p  and 2

1p . 

In Example 2, If the error tolerance is 0.001ε = , then we 

should split the conic ( )tc  at ( )0.5c  into two segments 

( )1 tc  and ( )2 tc , as shown in Fig 4(a), at the shoulder point 

by the subdivision scheme proposed in [16]. 
Using our method, the quartic Bézier approximations 

( )1
1 tb  and ( )2

1 tb  have the Hausdorff error bounds 

( ) ( )1 4 2 4
H 1 1 H 1 2d , 2.7049 10 , d , 2.2931 10 .− −≤ × ≤ ×b c b c  

The composition curve of ( )1
1 tb  and ( )2

1 tb  yields the 

quartic G2 continuous spline approximation ( )1 tb  of the 

conic section ( )tc , as shown in Fig. 4(b). 

 

(a)The conic section ( )1 tc  and ( )2 tc . 

 

(b) The composite curve of ( )1
1 tb  and ( )2

1 tb . 

Fig. 4. The G2 continuous quartic Bézier approximation curve. 

4. Conclusion 

We give a new approximation method for conic section by 
quartic Bézier curves, and prove that our approximation 
method has a smaller error bound than previous quartic 
Bézier approximations. Although the approximations are not 
optimal, but the result is high accuracy. The next question 
considered is to find a better zeros sequence in order to have 
smaller error bound. 
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