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Abstract: The present paper is the study of boundary layer flow and heat transfer of Power law fluid flowing over a vertical 

exponentially stretching cylinder along its axial direction. The governing partial differential equations and the associated 

boundary conditions are reduced to nonlinear ordinary differential equations after using the boundary layer approximation and 

similarity transformations. The obtained system of nonlinear ordinary differential equations subject to the boundary conditions is 

solved numerically with the help of Fehlberg method. The effects of Power law index n , Reynolds number Re , Prandtl number

Pr , the natural convection parameter λ  and local Reynolds number Re
a

 are presented through graphs. The skin friction 

coefficient and Nusselt number are presented through tables for different parameters. 
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1. Introduction 

Large amount of work has been done on laminar boundary 

layer flow over stretching sheet. For example in extursion 

processes such as polymer extursion from a dye and wire 

driling, drawing, tunning and annealing of copper wires, the 

cooling of a metalic plate in a cooling bath and so on. Crane 

(1970) was the first who studied the stretching sheet problem. 

After Crane many researchers have extended this work (D. R. 

Jeng at al.,1986; F. Labropulu at al.,2010; E. Magyari and B. 

Keller, 1999; R.Ellahi, 2009; M. Y. Malik at al., 2013). The 

above mentioned studies are about linear stretching but in 

many practical situations involves non linear stretching such 

as exponential stretching. Many authors vary velocity of sheet 

exponentially with distance from slit. Elbasbesh (2001) was 

the first who studied the exponentially stretching sheet 

problem. He take a perforated sheet and notice the effect of 

wall mass suction on the flow and heat transfer over an 

exponentially stretching surface using similarity 

transformation. 

Later on, Sanjayan and Khan (2005,2006) extended the 

work on exponential stretching. They studied a similar kind of 

problem considering viscoelastic fluid model under 

viscousdissipation effects. The non-Newtonian fluids are very 

useful in industrial and engineering applications. Schowalter 

(1960) studied the applications of boundary layer using power 

law fluid. Similarity solutions for non 

Newtonian power law fluids were obtained by Kapur and 

Srivastave (1963) and Lee et al. (1966). The power law fluids 

over a continous moving flat plate with constant surface 

velocity and temperature distribution was given by Fox et al. 

(1969). Anderson and Dandapat (1991) extended the pioneery 

work of Crane (1970) for a non-Newtonian power law fluids. 

Later on Hassnain (1998) extended the work for heat transfer 

analysis. Abel et al. (2009) studied the power law fluid over a 

vertical stretching sheet with variable thermal conductivity 

and non uniform heat source. Few relavent intresting works 

concerning the stretching flowes are cited in (S. Nadeem et al., 

2009; Abdul Rehman et al.,2013;M.Naseer et al.,2014; 

C.Y.Wang and Z Angew, 1989; A. Ishak et al., 2008; I.A. 

Hassanien et al., 1998; S. Nadeem and Anwar Hussain, 2010; 

A. Ishak et al., 2011; C. Y. Wang, 2012; Abdul Rehman et 

al.,2013;). In this paper we have studied the flow and heat 

transfer of a power law fluid over a vertical exponentially 

stretching cylinder. 
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2. Formulation 

Consider the problem of natural convection boundary layer 

flow of a power law fluid flowing over a vertical circular 

cylinder of radius a . The cylinder is assumed to be stretched 

exponentially along the axial direction with velocity .
w

U  

The temperature at the surface of the cylinder is assumed to be 

w
T  and the uniform ambient temperature is taken as T∞  such 

that the quantity 0
w

T T∞− >  in case of the assisting flow, 

while 0
w

T T∞− <  in case of the opposing flow, respectively. 

Under these assumptions the boundary layer equations of 

motion and heat transfer are 
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where the velocity components along the ( ),r z  axes are 

( ),u w , ρ  is fluid density, k  is the consistency coefficient, 

p  is pressure, g  is the gravitational acceleration along the 

z −  direction, β  is the coefficient of thermal expansion, T  

is the temperature, α  is the thermal diffusibility. The 

corresponding boundary conditions for the problem are 
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w
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( )( , ) ,     ( , )  as ,wT a z T z T r z T r∞= → → ∞        (5) 

where 
/

2
z a

wU ake=  is the fluid velocity at the surface of the 

cylinder. 

3. Solution of the Problem 

Introduce the following similarity transformations: 
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Where the characteristic temperature difference is 

calculated from the relations 
/

.
z a

wT T ce∞− = With the help of 

transformations ( )6  and ( )7 , .Eqs ( )1  to ( )3  take the 

form 
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In which 
2

( ) /w wg a T T Uλ β ∞= −  is the natural convection 

parameter, Pr /k ρα=  is the Prandtl number, 
2

Re /
n n

a wa U kρ −=  is the local Reynolds number and 

Re / 4
w

a U kρ=  is the Reynolds number. The boundary 

conditions in non dimensional form become 

( ) ( )1 0,   1 1,     0,  as ,f f f η′ ′= = → → ∞     (10) 

( )1 1,      0,  as .θ θ η= → → ∞            (11) 

The important physical quantities such as the shear stress at 

the surface ,
w

τ  the skin friction coefficient ,fc  the heat flux 

at the surface of the cylinder w
q  and the local Nusselt number 

Nu  are 
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The solution of the present problem is obtained by using 

Fehlberg Method. 

4. Results and Discussion 

The problem of natural convection boundary layer flow of a 

Power law fluid over an exponentially stretched cylinder is 

studied in this paper. The cylinder is assumed to be stretched 

exponentially along its axial direction. The exponential 

stretching velocity at the surface of the cylinder is assumed to 

be 
/

2 .
z a

wU ake=  The solution of the problem is obtained 

numerically with the help of Fehlberg Method. The effect of 

the various parameters such as the Reynolds number Re,  the 

local Reynolds number Re
a , the power law index n , the 

Prandtl number Pr  and the natural convection parameter λ  

over the non dimensional velocity and temperature profiles are 

presented graphically and in the form of tables. .1Fig  shows 

the effects of natural convection parameter λ  on the velocity 

profile f ′  when 1n = . From .1Fig  it is observed that by 

increasing the values of natural convection parameter λ  the 

velocity profile increases. .2Fig  Shows the influence of 

local Reynolds number Re
a  over the velocity profile f ′  

when 1n =  . From .2Fig  it is clear that by increasing the 

values of local Reynolds number Re
a  the velocity profile 

f ′  decreases. .3Figs  and 4  shows the effects of Prandtl 

number Pr  and Reynolds number Re  on temperature 

profile θ  when 1n = . Similar characteristics are observed 

for Prandtl number Pr  and Reynolds number Re  in .3Figs  

and 4 , by increasing the values of these numbers temperature 

profile decreases. .5Fig  shows the effects of natural 
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convection parameter λ  on the velocity profile f ′  when 

2n = . The velocity profile f ′  decreases by increasing the 

values of natural convection parameter λ . .6Fig  shows 

opposite behavior of velocity profile f ′  when 2n = , the 

velocity profile increases by increasing local Reynolds 

number Re
a . In .7Figs  and 8  temperature profiles are 

presented for 2n = . The temperature profiles behave just like 

for 1n = . Table 1  shows the boundary derivatives for the 

velocity profile at the surface of the cylinder that corresponds 

to the skin friction coefficient at the surface tabulated for 

different values of λ  and Re
a . From the Table 1 it is 

observed that the magnitude of the boundary derivative 

increases with increase in both λ  and Re
a . Table 2  shows 

the values for local Nusselt numbers calculated for different 

values of Re  and Pr  .From entries in the Table 2  it is 

noticed that with increase in both Re and Pr , the Local 

Nusselt number Nu  decreases. 

Table 1. [- f ˝(1)] skin friction coefficient at the surface. 

λ \ Rea 0 0.1 0.2 0.3 0.4 

1 0.9859 0.9903 0.9953 1.0011 1.0078 

3 1.2212 1.2366 1.2544 1.2754 1.3012 

5 1.4494 1.4755 1.5065 1.5452 1.5972 

10 1.9274 1.9809 2.0499 2.1505 2.3941 

15 2.3145 2.3968 2.5121 2.7246 2.9537 

Table 2. [- Ɵ΄ (1)] local Nusselt numbers. 

Pr \ Re 0 0.1 0.2 0.3 0.4 

1 1.1971 1.1967 1.1962 1.1957 1.1952 

7 1.7912 1.7890 1.7866 1.7838 1.7808 

10 3.5901 3.5808 3.5699 3.5566 3.5396 

15 5.5503 5.5360 5.5182 5.4944 5.4580 

25 6.6652 6.6491 6.6285 6.5999 6.5508 

 

Fig. 1. The influence of natural convection parameter on velocity profile. 

 

Fig. 2. The influence of local Reynolds number on velocity profile. 

 

Fig. 3. The influence of Prandtl number on temperature profile. 

 

Fig. 4. The influence of Reynolds number on temperature profile. 
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Fig. 5. The influence of natural convection parameter on velocity profile. 

 

Fig. 6. The influence of local Reynolds number on velocity profile. 

 

Fig. 7. The influence of Prandtl number on temperature profile. 

 

Fig. 8. The influence of Reynolds number on temperature profile. 
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