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Abstract: The aim of this paper is to present the price and replicating strategy for an European option on spot (or cash) 

underlier with continuous dividend yield, when the instrument used in the dynamic hedging of the option is a futures contract on 

the respective underlier. It formalizes the heuristic practice among option traders to replicate options on a stock index using 

futures on the respective stock index and investigates weather the obtained results differ significantly from what they would get 

using the actual stock index, as required by Black-Scholes pricing. Heuristically, the substitution is supported by index and 

futures prices being close, at least for small dividends and time to maturity. Our method is to express this practice in accounting 

terms, derive the self-financing portfolio dynamics and then the closed form option price and delta. Finally, run numerical 

simulations and compare results obtained by Black-Scholes versus our approach. Results show both the price and delta formulas 

differ from Black-Scholes, however numeric simulation doesn’t yield high enough differences to warrant obvious arbitrage, 

meaning that while not rigorously exact, the approximation is good enough for most practical use cases. 
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1. Introduction 

The classical Black-Scholes model provides a price and a 

way to replicate options on a stock or stock index. As an 

analogy think options are bread and the stock is wheat. The 

amount of money one asks for a bread is what pricing is about, 

the quantity of wheat used to make that bread is what 

replication means. 

A stock index is harder to buy/sell directly so traders use 

futures on it instead. It's like since there's no wheat, they buy 

flour. This raises two problems which are addressed in this 

paper: 

(1) Is the option price the same if replicated using stocks or 

futures? (Is the bread price the same, weather made from 

wheat or from flour?) 

(2) Is the replication strategy the same using stocks or using 

futures? (Are the baking quantities the same, weather using 

wheat or flour?) 

2. Notation 

� t : current time; 

� S : a stock or stock index with current price ( )S t  and 

dividend yield q ; 

� A : an option on the stock or stock index with current 

fair value ( )A t  and expiration time a
T t≥ ; 

� F : a future on the stock or stock index with current 

price ( )F t  and expiration time f aT T≥ ; 

� B : a bank account with current amount ( )B t  and 

interest rate r ; 

� m : margin factor, the percent of stock value which 

needs to be deposited as margin for the purchase of one 

future contract; 

� 

2

2
1

( )
2

tx

x e dt
π

−

−∞
Φ = ∫ : standard normal cumulative 

distribution function; 

� 

2

2
1

( )
2

x

x eϕ
π

−= : standard normal probability density 

function. 

Our goal is to formulate the option price and delta in terms 

of this notation. 

3. Results 

The Black-Scholes model is used to price an option when 
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the underlier is a stock or stock index, see e.g. [4, Options on 

Stock Indexes on page 4]. In our paper we'll replicate the 

option using a future on the stock or stock index and we'll refer 

to this case as 'a new approach', shorthanded as NA. In what 

follows we present the differences in price and delta between 

Black-Scholes and the NA. 

3.1. Pricing 

The Black-Scholes price is 

1 2( ) ( ) ( ) ( )rT rTA t sf t e sd sKe sd− −= Φ − Φ  

where 

( )( ) ( ) r q Tf t S t e −= ,

2

1

( )
ln

2

f t
T

Kd
T

σ

σ

+
=  

The NA price is 

1 2( ) ( ) ( ) ( )rmTA t sf t sd sKe sd−= Φ − Φ  

where 

( )( )
( ) ( ) f ar q T T

f t F t e
− − −= ,

2

1

( )
ln

2

f t
rm T

K
d

T

σ

σ

 
+ + 
 =  

In both cases 

2 1d d Tσ= − ,
a

T T t= − ,
1 if call option

1 if put option
s

+
= −

. 

It can be shown that the forward price ( )f t  is the same in 

both formulas, therefore they differ by means of the interest 

rate and are only equal if the interest rate is zero. Below are 

numerical examples for a call option when 100S = , 

100K = , 30T =  days, 5%q = , 20%σ =  and interest 

rates of 0, respectively 12% per year. One can see that for non 

zero interest rate prices are not the same, although they might 

be close. 

Black-Scholes NA

0% 2.0833 2.0833

12% 2.5683 2.5938

r

r

=
=

 

3.2. Replication 

As known/shown in the proof section, replicating an option 

is done by trading a quantity of spot or futures equal to 

option's delta. The analytical expression of delta is 

( )

1

( )( )

1

( )
( ) if Black-Scholes

( )
( )

( ) if NA

a

f a

q T t

r q T T

A t
se sd

S
t

A t
se sd

F

− −

− − −

∂ = Φ ∂∆ = ∂ = Φ
 ∂

 

Below are numerical values for the parameters from the 

pricing section. One can see that quantities are not the same. It 

is outside the scope of this paper to say what happens if one 

replicates an option using the wrong quantity (ex: trade futures 

using Black-Scholes quantity), intuitively one can guess that 

the result will have some error in it, however the magnitude of 

the error it's not straightforward. 

Black-Scholes NA

0% 0.4809 0.4868

12% 0.5491 0.5450

r

r

=
=

 

4. Proofs 

4.1. Model 

The stock dynamics is described by a geometric Brownian 

motion with growth rate µ, volatility σ and Wiener process 

( )W t . The equation is 

( )
( )

( )
P

dS t
dt dW t

S t
µ σ= + . 

The stock offers dividends modeled by a continuous 

dividend yield q  with dynamics over time described by the 

equation 

( ) ( )dD t qS t dt= . 

The bank account grows at a continuously compounded 

interest rate r  

( )

( )

dB t
rdt

B t
= . 

Future and spot price are linked by the no-arbitrage 

equation 

( )( )
( ) ( ) fr q T t

F t S t e
− −= . 

The payout for an European call option with strike K  is 

( ) , if ( ) ,
( , ( ))

0, if ( ) .

a a

a a

a

S T K S T K
A T S T

S T K

− >
=  ≤

 

The payout for an European put option with strike K  is 

( ), if ( ) ,
( , ( ))

0, if ( ) .

a a

a a

a

K S T S T K
A T S T

S T K

− <
=  ≥

 

4.2. Pricing 

The price of the option depends on the type of asset used to 

replicate it's payout. When that asset is the stock, the price is 

given by the well-known Black-Scholes formula and the 

replicating strategy by continuous dynamic delta-hedging in 

the undelier asset, see e.g. [8, Delta Hedging on page 344] . 

When that asset is the future, the price formula is different and 
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we will deduce it in the following. 

By Itö lemma, see e.g. [11, Theorem 4.10 on page 47], the 

dynamics of the future price has the form 

( , ( )) ( , ( ))
( , ( )) ( )

F t S t F t S t
dF t S t S t

t S
µ∂ ∂= + ∂ ∂

2 2 2

2

( ) ( , ( ))

2

S t F t S t
dt

S

σ ∂+ ∂ 

( , ( ))
( ) ( )

F t S t
S t dW t

S
σ ∂+

∂
. 

We have 

( )( )( , ( ))
( ) ( ) fr q T tF t S t
q r S t e

t

− −∂ = −
∂

,
( )( )( , ( ))

fr q T tF t S t
e

S

− −∂ =
∂

,

2

2

( , ( ))
0

F t S t

S

∂ =
∂

. 

Therefore, 

( )( ) ( )( )

( )( )

( , ( )) (( ) ( ) ( )

( ) ( )

f f

f

r q T t r q T t

r q T t

dF t S t q r S t e S t e dt

S t e dW t

µ

σ

− − − −

− −

= − +

+ ⇒
 

( , ( )) (( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).

dF t S t q r F t F t dt F t dW t

r q F t dt F t dW t

µ σ
µ σ

= − + +
= − + +

 

Denoting r qµ α− + = , we have 

( )
( )

( )

dF t
dt dW t

F t
α σ= + . 

Consequently the equation describing the dynamics of the 

future instrument is similar to the one describing the stock, 

where the growth rate of the stock µ was replaced by a growth 

rate of the future α but the volatility σ and driving Wiener 

process ( )W t  are the same. 

The key in pricing the option is specifying it's replicating 

portfolio. A replicating portfolio is a series of trades in the 

future instrument financed by a bank account. It's value at a 

moment in time is 

( ) ( ) ( ) ( )R t h t F t B t= − , 

where ( )B t  is the amount of money borrowed from the bank 

to buy a quantity of futures ( )h t . 

The purpose of a replicating portfolio is to exactly follow 

(replicate) the price of the option. At any moment in time we 

want to have the static relation ( ) ( )R t A t= , from which 

follows that it's dynamics is given by 

( ) ( ) ( ) ( ) ( ) ( )dR t dA t h t dF t dB t dA t= ≡ − = . 

At this point we need to observe a particularity of futures 

contracts compared to plain stocks. When one buys an unit 

amount of stock, one has to pay it's entire value. In accounting 

terms S B= , or the positive value debited by the purchase of 

stock is financed trough a credit of the same value from the 

bank account. Future contracts are different. One doesn't have 

to pay their entire value, only a fraction of it, known as the 

margin. For instance, if the stock price is 100 dollars, the 

buyer of a future contract on it might only have to pay some 10% 

or 20% of it. We will denote this margin factor by m . 

When using a future for replication, the accounting book 

still has to hold, so F B= , or value debited equals value 

credited. The difference is that the bank account is split in two: 

a 
r

B  one which is subjected to interest rate and a 
z

B  one 

where there's no interest. Consequently 

F B= ⇒ (1 ) .
r z

mF m F B B+ − = +  

The dynamics of the bank account is 

r z
dB dB dB= + ⇒ 0

r z
dB B dt B dt= + ⋅ ⋅ ⇒

dB Fmrdt Bmrdt= = . 

Therefore when using futures, the dynamics of the bank 

account is governed not by the original interest rate r  but by 

a reduced rate equal to the margin factor applied to the original 

rate: 
m

r r m= ⋅ . Consequently we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
m

dA t h t dF t dB t dA t h t dF t r B t dt= − ⇒ = − . 

To be concise we have omitted in the above equations the 

fact that ( , ( ))A A t F t= , since it depends on both time and 

price of the future instrument. We need this form now in order 

to derive the dynamics of the option price, by applying Itö 

lemma once again. 

( , ( ))
( , ( )) ( )

A t F t
dA t F t dF t

F

∂=
∂

2 2 2

2

( , ( )) ( ) ( , ( ))

2

A t F t F t A t F t
dt

t F

σ ∂ ∂+ + ∂ ∂ 
. 

Consequently from the condition to follow the option price 

by it's replica we get the equations 

( , ( ))
( ) ( ) ( )

A t F t
h t dF t dF t

F

∂=
∂

           (1) 

and 

2 2 2

2

( , ( )) ( ) ( , ( ))
( )

2
m

A t F t F t A t F t
r B t

t F

σ ∂ ∂+ = − ∂ ∂ 
   (2) 

First equation determines out control variable: the quantity 

of futures we need to hold 

( , ( ))
( )

A t F t
h t

F

∂=
∂

. 

At any moment in time we need to hold a quantity of futures 

equal to the sensitivity of option price relative to the change in 

future price. This fixes the quantity but doesn't tell us what the 

option price is. For that we need the second equation, a 

deterministic PDE which fixes the option price. Let's get rid of 

( )B t  remembering that 
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( ) ( ) ( ) ( ) ( )

( , ( ))
( ) ( ) ( ) ( ) ( ) ( ).

A t R t h t F t B t

A t F t
B t h t F t A t F t A t

F

= = − ⇒

∂= − = −
∂

 

Replacing in (2) we get the PDE 

2 2 2

2

( , ( )) ( ) ( , ( ))

2

A t F t F t A t F t

t F

σ ∂ ∂+ ∂ ∂ 

( , ( ))
( ) ( ) 0.m

A t F t
r F t A t

F

∂ + − = ∂ 
 

Dropping again time and underlier parameters from the 

option price function we obtain the PDE for the option price 

2 2 2

2
0

2
m m

A F A A
r F r A

t FF

σ∂ ∂ ∂+ + − =
∂ ∂∂

. 

In the following we will determine the analytical solution 

for European options. Fenyman-Kač formula, see e.g. [6, 

Proposition 5.6 on page 70], says that the solution to the above 

PDE is 

( , ( )) E[ ( , ( ))]mr T

a aA t F t e A T F T
−=           (3) 

where 

a
T T t= − ,

( )2

2
( )

( ) ( )
m ar T W T

aF T F t e
σ σ− +

= , 

as if the future price F  would follow a stochastic differential 

equation where the growth rate α is replaced by the interest 

rate mr  

( )
( )

( )
m

dF t
r dt dW t

F t
σ= + . 

The option contract is specified in terms of stock price, we 

need to express it in terms of future. Denoting the discount 

factor at maturity time with 

( )( )f ar q T T

aD e
− − −=  

we have 

( )( )
( ) ( ) f ar q T T

a aF T S T e
− −= ⇒

( )( )
( ) ( ) ( )f ar q T T

a a a aS T F T e F T D
− − −= = . 

The payout for an European call option with strike K  is 

( ) , if ( ) ,

( , ( ))

0, if ( ) .

a a a

a

a a

a

a

K
F T D K F T

D
A T F T

K
F T

D

 − >
= 
 ≤


 

We have 

( ) X

aF T e= , 2~ ( , )X XX N µ σ ,
2

ln ( )
2

X mF t r T
σµ  

= + − 
 

,

X Tσ σ= . 

Therefore ( )aF T  is a lognormal random variable and it's 

probability density function is 

2
(ln )

2
21

( )
2

F X

X

X

p F e
F

µ

σ

σ π

−−
= . 

By [6, formula 10 on page 3] we have 

2

12
( )

( )
X

X f

C
Fp F dF e

σ
µ∞ + Φ=∫           (4) 

where 

2

1

ln
X X

X

C
f

µ σ
σ

− + +
=  

and by [6, formula 20 on page 8] we have 

2
( ) ( )

C
p F dF f

∞
= Φ∫              (5) 

where 2 1 Xf f σ= − . 

We can expand (3) into integral form and using (4) and (5) 

we get 

1 2

( , ( )) ( ) ( )

( ) ( )

( ) ( ) ( ),

m

K
Da

m m

K K
D Da a

r T

a

r T r T

a

a t

A t F t e FD K p F dF

e D Fp F dF e K p F dF

F t D d KD d

∞−

∞ ∞−

= −

= −

= Φ − Φ

∫

∫ ∫  

2

1

( )
ln

2

a
m

F t D
r T

K
d

T

σ

σ

 
+ + 
 = , 2 1d d Tσ= − . 

In a similar way we can get the formula for an European put 

option. 

4.3. Replication 

To obtain the expression for option delta 
( )A t

F

∂
∂

, take the 

expression of option price 

1 2( ) ( ) ( ) ( )mr T

aA t sF t D sd sKe sd
−= Φ − Φ ,

1 if call

1 if put,
s

+
= −
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 
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We have 

1 1
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=
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Therefore we are left with 

( )( )

1 1

( )
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a
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F

− − −∂ = Φ = Φ
∂
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4.4. Conclusions 

We draw the conclusions by answering the questions from 

the introduction section. 

(1) Is the option price the same if replicated using stocks or 

futures? No, it is not. There is a slight difference in price 

between the two strategies. 

(2) Is the replication strategy the same using stocks or using 

futures? Again, it's not the same. The quantities of stock index 

and futures are different. 

From a purely mathematical perspective, there's a 

difference in pricing which automatically leads to the 

hypothesis of possible arbitrage. The practice however is not 

so simple, differences are rather small and easily offsetted by 

missing a bit on volatility for instance. So while using our 

model to price options does result in slightly better margins, 

it's not a silver bullet. 

5. Short Review of Options Hedging 

Research 

The Black-Scholes framework for pricing and replicating 

options trough dynamic delta hedging is introduced in [8, John 

Hull] by fairly accessible mathematics (PDEs). A more 

advanced and popular method at the current time, martingale 

theory, can be found in [11, Thomas Björk]. An attempt to 

explain the nebulous concept of change of measure and its 

application on option pricing is presented in [10, Salih Neftci]. 

A large collection of ready-made formulas for valuation of 

various types of option contracts are listed in [4, Espen Haug]. 

Classic Black-Scholes has some assumptions which do not 

hold in real life and can lead to losses. Analysis of the 

continuous trading assumption is presented in [2, Emanuel 

Derman], [3, Derman and Taleb] and [5, Haug and Taleb]. 

Analysis of transaction costs is available in [9, Hayne 

Leeland]. Analysis of continuous dividend yield is presented 

in [9, Ralf and Rogers]. 

A case we haven't found (which doesn't mean it wasn't 

studied, only that we haven't found it and therefore derived the 

conclusions independently) is when Black-Scholes is used to 

price options on a stock index but the replicating portfolio uses 

index futures due to the unavailability or difficulty of trading 

directly in the index, as required by the model. A very brief 

paper touching the subject (incorrectly, in our opinion) can be 

found online as [1, Antonie Kotze], at least proving that the 

issue is known. 

So we arrive at the task of deriving the model ourselves, 

which is what this paper is about. In case we re-discovered the 

wheel, we stress again that we arrived at the results 

independently, which reminds us of two quotes (Google will 

reveal the authors): "What I cannot create, I do not 

understand" and "Don't reinvent the wheel, unless you plan on 

learning more about wheels". 
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