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Abstract: Reliability based optimization (RBO) is one of the most appropriate methods for structural design under 
uncertainties. It searches for the best compromise between cost and safety while considering system uncertainties by 
incorporating reliability measures within the optimization. Despite the advantages of RBO, its application to practical 
engineering problem is still quite challenging. In this paper, we propose an effective method to decouple the loops of reliability 
assessment analysis and optimization by creating surrogate models. The Latin Hypercube sampling approach is applied to a 
structural finite element model to obtain an effective database for building surrogate models. In order to avoid premature 
convergence of the optimization process, the RBO problem is solved with metaheuristic methods such as genetic algorithm and 
simulated annealing. The relative efficiency of surrogate models and their relationship with metaheuristic search engine are 
discussed in the article. 
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1. Introduction 

Uncertainty is an inevitable issue in the process of 
manufacture, infrastructure, and engineering design. 
Quantifying and propagating the uncertainty in the 
simulation or design process as a key component of risk 
analysis, robustness evaluation or reliability based 
optimization (RBO) attracts attention of researchers and 
designer [1]. Among numerous methods of uncertainty 
propagation analysis, the most commonly used method is 
Monte Carlo Simulation [2]. It is a non-intrusive, sampling 
based numerical method, but often requires a large ensemble 
of sampling points to provide a reliable and stable estimate of 
uncertainty. This makes MCS computationally expensive. 
However, using an appropriated sampling strategy (for 
example, weighted sampling, first-order sensitivity method, 
Latin hypercube sampling - LHS) allows the member of 
MCS sampling points to be significantly reduced yet 
reaching the target level of accuracy [3]. The LHS method 
will be selected in this research as MCS sampling procedure 

in view of its capability to cover the whole range of each 
sampled variable. 

The reliability analysis of complex and realistic structural 
systems is in general a computationally demanding task. 
Several surrogate models suitable for structural reliability 
design are presently available in the literature [4]. The first 
option is to apply first- and second- order polynomial 
regression models as surrogates for the true limit state 
function. More recently, attention has been given to 
alternative approaches based on artificial neural networks, 
support vector machines and Kriging interpolation models 
[5]. When compared with the polynomial regression models, 
Kriging interpolation models for structural reliability 
problems have several competitive features. Besides 
interpolation capability, Kriging models have enough 
flexibility to approximate arbitrary functions with a high 
level of accuracy, and can assess the level of uncertainty of 
model predictions [6]. 

Traditional methods may suffer from the unaffordable 
computational costs of global optimization or premature 
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convergence to local optima [7]. This study attempts to solve 
the RBO problem with two well established metaheuristic 
methods such as Genetic Algorithm (GA) and Simulated 
Annealing (SA). 

GA draws inspiration from the principles and mechanisms 
of natural selection [8] to perform search and optimization. 
This technique falls in the more general category of 
evolutionary algorithms. SA mimics the annealing process 
used in the metallurgical industry, by which slow cooling is 
applied to metals to produce better aligned, low energy-state 
crystallization [9]. SA is a local search-based algorithm able 
to bypass local optima because it searches not only for trial 
solutions that may reduce the cost function, but also allows 
moves leading to increase the objective function value. This 
mechanism may avoid the optimization search being trapped 
prematurely in a local minimum [10].  

Besides SA and GA, there are other metaheuristic methods 
such as Neural Networks (NN) and Support Vector Machines 
(SVM). NN are inspired by biological neuron systems, but 
they do not always work well as they suffer greatly from 
problems of under-fitting and over-fitting [11]. SVM extends 
the ideas of Neural Networks. Therefore, SA and GA seem 
more appropriate than NN and SWM for the purpose of this 
study. 

The paper presents an effective method to decouple the 
reliability assessment analysis and optimization stages in 
RBO problems. For that purpose, LHS is utilized to build a 
reliable database for approximating the response of a 
structural finite element model; sensitivity analysis is carried 
out to obtain the number of samples yielding a good 
compromise between model accuracy and computational 
cost. Once the database is defined, we compare the relative 
performance of three approximation methods to fit the 
probabilistic response of the structural FE model: namely, 
response surface method (first order and second order 
polynomial regressions), nonlinear fitting method and 
Kriging models. Then, a reliability based optimization 
problem where the objective is to minimize the weight of the 
structure and minimize the probability of failure is solved 
with GA and SA. 

In view of this, the paper will be structured as follows. 
Section 2 describes the sensitivity analysis carried out in 
purpose of selecting the optimal size of LHS. Section 3 
compares the above mentioned data fitting methods. The 
RBO problem is described in Section 4 and optimization 
results also are discussed in this section. Finally, Section 5 
summarizes the main finding of the study. 

2. Latin Hypercube Sampling for the 

Structural Finite Element Model 

Monte Carlo simulation (MCS) methods (sampling-based 
methods) perform repeated sampling and simulation. It is 
useful if one is trying to get a model to imitate a random 
sampling from a population or for doing statistical 
experiments. It provides [12] the most effective approach to 

the propagation and analysis of uncertainty for a number of 
reasons. First, the sampling based approach covers the full 
range of each uncertain variable in a complicated system. 
Second, modification of the model is not required, and 
direct estimates of distribution functions are provided. In 
addition, in the process of sampling, a variety of sensitivity 
analysis procedures are available. Last but not the least, 
analysis procedures can be developed and allow the 
propagation of results through systems of linked models 
[13]. 

However, MCS can keep a certain level of accuracy only 
if a very large number of iterations are performed. It is 
obvious that MCS methods become computationally 
prohibitive when simulation model is complex. To be more 
efficient than the random sampling method, several 
improved MCS methods with different sampling techniques 
have been developed. Importance sampling (weighted 
sampling), is expected to reduce error to zero if the 
probability density function is properly selected [14]. The 
first-order sensitivity method, as a variance reduction 
technique, is also utilized to accelerate MCS estimation 
convergence [15]. The variance reduction techniques are 
especially important when MCS is applied to estimate small 
failure probability [16].  

The LHS approach is an effective way to improve 
computational efficiency of MCS methods. It divides the 
range of each variable into disjoint intervals of equal 
probability, and one value is randomly selected from each 
interval [17]. This allows MCS stability to be improved and 
preserves tractability of random sampling.  

In order to propagate uncertainty into a structural finite 
element model, we first created a deterministic FEM with 
ANSYS commercial software: the cylindrical thin shell 
shown in Fig.1. Geometric parameters and material 
parameters are listed in Table1. Besides deterministic 
parameters, there are also indicated on the displacements and 
deformations of the structure (see Fig.1). Here, we are 
interested in the maximum stress generated in the structure in 
each sampling loop. 

The input variables of LHS method were the probabilistic 
parameters described in Table 1 while the output parameter 
was the maximum stress of the structure. In order to check 
the stability of LHS, different numbers of samples were 
attempted in this study. Figure 2 shows the scattered results 
of LHS computations. Cumulative probability and 
probability density distribution for the maximum stress 
selected as output parameter are plotted in Fig.3 and 4, 
respectively. It can be seen that the method is rather 
insensitive to the number of samples; hence, LHS is very 
stable and has good convergence. A more detailed analysis 
of results reveals that the peak value of the probability 
density of maximum stress increases with the number of 
samples. A good compromise between accuracy and 
computational cost was achieved by setting the number of 
samples equal to 500. 
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Fig. 1. Finite element model and results of structural analysis. 

Table 1. Parameters of material and geometrical properties. 

Material and geometrical properties 

Certain parameters 

L Length of the structure 10 m 

E Young modulus 2*10^5 MPa 

P Physical density 7000 kg/m^3 

V Poisson ratio 0.3 

Variables in Latin Hypercube sampling methods 

R1 Radius in the bottom 0.1 ~3 m 

R2 Radius in the top 0.1~3 m 

T1 Ratio of ring thickness 0.01~0.99 

PP1 Pressure in the half surface 0~240 MPa 

PP2 Force in the top 0~10^5 N 

In Latin Hypercube sampling method, the input variables 
were parameters described in Table 1. The output parameter 
was the maximum stress of the structure in each certain 
iteration of mechanical analysis. To test the stability of Latin 
Hypercube sampling method, different numbers of samples 
were attempted in our program. As presented in Fig. 2, 
scatter results of Latin Hypercube sampling. 

 

Fig. 2. Sampling points of LHS. 

 

Fig. 3. Cumulative probability of maximum stress (MPa). 

 

Fig. 4. Probability density of maximum stress (MPa). 

3. Surrogate Models of Structural 

Response 

A surrogate model fits a set of data, input-output pairs 
obtained by evaluating a black-box model of a complex 
system [18]. Here, the black-box model is the Latin 
Hypercube sampling performed in Finite Element Model. 
Surrogate models may be classified in two categories based 
on their purpose. For example, the Response Surface Method 
(RSM) can be applied in a sequential manner to approximate 
response in small regions of the design space that change as 
the optimization process converges to the optimum. First and 
second order polynomial RSM models can be expressed as : 
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Global surrogate models approximate the system’s 
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response over the whole design space. In particular, Kriging 
models fit a spatial correlation function to a data set 
consisting of input-output pairs. That is: 

( ) ( : ) ( )G x F x z xβ= +                         (3) 

Where ( : )F xβ  is a deterministic component defined by a 

regression model that gives an approximation to ( )G x  in 

mean value and ( )z x  is a stationary Gaussian process with 

zero mean and covariance , 

2[ ( ), ( )] ( : , )Cov z x z x R x xσ θ′ ′=             (4) 

That interpolates the errors between the regression model 

predictions ( : )F xβ  and the true limit state function values 

( )G x  at the m base points; 2σ  the constant process 

variance and R  is a prescribed correlation function.  
Several correlation functions (e.g. exponential, linear and 

Gaussian) are available. The most widely used correlation 
function in structural reliability problems is the anisotropic 
Gaussian correlation function 
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With 
i i id x x ′= −  is the distance between the currently 

trial point x  and the base point x′  in the ith dimention of 

space of random design variables and the 1[ , ... , ]T

nθ θ θ=  

vector defines the inverse of correlation lengths in each 
direction. 

A kriging interpolation model is completely defined by a 

vector of regression coefficients β , a vector of correlation 

parameter θ  and the variance 2σ  of the stationary Gaussian 

process. These parameters are estimated by fitting the 
Kriging model over a set of support points.  

The θ  vector has to be first estimated using the method of 
maximum likelihood: 

{ }ˆ arg min ( )L
θ

θ θ=                      (6) 

1 2( ) ( ) ( )
m

L Rθ θ σ θ=
                   (7) 

Its prediction at a given point of the space of basic random 
variables can be obtained, 

ˆ ˆ ˆ( ) ( ) ( )T TG x f x r xβ γ= +                      (8) 

1 ˆˆ ( )R y Fγ β−= −                                   (9) 

(1) ( )( ) [ ( : , ) , ... , ( : , )]T mr x R x x R x xθ θ=          (10) 

Where F is the regression matrix and y is the vector of 
true values of the function to be approximated. The matrix 

R  defines the correlation between each pair of support 

points according to the prescribed correlation function. 
The following vector including correlations between the 

currently examined trial point and the m base points used for 
fitting the Kriging model represents the expected or mean 
value predicted by the Kriging model. The variance or 
uncertainty associated with Kriging model predictions can be 
estimated as: 

2 2 1 1 11 ( ) ( ) ( ) ( ) ( )T T T

G
u x F R F u x r x R r xσ σ − − − = + −     (11) 

1( ) ( ) ( )Tu x F R r x f x−= −                 (12) 

In this study, surrogate models were created using first and 
second order response surfaces described by Eqs. (1,2), the 
Kriging model described by Eq.(3), and the general nonlinear 
fitting given in Eq.(13). 

( ) 0
1

: i

n

i

i

F x x
ββ β

=

= ∏                              (13) 

The correlation coefficient and average error between 
predicted values and true values were computed for all fitting 
method to assess their relative performance. For this purpose, 
the following equations were utilized: 

         (14) 
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Table 2. Comparison of results of surrogate model. 

 Correlation coefficient D 

Non-linear fitting 0.9933 1.0585 

1-order regression 0.8002 23.7895 

2-order regression 0.9471 6.8092 

KM(0-order) 1 5.9341e-17 

KM(1-order) 1 1.6060e-19 

KM(2-order) 1 3.5514e-21 

Tabel 2 shows that response surface method could not 
efficiently fit the huge database generated by the LHS 
random sampling. In fact, correlation coefficient is far from 1 
and average errors also are very large. Since nonlinear fitting 
is slightly more efficient than RSM, it was chosen as 
comparison basis with the Kriging models which are 
definitely the best fitting approach. In addition, the 
correlation of Kriging models was 1 regardless of the model 
order. For the test problem considered in this study, the 
lowest average error was obtained using the second order 
Kriging model. 
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Fig. 5. Stress (MPa) cumulative probability trends predicted by surrogate 

models compared in this study. 

 
Fig. 6. Stress (MPa) probability distributions predicted by surrogate models 

compared in this study. 

Predictions of surrogate models on cumulative probability 
and probability density are respectively shown in Figs. 5 and 
6 for all fitting methods. Since results of all Kriging models 
practically coincided, plots refer to the first order model. It 
can be seen that Kriging model approximates very well 
probability distributions and cumulative probability trends 
for the whole design space. Nonlinear fitting is the second 
best model while response surface method does not fit 
efficiently the original database. In view of this, Kriging 
model was selected to approximate the functional 
relationship between design variables and structural response 
that allows FE analysis to be avoided. Its advantage in RBO 
is discussed in the next section. 

4. Reliability Based Optimization with 

Surrogate Models 

The section describes the reliability based optimization 
algorithm including surrogate models utilized in this study. 
The surrogate models discussed in Section 3 are summarized 
by the flowchart shown in Fig.7. 

 

Fig. 7. Flowchart of surrogate models for structural analysis. 

RBO accounts for inherent randomness in physical quantities, 
such as element dimensions, material properties and external 
loads. It can be divided into three categories: two-level methods, 
single loop methods and decoupled methods [19]. In two-level 
methods, reliability analysis and optimization are two nested 
loops. Reliability index approach (RIA) and the performance 
measure approach (PMA) are widely used for reliability analysis 
[20]. However, convergence problems may arise if concave 
performance measure functions are involved. Single loop RBO 
methods transform nested optimization into a single loop 
process by replacing reliability constraints with the Karush-
Kuhn-Tucker optimality conditions [21]. This approach requires 
explicit implementation of the probabilistic transformation and 
calculation of the second order derivatives.  

Decoupling methods transform the RBO problem into a 
deterministic one by approximating the probability of failure as 
a function of the design variables [22]. A way to build such an 
approximation is to adopt a predefined function and select some 
predefined interpolation points in the design space. The Kriging 
model was chosen in this study for that purpose. Based on the 
sampling points extracted from the LHS method applied to the 
FE model, it is possible to construct the Kriging model which 
approximately describes the relationship between the design 
variables and the structural response on stress. The optimization 
problem can be stated as follows: 

Minimum ( )
(R1, R 2, )

P M s

V V T

P F F

=
= >  
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The objective of optimization is hence to minimize the 
structural weight and the probability of failure. In particular, 

V  is the volume of the structure that depends linearly on 
weight /cost of the structure. The bounds of design variables, 
the minimum and the maximum were selected from practical 

considerations. P is equal to ( )M s
P F F> , it is the probability 

that the maximum stress developed in the structure is higher 
than the yield limit. Load 1PP  and 2PP  were already 
defined in Table 1. In order to simulate uncertainties in 
working conditions, specific probability distribution 
functions were chosen and set equal to certain values to 
reproduce a practical scenario. 

The optimization problem was solved with genetic 
algorithm (GA) and simulated annealing (SA). GA 
optimization starts from a random initial population: each 
individual (chromosome) is encoded into a structure 
representing its properties and evolves through successive 
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generations. In each generation, chromosomes are rated with 
respect to their fitness. 

Table 3. Results of RBO. 

 GA(KM) GA(NF) SA(KM) SA(NF) 

R1 1.1879 0.3532 1.1063 0.3399 
R2 0.1092 0.1175 0.1022 0.1001 
T 0.9887 0.9896 0.9872 0.9900 
P 0.0100 0 0.0320 0 
V 0.0349 0.0037 0.0342 0.0032 
Time 2619 1.104 2244 4.436 

The statement of the RBO problem is obviously the same 
for SA. However, a new solution is generated in the 
neighborhood of the current solution. The trial design is 
compared with the current best solution and replaces it if the 
cost function is smaller. A temporary increase in cost function 
is tolerated based on a threshold probability that it will lead 
to improve design in the next iterations. GA and SA search 
continues until some stopping criterion is met (for example, 
maximum number of analyses). Table.3 shows the RBO 
results obtained by GA and SA converged practically to the 
same design. However, the computational cost of the 
optimization is much smaller in the case of nonlinear fitting. 

The optimum design must be evaluated with respect to 
propagation of uncertainty. Fig. 8 and 9 show the results of LHS 
performed with respect to the optimum design. It appears that 
nonlinear fitting surrogate model does not predict correctly the 
maximum stress in the structure: therefore, there is a problem with 
distortion in prediction. Furthermore, the probability of failure is 

much larger than the optimized value that ( )P
M s

P F F= > equal to 

zero. In view of this, we might conclude that nonlinear fitting 
surrogate model is not suited for reliability based optimization. SA 
converged to a better design but required a much higher 
computation cost than GA. Kriging model was definitely more 
efficient than nonlinear fitting as surrogate model. Furthermore, 
the optimum designs found by SA and GA could satisfy the safety 
criteria ( ) 0.1M sP F F> ≤ also when uncertainty is propagated into 
the model. SA performed slightly better than GA saving more 
material and achieving higher structural reliability. Furthermore, 
SA was about 15% faster than GA. 

 

Fig. 8. Stress (MPa) probability distributions predicted for optimized 

designs. 

 

Fig. 9. Stress (MPa) cumulative probability trends predicted for optimized 

designs. 

5. Conclusion 

The paper proposed a method to decouple the loops of 
reliability assessment analysis and optimization in RBO 
problems. The basic idea is to create reliable surrogate 
models using the Latin Hypercube sampling. A simple RBO 
problem where the objective was to minimize structural 
weight and probability of failure was solved with genetic 
algorithm and simulated annealing. The Kriging model was 
found to be considerably more efficient than response surface 
and nonlinear fitting methods. The proposed optimization 
framework successfully solved the RBO test problem 
considered in this research. 
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