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Abstract: We consider a subclass of univalent functions f (z) for which there corresponds a convex function g(z) of order α 

such that Re(zf'(z) / g(z)) ≥ β. We investigate the influence of the second coefficient of g(z) on this class. We also prove 

distortion, covering, and radius of convexity theorems. 
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1. Introduction 

Let A be the class of regular functions on the unit disk 

 Let S be the class of univalent functions 

 of the form 

                      (1.1) 

normalized by the conditions  Let 

 denote the subclass of S consisting of functions of 

the form 

                         (1.2) 

such that    and 

 Cb(α) is the class of convex functions of order α. 

It is known that 0 ≤ b ≤ 1 [2]. Moreover, g(z) ∈ C1(α) if and 

only if  | ε | = 1. 

Definition 1.1: A normalized regular function of the form 

(1.1) is said to belong to the class  if there exists a 

function  of the form (1.2) such that 

 

It is clear that for  and  we have 

 and  

Note that  In [14] the author has 

defined a subclass  consisting of functions  of the 

form (1.1) for which  where  C 

being the class of convex functions and obtained the 

inclusion relation K* ⊂ C′ ⊂ K ⊂ S*, K* is the subclass 

known as the class of quasi-convex functions introduced and 

studied by K.I. Noor [12]. Thus  and hence 

every member of  is univalent. By specializing α 

and β we obtain some important subclasses. If 

 then  is close-to-convex; if 

 then  that is in  as in 

[13]; if  then  so that  is 

convex of order α. If  then  so 

 

In this paper we prove distortion, covering and radius of 

convexity theorems for the class  

In what follows, we assume  is in  with 
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 its associated function in  

First we give an example for  by using the 

following. 

Lemma: [16] Let  be analytic for z ∈ C with 

 Then  if and only if 

 where G(z) is analytic,  

G(0) = 0, and  for  

Example: Let 

 and 

 where 

 

Since 

                  (1.3) 

has real part ≥ β, it suffices to show that  

If  then we have 

 

Solving for G(z), we obtain 

 

Since α + b ≤ 1, h(z) maps E → E, and  for z 

∈ E. Since  satisfies the conditions of Lemma, 

 So, 

 

is convex for  by Livingston [12]. Thus existence of 

 is asserted. 

2. Distortion Theorem for  

Theorem 2.1: Let  Then 

         (2.1) 

and 

         (2.2) 

where the integrand on the right hand side of (2.2) is taken to 

be 1 for α = 1. 

Equality holds in (2.1) for the function 

 

and equality holds in (2.2) for the function 

 

Proof: From (1.3), by Lemma we obtain 

                      (2.3) 

where G(0) = 0 and  for z ∈ E. Since G(z) satisfies 

the conditions of Schwarz’s lemma, (1.6) yields 

        (2.4) 

That is,  

We have [2, p. 105], 

  (2.5) 

Combining (1.7) and (1.8), the result follows. Clearly 

 and  with 

 and 

 

Theorem 2.2. Let  Then 
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Equality holds on the right-hand side for  in 

Theorem 2.1 and on the left-hand side for  in Theorem 

2.1. 

Proof: Integrating along the straight line segment from the 

origin to  and applying Theorem 2.1 we obtain 

 

which proves the right-hand inequality. 

To prove the left-hand inequality, for every r we choose z0, 

 such that 

 

If  is the pre-image of segment then 

 

This completes the proof. 

3. Covering Theorem for  

Theorem 3.1: Let  with 

 If  for z ∈ E, then 

 

Proof: First we establish that  

Let  Then, for 

 

we have [9, p. 15], 

            (3.1) 

Since f(z) does not assume the value w, 

 

is in the class S. Therefore 

                                (3.2) 

Now, using (3.1) and (3.2), 

 

and this completes the proof. 

4. A Radius of Convexity Theorem for 

 

Lemma 4.1: If  then  maps the disk 

 onto a convex domain, where r1 is the least positive 

root of the equation  where 

 

Proof: Let  Then for  

 with  

From  it follows that 

                     (4.1) 

So, the radius of convexity of  is at least equal to the 

smallest positive root of 

 

For α = 0, from the inequalities in [2, p. 104] and [14, p. 

384] we obtain 

                  (4.2) 

Now, let  where P(z) is analytic, 

P(0) = 1, and Re{P(z)} > 0 in E. 

Then  Using the lemma of Libera 

[11, p. 150] we obtain 

               (4.3) 

Using (4.2) and (4.3) in (4.1) we get 
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Hence,  is convex in  where r1 is the least 

positive root of the equation γ(r, b, β) = 0 for given b, β. This 

lemma improves the result obtained in [16]. 

Theorem 4.2: If  then  maps the 

disk  onto a convex domain, where R is the least 

positive root of the equation  where 

 

Proof: Let  Then for  with 

 

From  it follows that 

             (4.4) 

So, the radius of convexity of  is at least equal to the 

smallest positive root of 

 

Using the inequalities in [2, p. 104] and [14, p. 384] we 

obtain 

     (4.5) 

Now, let  where P(z) is analytic, 

P(0) = 1, and Re{P(z)} > 0 in E. 

Then  Using the lemma of Libera 

[11, p. 150] we obtain 

              (4.6) 

Using (4.5) and (4.6) in (4.4) we get 

 

Hence,  is convex in  where R is the least 

positive root of the equation  for given b, α, 

β. 
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