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Abstract: In this paper, a new technique of differential quadature method called the upwind difference - differential 
quadature method (UDDQM) for solving two-dimensional heat transfer (convection-diffusion) problems is proposed. Also, 
investigated the effects of physical quantities on behavior of flow problems, and combined effects of upwind difference 
mechanism together with differential quadrature method to modified the numerical solutions of heat transfer problems are 
presented. To validate our proposed UDDQM, two convection-diffusion problems ((i) Steady-state incompressible flow 
problem has exact solution and (ii) Natural convection motion of the incompressible fluid flow problem hasn't exact solution) 
are solving numerically. Graphical results on the effects of parameter variation on velocity, temperature, Peclet number, 
Grashof number, and Prandtl number are presented and discussed. Numerical experiments are conducted to test its accuracy 
and convergence and compare it with the standard DQM and other numerical methods that are available in literature. The 
numerical results show the efficiency of the proposed method to handle the problems, and it is more accurate and convergent 
than other methods. 

Keywords: Upwind Difference Scheme, Differential Quadrature Method, Two-dimensional Convection-diffusion, Accuracy, 
Convergence 

 

1. Introduction 

The heat transfer (convection and diffusion) problems 
attract many researchers interest and they have wide 
applications, for example, in energy system, which includes 
the solar collector, nuclear reactor, heat transfer, natural 
convective motion of fluid flow…etc. Most numerical 
simulations for these problems can be currently carried out 
by using finite differences method(FDM) and finite elements 
method(FEM) [1,3,6,7,10,11,14,16,17,18,22]. These 
techniques for solving numerically these problems may be 
very complex and require a large number of grid points to 
obtain accurate solutions. The differential quadrature method 
which is introduced by Bellman et al.[4], is able to overcome 
these difficulties with few grid points and reasonable 
computational workloads. This fact is mentioned in many 
articles [2,4,10,11,23,24]. Recently, using differential 
quadrature procedures to solve one- and two- dimensional 
differential equations are given accurate results using less 
discretization points frequently, for example; Izadian et al.[8] 

they studied Burger-Huxley equation, which is one of the 
type of convections-diffusion equation, by two important 
numerical methods, spectral method and DQM. The result 
show that the spectral method is relatively better than DQM. 

Jiwari et al.[9] have applied a weighted average of DQM 
on one dimensional Burgers’ equation. The authors reduced 
the equations into a system of linear equations by DQM and 
then solved by Gauss-elimination method. Marji and his 
associate’s [12] they improved the application of DQM for 
the solution of Navier–Stokes equations based on the point 
pressure–velocity iteration method. In [13] Meral was used 
DQM to discretize one- and two- dimensional nonlinear heat- 
and mass- transfer equations and using the Runge–Kutta 
method to solved the resulting nonlinear system of ordinary 
differential equations numerically. Öğüt [17 ], investigate the 
effects of the direction of magnetic force, heater length, and 
heater location on heat and fluid flow in the enclosure, and he 
showed that isotherms and streamlines are employed 
generally to depict the mechanism of heat and fluid flow, and 
the solution of the governing equations by using the 
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differential quadrature method is an effective technique. 
Verma et al.[25] have used DQM to obtain the numerical 
solutions for nonlinear diffusion equations. In addition to the 
above mentioned facts, the upwind mechanism is important 
for the computation of fluid flow problems, and that 
mechanism is absent(or used little) in DQM. According to 
these reasons, the solution of flow problems by DQ motivates 
the present work. 

In this paper, the system of convection and diffusion 
problem can be described by the entire system of non-
dimensional governing equation as 

2 ( )
U

U F U g
t

α∂ = ∇ − • ∇ +
∂

                      (1) 

where U , is interpreted as column vector of unknown 
functions, F is the column vector of the velocity of flow, 

0α >  is the column vector of the variable diffusivity of 
diffusion terms, and g is the column vector of potential 
functions, with appropriate initial and boundary conditions. 

In recent years, many models have been used to describe 
flow problems that involve two mechanism of the flow 
(convection and diffusion)[8,17,20]. In this paper, we will 
develop the differential quadrature method to solve heat 
transfer problems. Upwind difference- differential quadrature 
method is presented by using the traditional upwind 
difference scheme for the convective terms and the 
traditional DQ formulas for diffusive terms in the flow 
models that under consideration. Using the upwind 
difference-differential quadrature method for solving two-
dimensional convection and diffusion problems excellent 

numerical results are obtained. Compare with other methods; 
the new method with a few grid points appears that it has 
better convergence and accuracy than the other methods. 

This paper is organized as follows: the ideas of differential 
quadrature method are illustrated in section 2. Upwind 
difference-differential quadrature method is illustrated in 
section 3. To demonstrated the efficiency of new method two 
test problems are presented in section 4. In section 5 analysis 
of errors and stability are introduced. Finally, the conclusions 
are reported. 

2. Differential Quadrature Formulations 

The essence of the DQM is that the partial derivatives of a 
function with respect to a variable ( x − or y − direction) in a 
governing equation are approximated by a weighted linear 
sum of function values at all discrete points. We consider a 

function ( , )f f x y= defined on a rectangular domain 

0 ,0x a y b≤ ≤ ≤ ≤ , with Na x=  and Mb y=  fixed. Suppose 

that, the grid is obtained by taking N  and M points in the x

- and ( , )f x y - directions, respectively. Then, the rth –order 

x -partial derivative (
r

r

f

x

∂
∂

) of the function ( , )f x y at a point

( , )ix y , and sth  –order y -partial derivative (
s

s

f

x

∂
∂

) of the 

function ( , )f x y at a point ( , )
j

x y , respectively may be 

approximately written as 
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where 1, 2,...., 1r N= − , 1, 2,...., 1s M= −  , 1, 2,....,i N=  , 

1,2,....j M= , ( )r

ik
C  and 

( )s

jlC  are the respective weighting 

coefficients. The determinant of the weighting coefficients 
and the choice of sampling points are very important factors 
for the accuracy of the DQ method. The weighting 
coefficients for the derivatives may be obtained directly, and 
most accurately, irrespective of the number and positions of 
the sampling points. From Shu’s [19] the weighting 
coefficients of DQ method are as follows: 

The weighting coefficients for the first-order derivative are 

given as 

(1)
(1)
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The weighting coefficients for the second-order and high-
order derivatives are given as 

( 1)
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r r ik

ik ii ik

i k

C
C r C C

x x

−
− 

= − − 
 For , 1,2,....i k N=  but k i≠ , 2 ( 1)r N≤ ≤ −                                           (4) 

where  

( ) ( )

1,

N
r r

ii i

i

C C µ
µ µ= ≠

= − ∑  For 1, 2,....i N= ,1 ( 1)r N≤ ≤ −         (5) 

The weighting coefficient of derivatives with respect to y

can also be obtained in similar form like those in formulae 
(3-5) . 

We choose type of sampling points from extremely useful 
formulas, taken from Refs. [10,19]. This kind of sampling 
points is the Chebyshev-Gauss-Lobatto points; for x − space 
given as, 

1 1
(1 cos( ))

2 1
i

i
x a

N
π−= −

−
 , for 1, 2,....,i N=  . 
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3. Upwind Difference- Differential 

Quadrature Method (UDDQM) 

Here, a UDDQM method will be suggested to solve the 
two-dimensional incompressible flow problems. This method 
includes two points: First, the upwind difference scheme is 
used to approximate the convective terms subject to 
mechanisms of the flow directions, and DQM for other terms 
in space. The second two dependent stages are adopted to 
calculate the results at every step, similar to the operator-
splitting algorithm employed by [15] to solve heat transport 
problem. In order to demonstrate these ideas: we replace a 
convective terms by the upwind difference scheme, after the 
average axial evaluated at half a grid forward and backward 
from ( x , y ) in the x - and y - directions respectively. The 
ideas of upwind difference scheme are used to approximate 
the convective terms extensively in many texts (for example 
see[5]). It can easily be verified that the upwind difference 
form is automatically preserved when the following 
numerical formulas are used; 

( ) ( )
2 2 2 2

j ji i

ij ij

F FF F
F U U

x x y y

+ − − ++ − − +

− + − +

∆ ∆∆ ∆
• ∇ = + + +

∆ ∆ ∆ ∆
       (6) 

where, F F F
± = ±  and +∆  and −∆  are forward and 

backward difference respectively. 
The remaining terms are approximated by DQM in spatial 

and forward difference scheme in temporal. By these 
methods mentioned above the Equation (1) is discretized into 
following equation 

*

* (2) * (2) *
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  (7) 

On the first stage at every step, 
* ,ijU  is obtained by (7). In 

the second stage at every step, the discrete system is obtained 

by traditional DQM and the 
* ,ijU  is taken as predictions of

1n

ijU
+

. The formulae for the second computation stage at 

every step are written as; 
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where ( , )i j ,s should be all internal grid points 

(2 ( 1), 2 ( 1)).i N j M≤ ≤ − ≤ ≤ −  

The
1n

ijU
+

 can be obtained by solving approximation (8). 

Generally, if we assume that 

* * * * *
1 (2, 2),....., ( 1, 2),........., (2, 1),....., ( 1, 1)

rT

Z U U M U N U M N = − − − −   

Equations (7) and (8) can be written in matrix form, 
respectively as: 

*
1 1

n n n n

rc r
tP Z Z th tg Ι + ∆ = − ∆ + ∆                  (9) 

* 1 * * *
1 1
n
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tP Z Z th tg+ Ι + ∆ = − ∆ + ∆              (10) 

From Equations (9) and (10) we can computed 1
1
nZ +  by the 

flowing form 

1
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The subscription r  and c are defined by , , ,i j l k  in the 

following form ( 2)( 2) 1c l N k= − − + − and

( 2)( 2) 1r j N i= − − + −  ,for , 1,2,....,i k N= and 

, 1, 2,....,j l M= . 

1, , 0, ,
jl ik jl ik

if j l i k and if j l i kδ δ δ δ= = = = = = ≠ ≠
 are the Kroncker deltas. 

To show the effectiveness of the proposed method and to 
give a clear overview of the methodology, two examples of 
the convection and diffusion flow problem are going to be 
discuss in the following section. 

4. Applications 

We shall apply the upwind difference- differential 
quadrature method on two flow problems. Nonetheless, such 
an approach is needed to evaluate the accuracy and 
convergence of the new numerical method. All the results are 
calculated by using PC of kind Pentium 4, and the programs 
are written by Fortran language. These applications are given 
as in the illustrative examples. 

Example 1 

For a two –dimensional, steady state, incompressible flow, 
the heat transfer equation in Cartesian co-ordinates is 
consider as; 

2 2

2 2
( ) 0u v

x y x y
α∂Τ ∂Τ ∂ Τ ∂ Τ+ − + =

∂ ∂ ∂ ∂
                  (12) 

where Τ  is the temperature of fluid, u and v  are variable of 
mass velocity of convection terms and related with stream 

function by u
y

ψ∂=
∂

 and v
x

ψ∂= −
∂

 , and 0α >  variable 

diffusivity of diffusion terms. Equation (12) reduced from 

Equation (1) by setting 0g = , ( , )F u v=  and ( , )U x y= Τ .The 

recurrence relations (9),(10),and (11) are obtained by 
applying the new method into equation (12) with appropriate 
boundary conditions. 

 

Figure 1. Control volume of the flow. 

The problem selected to test the implication of new 
numerical method is that of the fluid state of solid-body 
rotation[18] (see Figure1), the non-dimensional stream 

function at any point ( , )R x y in the region of solution, given 

by; 

2 2x yψ = +                                            (13) 

where x  and y  are dimensionless coordinates. The analytic 
solution of Equation (12) is 

2 21 1
( , ) log( )

2
x y d x y

α
 Τ = − + ∫           (14) 

where Τ  andα  are dimensionless quantities. The numerical 

solution of Equation (12) can be obtained by two different 

distribution of α . In the first case: 
1

1

p
α = , where 1p is 

constant. The logarithmic corresponding exact distribution of 
temperature is 

2 21( , ) log( )
2

p
x y x y AΤ = − + +                    (15) 

For the second case, α  was assumed to vary as 

2 2
2

1
,

( )p x y
α =

+
 where 2p is constant. the parabolic 

corresponding exact distribution of temperature is 

2 22( , ) ( )
2

p
x y x y BΤ = − + +                          (16) 

where, ,A B  are constants. 
For the simple test and analysis of the method, were noted 

that none of convection terms and diffusion terms are 
identically zero for all grid nodes. Since the numerical 
method doses not know of existence of an analytical solution, 
it goes on to solve it in its own way as a two-dimensional 
problem. Moreover, the influence of the convective terms is 
absent in the analytical solution (14), it inters into the 
differential quadrature calculations. The behaviour of the 
numerical solution is determined by the relative value of 
convective terms and diffusive terms and can be 
characterized in terms of a non-dimensional parameter, 
which is called Peclet number ( pe ) and written as; 

uL
pe

α
=                              (17) 

the numerical results were obtained for a square-shaped 
control volume(Figure 1), such that, side of square equal to

2  units, the corner nearest to the origin situated at 

(1 / 2,1 / 2)  , and a square's covered by N N×  grid with, 

and initial condition at all interior nodes was put zero. The 
boundary condition is useful to calculate the constants in 
temperature Equations (15) and (16), where the first value of
T  equal to a minimum value of zero at outermost corner and 
the other equal to maximum value of unity at the innermost 
corner. The numerical solution in both cases results from 
combining the forces of diffusion and convection, which the 

values of 1 2,p p  will be in it, in which iteration Gauss-Seidel 
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iterative method is used to find. 
The numerical solution for the equations system, which 

results from using UDDQM to approximate Equation (12) 
with initial, and boundary conditions is obtained. The points 
that are used to divide the solution region were 

5,7,9,11,13N =  in x − or y − directions. The results which 

we are going to discuss later will be related with 1p and 2p , 

which its effect will be clear through the numerical results 

and the conclusions (i.e. 1p and 2p related with Peclet number 

(17)). To illustrate that, the definition of pe  for logarithm 
distributing of temperature, Equation (15), by using 

Equation(13) and 
1

1

p
α =  in the form:  

12pe y xp= ∆                                         (18) 

Largest value to �� finds at the largest value of y  ,and the 
largest value in any internal point y  will be, for example; 

when 9N =  result 10.68pe p= , in the same analysis yield

25.12pe p=  for the parabolic distributing of temperature, 

Equation(16), there are many schemes that are unstable 
numerically when 2pe >  [18,22]. Figures 2-5 are shown that 

the curves of iteration number (IN) and the relative errors (Re) 
of the numerical results obtained by used DQM and a new 
technique UDDQM. From these figures, we notice that for 
the two distributions of temperature the IN increases with 
increases N, and the numerical results are convergence and 

stable at the lowerest value of 1p  and fail for 1 3p >  and

2 0.5p >  approximately, i.e 2pe ≥ . Also, Re decreases with 

decrease in N , but Re increases with increase in 1p , 2p  for 

parabolic distribution. From these results, we can say that 
UDDQM gives high accuracy with few points. UDDQM 
always convergence and gives accurate results than DQM for 

all sample of grid points and for all values of 1p and 2p . Here, 

to prove the efficiency of UDDQM in accuracy and speed of 
convergence, we compare it with other numerical methods at 

22N = , such as central difference method(CDM),upwind 
difference method(UDM),and Spalding difference 
method(SDM),for more details look at [18,22]. From the 
results are representing in the Figures 2-7, we see that 

UDDQM for all values of 1p and 2p  is better in accuracy and 

convergence than the other methods that are used for 
comparison. 

 

Figure 2. Convergence of DQM –logarithmic and parabolic distribution temperature. 

 
Figure 3. Convergence of UDDQM –logarithmic and parabolic distribution temperature. 
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Figure 4. Relative errors of DQM –logarithmic and parabolic distribution temperature. 

 

Figure 5. Relative errors of UDDQM –logarithmic and parabolic distribution temperature. 

 

Figure 6. Comparison iteration numbers between UDDQM and others numerical methods-logarithmic and parabolic temperature distribution. 

 

Figure 7. Comparison relative errors between UDDQM and others numerical methods-logarithmic and parabolic temperature distribution. 
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Example 2 

We consider liquid enclosed by a rectangular box of 
highest H , length 2L H= , shown in Figure 8. The fluid is 
heated from below and cooled at the upper wall. At 0t = , the 

upper wall is of a constant temperature 0cT =  and 

0hT γ= >  on the lower plate, as time increasers fluid 

temperature changes but the values at solid walls are always 
kept at the initial condition, the velocities are satisfying no-
slip condition on boundaries. 

 

Figure 8. Schematic diagram of the test region with boundary conditions. 

In order to facilitate the analysis, the following 
assumptions and dimensionless variables are considered: 

1. The fluid is Newtonian and the flow is two-dimensional 
laminar. 

2. The fluid is assumed to be incompressible[7] 
3. The Boussinesq approximation is valid. 

:
x

x
H

, :
y

y
H

, 2
0

:
/

t
t

Hρ µ ,
0

:
u

u
U

,
0

:
v

v
U

,
0

:
/µ ρ
ΨΨ , 

0

:
U H

ωω ,
0

: c

h

T T
T

T T

−
−

 

where, 0 0, , , hH U and T T−  are the references of length, 

velocity and temperature difference respectively. Using 
above assumptions and dimensionless variables on the 
Navier –Stokes equations [5], the non-dimensional governing 

equations for vorticity ( x y
v uω = − ), stream function ( )Ψ , 

and energy can be written as 

2 0
T

u v Gr
t x y x

ω ω ω ω∂ ∂ ∂ ∂+ + − ∇ + =
∂ ∂ ∂ ∂

            (19a) 

2 0ω∇ Ψ + =                                  (19b) 

21
0

T T T
u v T

t x y pr

∂ ∂ ∂+ + − ∇ =
∂ ∂ ∂

                 (19c) 

u
y

∂Ψ=
∂

 and v
x

∂Ψ= −
∂

                         (19d) 

In which ,u v  the velocity components are in x − and y −

directions respectively, 
3

0
2

( )hgH T T
Gr

α
ν

−
=  is the Grashof 

number, and 
0/

pr
Cν

ν
κ ρ

= is the Prandtl number. 

Equations(19 a,c) can be reduced from(1) by setting 

U
T

ω 
=  
 

,
u

F
v

 
=  
 

 , 
0

xGrT
g

− 
=  
 

 ,and 1

1

pr
α

−

 
=  
 

 ,and 

using the above assumptions and dimensionless variables. 
Boundary conditions: 

Because the symmetry of the temperature field , the 

boundary condition along the y − axis is 0
T

x

∂ =
∂

, 0Ψ =  on 

the three solid walls comes from the fact that there is no net 
flow across those boundaries. Also, because the symmetry 
about the y − axis, it is necessary to seek a solution for the 
left of the flow. The boundary conditions along the axes are: 

0
T

x

∂ =
∂

, 0ω = , 0Ψ = , 0u = , 0v = , x L= , 0y >  

0T = , xvω = , 0Ψ = , 0u = , 0v = , 0x = , 0y >  

hT γ= , yuω = − , 0Ψ = , 0u = , 0v = , 0x > , 0y =  

0T = , yuω = − , 0Ψ = , 0u = , 0v = , 0x > , y H=  

The computationally efficiency of UDDQM with 
Chebyshev-Gauss-Lobatto points [2,10,19] on the numerical 
accurate results have been well demonstrated here. In the 
present computations, we adopted Gauss seidel method to 
solve vorticity and energy equations (Equations(19a,c)), and 
SOR with damping factor 0 1θ< < , to solve stream 
function(Equation(19b)). The sufficient condition for 
convergence of numerical solution of UDDQM is Max

( ) ( )n n
eΦ − Φ ≤ ,(where 3 510 10e

− −≤ ≤ , Φ is the column 

vector of unknown variables). If it not satisfied, the 
maximum iterations can be determined by trail to stop the 
iterative procedure and the steady state solutions of the 
incompressible flow obtained. The streamlines in three 
dimensions are shown in Figure 9, at prime time the 
secondary flow-vortex presented at a corner where the cold 
and hot walls intersect. In the remaining region flow, the 
fluid is practically motionless. In this moment, the stream 
function value is positive ( ve+ ) everywhere, that is; the fluid 
motion is in the counterclockwise direction. Conversely, the 
motion is clockwise along closed streamlines of negative 
( ve− ) values for the stream function. Thus, the fluid 
descends along the cold vertical wall and then rises after 
flowing over the hot surface. At this time, the convective 
motion appears weakly. This motion becomes stronger 
gradually with the increase in time; also, the isotherm 
profiles have a slow variation with respect to time. Although 
a steady state has not been reached yet, the flow does not 
seem to have any further significant changes. Thus, 
additional computations with maximum step greater than 
2000 have not been attempted. From Figure 10, we see that 
the thermo-gravitational convection is weak due to the low 
Grashof number. As a result, the values of Ψ  at 
0 200Gr< < are positive ( ve+ ) and at 200Gr ≥ are ( ve± ) . 
The isotherms gather densely near the horizontal walls and 
the fluid flows mainly in the clockwise direction like a 
rotating flow around the core region. The regions of the 
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isotherms gathering densely are in a long region of the 
horizontal walls. It is observed that the fluid motion at 

6500Gr > is not steady but oscillating in nature, this is the 
same phenomena with[2]. 

 

Figure 9. Surface with contour of streamlines for 
310Gr = , Pr 6.75 , 0.0025t= ∆ = . 

 

Figure 10. Streamlines and isotherm for different values of Grashof number with Pr 0.75= . 

We shall discuss the effect of temperature on the behaviors 
of fluid motion in aspect of secondary flow-vortex (which is 
representing by sequential plots of the streamlines). Here, an 
important matter is to specify the critical values, which are 
indicated to the changing of the streamlines or the total 
number of the convection cells that appear in the channel. 
Figures 11, shows the temperature effect on the behaviors of 
motion of the fluid for 50, Pr 0.75Gr = = , 1.0t = in the 
channel. From these figures, we notice that, there is one cell 
at 0 21T< < , the stream function value is positive (+ve) 
everywhere, that is; the fluid motion is in the 
counterclockwise direction. The numbers of cells are 
changing into two cells on 20 21T< ≤ . Moreover, when 

21T ≥ the two cells are different in size and motion direction 
(the left cell is counterclockwise direction and the right cells 
is clockwise direction). The size of the right cell is changing 
on 21 63T≤ < clearly. This case goes on for 85T ≥ . In the 
remaining region flow, the fluid is practically motionless. 
Conversely, the motion is clockwise along closed streamlines 
of negative ( ve− ) values for the stream function. Thus, the 
fluid descends along the cold vertical wall and then rises after 
flowing over the hot surface. In this case, the convective 
motion appears weakly. This motion becomes stronger 
gradually with the increase in temperature; also, the isotherm 
profiles have a slow variation (identical with those in Figure 
10). We conclude that the total number of the cells 
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(secondary flow vortex) is changing with respect to 
temperature. That is, total number of cells is increased with 
increase in temperature. The same phenomena happen for the 
streamlines of cells. We see that the thermo-gravitational 

convection is weak due to the low Grashof number and low 
temperature, and become stronger gradually with increases in 
temperature. 

 

Figure 11. Effect of the temperature of the shape on the streamlines. 

The change in the number of cells of the secondary flow 
continues with increase of temperature values, Another 
change occurs in the number of cells at 117 118T< < , where 
the total number of cells become three in the channel. These 

cells are different in size and direction (the left +ve , the 
middle is –ve , the right is +ve). The size of the right cell 
starts to change until it becomes identical with other cells 
approximately. 

 

Figure 12. Surface of Ψ in 3D with contour lines for UFDM & UDQM at 1000, Pr 6.75, 0.0025Gr t= = ∆ = . 

From the results are shown in Figure 12, we see that the 
results are obtained by five-point UDDQM agreement with 
existing results, three-point FDM and DQM. It pointed out 

the secondary –flow vortex appears starting the wall of 
channel toward the whole domain consequently. 

Table-1 shows that comparison of the solver method and 
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numerical results of the present work with these are 
presented by DQM and QUICK scheme, which stands for 
Quadratic Upstream Interpolation for Convective Kinematics, 
is a higher-order differencing scheme that considers a three 

point upstream weighted quadratic interpolation for the 
cell phase values[21]. It is most noteworthy that the present 
computation is very close to DQM and QUICK. The present 
results are in agreement with those given by [14] in the 
qualitative analysis for the distribution of streamlines and 
isotherms (see pages 2152-2157). 

Table 1. Comparison of the present study with [2,21], for 43 10Gr = × , 

Pr 0.015= . 

Method Grids maxΨ  maxu  maxv  

QUICK 
DQM 

81x21 

21 9×  
0.4579 
0.4552 

0.6882 
0.5917 

0 .7951 
0.6904 

UDDQM 21 9×  0.4573 0.6776 0.7943 

5. Error Analysis 

Analyzing the errors resulting from approximation of a 
function and derivatives is useful work. Depending on the 
DQ is identical to Lagrange polynomial interpolation of order 

1N − , author [19] have given a thorough error analysis for 
the first-order derivative ( 1E ) and the second-order 
derivative ( 2E ). These errors written as; 
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1 ( ) ( )
( ) , 1, ,

!

N

i

i

f C x
E x i N

N
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= = ⋅⋅⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅  

( ) (2)
2 ( ) ( )
( ) , 1, ,

!

N

i

i

f C x
E x i N

N

ξ
= = ⋅⋅⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅  

These residual estimates show that very high accuracy can 
be obtained if the number of grid points N  is large. 
Accuracy is proportional to N  or its powers. By "its powers", 
we mean here that accuracy may also be proportional to 
squared or cubic N , or even higher order term of N . 
However, too large N may lead to instability this shown in 
[24]. For dynamical problems, small error may accumulate 
with each time step. A simple estimate for the first-order 
derivative is then that the accumulated error at each time is 
proportional to N t∆ , where t∆ is time step. Similar 
arguments lead us to the conclusions that the accumulated 
error at each time step for the second order derivative is 

proportional to 2( )N t∆ . If large N is used, time step must be 

small to keep the errors within controllable range. High order 
differential quadrature discretization becomes unstable faster 
than low-order DQ discretization. This simple analysis and 
the numerical results lead us to the conclusion that DQ is of 
high accuracy, but of poor stability. The more grid points are 
used, the high accuracy we obtained, but the poorer the 
stability is. Stability of the function values and its derivative 
Lagrange polynomial interpolation is a complicated problem. 
From this rude estimate, however, we conclude that accuracy 
and stability are conflicting. Accuracy requires large number 
of grid points, but stability requires the opposite. 

6. Conclusions 

The new method UDDQM is applied successfully to solve 
the steady state two-dimensional convection and diffusion 
equation. In addition, the effects of a heated on natural 
convection of fluid flow in solid-body rotating (Figure 1) and 
rectangular box (Figure 8) are examined. The results of a new 
version of differential quadrature technique are compared 
with finite difference techniques and other numerical 
techniques [2],[18] and [21]. The numerical results obtained 
show that the UDDQM owns advantages including the higher 
accuracy and convergence by using few grid points, 
compared with conventional low-order finite difference 
method, in which a large number of grid points must usually 
be used. 
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