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Abstract: In this paper a mathematical model for the transmission dynamics of dengue fever disease is presented. We present 

a SITR (susceptible, infected, treated, recovery) and ASI (aquatic, susceptible, infected) epidemic model to describe the 

interaction between human and dengue fever mosquito populations. In order to assess the transmission of Dengue fever disease, 

the susceptible population is divided into two, namely, careful and careless human susceptible population. The model presents 

four possible equilibria: two disease-free and two endemic equilibrium.The results show that the disease-free equilibrium point is 

locally and globally asymptotically stable if the reproduction number is less than unity. Endemic equilibrium point is locally and 

globally asymptotically stable under certain conditions using additive compound matrix and Lyapunov method respectively. 

Sensitivity analysis of the model is implemented in order to investigate the sensitivity of certain key parameters of dengue fever 

disease with treatment, Careful and Careless Susceptibles on the transmission of Dengue fever Disease. 
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1. Introduction 

Dengue is a major health problem found in tropical and 

sub-tropical climates worldwide, mostly in urban and 

semi-urban areas [1]. Dengue fever disease can cause a 

severe flu-like illness, and sometimes Dengue fever can vary 

from mild to severe. The more severe forms of dengue fever 

include dengue hemorrhagic fever and dengue shock 

syndrome. Dengue fever (DF) is a vector-borne disease 

transmitted by female Aedes aegypti and Aedes albopictus 

mosquitoes because they require blood meal for the 

development of their eggs. Four different serotypes can cause 

dengue fever. A human infected by one serotype, on recovery, 

gains total immunity to that serotype and only partial and 

transient immunity with respect to the other three. Preventing 

or reducing dengue virus transmission depends entirely on 

the control of mosquito. The spread of dengue is attributed to 

expanding geographic distribution of the four dengue viruses 

and their mosquito vectors, the most important of which is 

the predominantly urban species Aedes aegypti [2]. 

Mathematical models have played a major role in 

increasing our understanding of the dynamics of infectious 

diseases. Several models have been proposed to study the 

effects of some factors on the transmission dynamics of these 

infectious diseases including Dengue fever and to provide 

guidelines as to how the spread can be controlled [3]. 

Mathematical modelling also became considerable 

important tool in the study of epidemiology because it helped 

us to understand the observed epidemiological patterns, 

disease control and provide understanding of the underlying 

mechanisms which influence the spread of disease and may 

suggest control strategies [4,5,6,7,8,2,9,10,11]. Moreover in 

[12] the authors presented a dynamical model that studied the 

temporal model for dengue disease with treatment. So far no 

one considered a dynamical system that incorporates the 

effects of treated individual, Careful and Careless 

Susceptibles on the transmission of Dengue fever in the 

society. In this paper, an extension of the model of [12] is 

presented to include temporary immunity and Susceptibles 

with different behaviour i.e. the dynamical system that 

incorporates the effects of Careful and Careless Susceptibles 

on the transmission of Dengue fever in the society. 

Thus, we study and analyse a non-linear mathematical 

model showing the effect of Treatment, Careful and Careless 

Susceptibles on the transmission of dengue fever disease in 

the population. 
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2. Formulation of the Model 

In this section, a deterministic model is developed that 

describes the dynamics of Dengue fever of population size N  

[13].Two types of population are considered: humans and 

mosquito. The humans are divided into five mutuall-exclusive 

compartments indexed by h  are given by: careful human 

susceptible, ( )
1hS t , careless human susceptible, ( )

2hS t , in 

which the possibility of careless human Susceptibles 

contracting the disease is higher than that for careful human 

Susceptibles, ( )hI t , individuals capable of transmitting 

dengue fever disease to others; ( )hT t , individual who are 

treated and ( )hR t , individuals who have acquired immunity 

at time t. The total number of human is constant, which means 

that ( )N t = ( )
1hS t +  ( )

2hS t + ( )hI t +  ( )hT t + ( )hR t . 

Similarly, the model has also three compartments for the 

mosquito (mosquitoes) indexed by m  are given by: ( )mA t , 

which represents the aquatic phase of the mosquito (including 

egg, pupae and larvae) and the adult phase of the mosquito, 

with ( )mS t  and ( )mI t , susceptible and infected, respectively. 

It is also assumed that ( ) ( )m m mN S t I t= + . 

Considering the above considerations and assumptions, we 

then have the following schematic model flow diagram for 

dengue fever disease with treatment, Careful and Careless 

Susceptibles: 

 

Figure 1. Model Flow diagram for dengue fever disease with treatment, Careful and Careless human susceptible. 

From the above flow diagram, the model is described by an 

initial value problem with a system of eight differential 

equations given as follows: 

( )1
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h m

h h mh h h h h h
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where ( )
1

0 0hS > , ( )
2

0 0hS > , ( ) 0 0hI ≥ , ( )0 0hT ≥ ,

( ) 0 0hR ≥ , ( ) 0 0mA ≥ , ( )0 0mS > , ( )0 0mI ≥ , for all 0t ≥ . 

3. Mathematical Analysis of the Model 

The dynamics of dengue fever disease is determined by the 

( ) ( )1m m
m m A A m

h

d A A
S I A

d t kN
ϕ µ η
 

= − + − + 
 
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A m hm m m
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A B S

dt N
η β µ

 
= − + 

 
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basic reproduction number 0
R  which is a key concept and is 

defined as the average number of secondary infection arising 

from a single infected individual introduced into the 

susceptible class during its entire infectious period in a totally 

susceptible population [14,15],for if <1
0

R the result is disease 

free-equilibrium and if >1
0

R means that there exists endemic 

equilibrium point. The model system of equations (1) will be 

analysed qualitatively to get a better understanding of the 

effects of treated individual, careful and Careless human 

Susceptibles of Dengue fever disease. 

3.1. Disease Free Equilibrium (DFE) 

For the disease free equilibrium, it is assumed that there is 

no infection for both populations of human and mosquitoes i.e.

( )I t = 0
h  and ( )I t = 0m , denoted by ‘ 0

E ’. Thus 0
E  of 

the model system (1) is obtained as 

( ) ( ) ( ) ( )( )
1 2

, ,0 h h m mE = S t S t , , , A t ,S t , =0 0 0 0

( ) ( )2 2

2 2

1
,

h h h h h h h

h h A m

N N N kN q kN q
,0,0,0, , ,0

π µ θ θ π πµ
µ θ µ θ η ϕ ϕµ

− + + 
 + + 

 

where ( )( )A A Aq µ η η ϕ= − + −  

3.2. The Basic Reproduction Number,’ 0
R ’ 

The basic reproduction number of the model (1) 0
R is 

calculated by using the next generation matrix of an ODE [14]. 

Using the approach of [14]. 0
R is obtaining by taking the 

largest (dominant) Eigen value (spectral radius) of 

1

0 0( ) ( )i i

j j

F E V E

X X

−
   ∂ ∂
   

∂ ∂      
, 

where, i
F  is the rate of appearance of new infection in 

compartment i  , iV +
is the transfer of individuals out of the 

compartment i  by all other means and 0
E  is the disease free 

equilibrium. 

( )
1 21 2

3

F

m
h h mh
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i

2 h
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= =
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 
 

 

Using the linearization method, the associated matrix at 

DFE is given by 

( ) ( )

( ) ( )
F

1 1
0 0

h m

2 2
0 0

h m

дF дF
E E

дI дI
=

дF дF
E E

дI дI

 
 
 
 
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This implies that 
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β
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With 
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1 h h h
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N N
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=

+
, 

2

2

h h

h

h
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S
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+

, 
h

m

m
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=   

we have
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2

2 2

3

1

F

h h

mh

h h
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m

B
0 B

=
B kq

0
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β
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 
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The transfer of individuals out of the compartment i  is 

given by 

( )
V

h h h1

i

2 m m

a IV
= =

V I

µ η
µ
 + +  
  

   
 

Using the linearization method, the associated matrix at 

DFE is given by, 

( ) ( )

( ) ( )
V
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дV дV
E E
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=
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V
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m
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µ η
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With
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V
h h–1

m

1
0

a
=

1
0

µ η

µ

 
 + + 
 
 
 

  

Therefore

 

( )( )1 2 2 2

2 2

3

1
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h h

mh

h h–1 h h

hm

mm

B 1B
00

a
=

1B kq
00

π µ θ θ π πµ β
µ ηµ θ µ θ

β
µϕµ

 − + +   +    + ++ +    
  
     

                 (2) 

Then eigenvalues of the equation (2) is given by 

( )
( )( )

( )

( )

1 2 2 2

2

3

1

det FV I det

mh h mh mh h

h m–1

hm

m h h

B B
0
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kqB

0
a

β π µ θ θ πβ β πµ
λ

µ θ µ
β λ

ϕµ µ η

  − + + +
−   +  

 
 − + +   

This gives 

( )
( )( )
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2
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B BkqB
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consequently 
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2
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or
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It follows that the Basic Reproductive number which is given by the largest Eigen value for model system (1) denoted by 
0

R

is given as
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But  

( )( )A A m Aq µ η µ η ϕ= − + −  

It is follows that 
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1hm mh A A m A h h

m h h h
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or 
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m h h h
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−
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where 

( )( ) ( )( )( )1 2 2 21A A m A h ht B Bµ η µ η ϕ π µ θ θ π πµ= + − − + + +  
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Model System (1) has infection-free equilibrium 0
E if

0
1R < , otherwise endemic equilibrium. 

3.3. Sensitivity Analysis of Model Parameters 

In this subsection we would like to know difference factors 

for disease transmission where this helps to reduce mortality 

and morbidity due to dengue fever disease. 

In order to determine how best human mortality and 

morbidity due to dengue fever disease is reduced, we calculate 

the sensitivity indices of the reproduction number 0
R  to each 

parameter in the model using the approach of [14]. These 

indices tell us which parameters have high impact on 0
R  and 

should be targeted by intervention strategies [13]. 

Definition 1: The normalised forward sensitivity index of a 

variable ‘p’ that depends differentiable on a parameter ' 'q is 

defined as: 

p

q

p q
X =

q p

∂ ×
∂

 in [16].            (3) 

Having an explicit formula for 0
R  in equation (3), we 

derive an analytical expression for the sensitivity of 0
R as

0 0

0

R

q

R q
X =

q R

∂
×

∂
 

where 

( )( ) ( )( )( )
( ) ( )

3 1 2 2 2

0 2

2

1hm mh A A m A h h

m h h h

kB B B
R

a

β β µ η µ η ϕ π µ θ θ π πµ
ϕµ µ η µ θ

− + − − + + +
=

+ + +
 

Then analytical expression for the sensitivity of 0
R  with 

respect to each parameter can be calculated using a set of 

reasonable parameter values. Parameter values are obtained 

from the different literatures like [12], [13] and [17] 

(http://www.wavuti.com/2014/05/wizara-ya-afya-kitengo-cha

.html). Other parameter values are estimated to vary within 

realistic means and given as 0.375
hm

β = , 0.45
mh

β = ,

0.96π = , 1
0.5B = , 2

0.9B = , 3
0.7B = ,

1

11
mµ = , 3k = ,

0.35
A

η = , 0.25
A

µ = ,
1

78 365h
µ =

×
, 1/ 3

h
η = , 5ϕ = ,

1
0.01θ = , 2

0.6θ = , 0.001a = , 0.98
h

δ = . 

The sensitivity indices of 0
R with respect to A

η  and m
µ  are 

given by
0

0

0.5067022610

A

R A

A

R
X = =

R
η

η
η

∂
× +

∂
 and 

0 0

0

1.016085624
m

m

m

R
X = =

R

R
µ

µ
µ

∂
× −

∂
 respectively. 

Other indices 0

3

X
B
R

 , 0

hm

X
R
β , 0X

R
k

, 0

mh

X
R
β , 0X

R
π

, 0

h

X
R
µ , 

0

h

X
R
η , 0X

R
ϕ , 0

1BX
R , 0

2BX
R , 0

2

X
R
θ 0

a

R,X , 0

a

RX and 0X
A

R
µ are 

obtained following the same method and tabulated as follows: 

Table 1. Sensitivity Indices of Model Parameters to 0R . 

S/N Parameter Symbol Sensitivity index 

1  +0.506702261 

2  +0.500000191 

3  +0.499999846 

4  +0.499999617 

5  +0.499998468 

6  +0.244896308 

7  +0.016085811 

8  +0.010204166 

9  +0.00002580447057 

S/N Parameter Symbol Sensitivity index 

10  +0.000002867004084 

11  -0.00005539116931 

12  -0.001495356938 

13  -0.006702415127 

14  -0.498452312 

15  -1.016085624 

The parameters are ordered from most sensitive to the least. 

3.3.1. Interpretation 

By analysing sensitivity indices of model parameters to 

0
R ,it is observed that the following parameters Aη , hmβ , 3

B ,

mhβ , k , π , ϕ , 1
B , 2

B  and θ2 when each one increases 

keeping the other parameters constant they increase the value 

of 0
R  implying that they increase the endemicity of the 

disease as they have positive indices. While parameters such 

as, a , Aµ , hη and mµ when each one increases while keeping 

the other parameters constant they decrease the value of 0
R  

implying that they decrease the endemicity of the disease as 

they have negative indices. 

But individually, the most sensitive parameter is maturation 

rate from larvae to adult (per day) Aη , followed by the 

transmission probability from hI  (per bite) hmβ , average daily 

biting (per day) for mosquito susceptible 3
B , transmission 

probability from mI  (per bite) mhβ , number of larvae per 

human k , Fraction of subpopulation recruited into the 

populationπ , number of eggs at each deposit per capita (per 

day) ϕ , average daily biting (per day) for careful human 

susceptible 1
B , average daily biting (per day) for careless 

human susceptible 2
B , Positive change in behaviour of 

Careless individuals 2
θ , average lifespan of humans (per day)

hµ , Per capita disease induced death rate for humans a , 

natural mortality of larvae (per day) Aµ , mean viremic period 

(per day) hη  and finally the least sensitive parameter is 

Aη
h mβ

3B

m hβ

k
π
ϕ

1B

2B

2θ

h
µ
a

Aµ

h
η

mµ
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average lifespan of adult mosquitoes (Per day) m
µ . 

3.4. Local Stability of Disease Free Equilibrium Point 

Local stability of the disease free equilibrium is determined 

by the variation matrix 
0EJ of the model system (1) 

corresponding to the disease free 0
E  as  

2 1

2

2

2

1

3

3

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

J

0

0

mh

E

hm

h

h

h

h

h h

h h h

h h

A A

m A A

A

h

m

m

m

m

m

B

a

q

A

B

q q

kqB

kqB

=

µ θ θ
π β µθ µ

θ µ
η µ
η δ µ

δ θ µ

η µ ϕ ϕ
µ η η

β η µ
ϕµ

β µ
ϕµ

− 
 
 − − −
 +
 − − − 
 − −
 

− − 
 
 − − − − −
 
 
 − −
 
 
 − 
 

          (4) 

where 
1 2

2

( ( 1 ) )
hm h

h

B
A

β θ π µ
θ µ

− − +
= −

+  , 

2 1 2

2

( ( ( 1 ) ))
m h

h

h h
B B

B
β π µ θ π µ

θ µ
+ − − +

=
+

 

Thus the stability of the disease free equilibrium point is 

clarified by studying the behaviour of J
0E  in which for local 

stability of DFE we seek for its all eigenvalues to have 

negative real parts. It follows that, the characteristic function 

of the matrix (4) with λ  being the eigenvalues of the 

Jacobian matrix, J
0E . The Jacobian matrix has the following 

eigenvalues: 

,
h

λ µ1 = −
2 h

λ θ µ2 = − −  

The other eigenvalues are given as 

( )3

2

1 1

2
h h m

h m

aλ η µ µ σ
ϕ θ µ µ

 
= − + 




+ +
+ 

+


 

when σ
 
is not a real number

 
4 h h

λ δ µ= − − , 1 h
λ θ µ5 = − −  

( )6

2

1 1

2
h h m

h m

aλ η µ µ σ
ϕ θ µ µ

 
= − + 




+ +
+ 

−


 

when σ  is not a real number 

7

1
( ( ) )

2
m A A m

m

qλ µ η µ µ α
µ

= − + + + +  

when α  is not a real number and finally 

( )8

1
( )

2
m A A m

m

q µ η αλ µ µ
µ

− + + + −=  

when α is not a real number 

where ( )( )2 3 1 3 24 4 1hm mh h m hh mhk qB B kqB Bσ π β β µ β β θ π µ= + − − + ( )( )2

2 h h h m maϕ θ µ η µ µ µ+ + + + −
 

( ) ( )( ) ( )2 2 2 2 3 42 6 2 2 2A A m A A A A m A A m mq q qα η µ µ η µ η ϕ µ µ η µ µ µ= + + + − + + + + − + +  

Therefore the system is stable since all the eight 

eigenvalues are negative. This implies that at 0
1R <  the 

Disease-free Equilibrium point is locally asymptotically 

stable. 

3.5. Global Stability of Disease Free Equilibrium Point 

In this subsection, we adopt the idea of [8], to analyse the 

global behaviour of the equilibria for system (1). The 

following theorem provides the global property of the disease 

free equilibrium 0
E  of the system. The results are obtained 

by means of Lyapunov function. 

Theorem 1: If 0
1R ≤ , then the infection-free equilibrium is 

globally asymptotically stable in the interior of Ω  

Proof: 

To determine the global stability of the disease-free 

equilibrium point, we construct the following Lyapunov 

function: 
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( ) ( ) ( )( ) ( )3 2  hm h h h h m mL t = kB tI t a I tβ ϕ µ η µ θ µ− + + + +  (5) 

Calculating the time derivative of L  along (5), we obtain 

( ) ( ) ( )( ) ( )' ' '

3 2hm h h h h m mL t = kB tI t a I tβ ϕ µ η µ θ µ− + + + +  

Then we substitute 
' '( ) & ( )h mI t I t  from system (1) to obtain 

 

Consequently 

( ) ( )( ) ( )
( )( )

1 23 1 2'

2

2

1
hm h h mh

h h h m m m

h h h h m m

kB t B S B S
L t = a I

N a

β β
ϕ µ η µ θ µ µ

ϕ µ η µ θ µ µ

 − +
 + + + −
 + + +
 

 

But ( ) ( )
2 3

0

2

hm mh

m h m h h

kB t
R

a

β β
ϕµ µ θ µ µ η

−
=

+ + +  it follows that 

( ) ( )( ) ( )
1 21 2' 2

2 0
1

h h

h h h m m m

h

B S B S
L t = a I R

N
ϕ µ η µ θ µ µ

 +
 + + + −
 
 

( ) ( )
2 2

3

22

2 0

hm mh h

h h m m

hm h m

kB t I
ktI S

NR

β β ϕ µ θ µ
ϕµ µ θ µ

 
− + + +  

 

implying that 

 

Therefore  

( ) ( ) ( ) ( )( )'

2 0 0
1 1

h h h m m m
L t = a I f R f Rϕ µ η µ θ µ µ− + + + + −

( ) ( )
2 2

3

22

2 0

hm mh h

h h m m

hm h m

kB t I
ktI S

NR

β β ϕ µ θ µ
ϕµ µ θ µ

 
− + + +  

 

where 
( )

1 21 2h h

h

B S B S
f

N

+
=  

Thus, ( )L' t  is negative if 0
1R ≤  and L' = 0  if and only 

if h m
I = I = 0  is reduced to the DFE. Consequently, the 

largest compact invariant set in ({
1h

S ,
2hS , h

I , h
T , h

R , m
A , m

S ,

)mI ∈ Ω , }L' = 0  when 0
R 1≤  is the singleton 0{Ε } . 

Hence, by LaSalle’s invariance principle it implies that 0
"E "  

is globally asymptotically stable in Ω [18]. This completes the 

proof. 

3.6. Existence and Stability of Endemic Equilibrium 

Since we are dealing with presence of dengue fever disease 

in human population, we can reduce system (1) to a 

4-dimensional system by eliminating ,
h h m m

T ,R A S&  

respectively, in the feasible region Ω. The values of m
S  can 

be determined by setting m h m
S = mN ? I  to obtain  

( )1

1 1 21 1 21
h m

h h mh h h h h h

h

dS I
N B S S R S

dt N
π µ β µ θ θ= − − − + +  

2

2 2 22 2

h m

h h mh h h h h

h

dS I
N B S S S

dt N
πµ β µ θ= − − −        (6) 

( ) ( )
1 21 2

h m

h h mh h h h

h

dI I
B S B S a I

dt N
β µ η= + − + +  

3

m h

hm m m m

h

dI I
B S I

dt N
β µ= −  

3.6.1. The Endemic Equilibrium and Its Stability 

Here, we study the existence and stability of the endemic 

equilibrium points. If 0R >1,  then the host-vector model 

system (6) has a unique endemic equilibrium given by 

( )
1 2
,* * * * *

h h h mE = S S ,I ,I  in Ω with  

( )( ) ( )( )( )(
1

* 2

3 2 2 1 2
2 2 1

hm mh h hhh h
S m B N B Bβ β µ θ π µ θ π µ= + + − − + − +

( ) ( ) ( )( ) ( )( 2 2 1 2 2 1
2 2

h h h hmh h m
N a B B m B Bβ η µ θ µ θ µ µ+ + + − + + + −  

( ) ( ) ( )
1 2

'

3 1 2
m

hm h h mh h h h

h

I
L t = kB t B S B S a I

N
β β µ η

 
− + − + + + 

 
( )( )2 3

h
h h h m hm m m m

h

I
a B S I

N
ϕ µ η µ θ µ β µ

 
+ + + − 

 

( ) ( )3 2
h

h h h m h h m m

h

I
a B k t I S

N
µ η β ϕ µ θ µ

 
+ + + + 

 

( ) ( )( ) ( )( )'

2 0 01 1h h h m m mL t = a I f R f Rϕ µ η µ θ µ µ+ + + + −
( ) ( )

2 2

3
22

2 0

h m m h h
h h m m

m h m h

k B t I
k tI S

R N

β β ϕ µ θ µ
ϕ µ µ θ µ

 
− + + +  
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( ) ) ( )( )(( 2 2

3 1 2 1 2

*

2
4

hm h mhh h h h h h m
B N B B aRβ θ θ µ β µ η µ θ µ µ+ + √ + + +  

( ) ((3

3 1 2 3

*

2

2 0

–
( )

h

hm mh

hm hh h h h

m

h

h

m
R

kB t
m B N B m B N

R

β β β µ θ µ π β µ
ϕ µ θ µ
 
 


+ −
+ 

+ + +

( ) ) ( )( ) (((1 2 3 2
–

h h m h m hhh h m h
a B a m B Nη µ µ η µ θ µ µ β µ θ+ + + + + + + − −  

( ) ) ( ) ))) ( ) ( )( )
2

1 2 2 1 3 2

*1 / 2 ,
h h h h hh hm mh

m B B B NRπ µ θ θ µ β β µ θ µ− + + + + −




+



 

( )( )
2

2

2 02 2

3 2 1

2

* h h h

h h

m

h hm mh mhh h h

mh

a R
m B N B N B

k t
S

µϕ µ η µ θ
β β µ π µ β µ

β
 + + +

+ += 


 

( )( ) ( ) 3

2 2 1 2

0

1
( )

hm mh

mh h h h m

m h h

h h

m

kB t
N a B B m

a R

β βθ π µ β η µ µ µ
µ µ η ϕµ

  
+ + + + + + + +   + + 

( ) ) ( )( ) (((3 1 2 3 2–h h h h m hhm hmh h m h hB N a B a m B Nβ µ η µ µ η µ θ µ µ β µ θ+ + + + + + + − −

( ) ) ( ) ))) ( ) ( )( )
2

1 2 2 1 3 2

*1 / 2h h h hh h hh m mm B BR B Nπ µ θ θ µ β β µ θ µ
− + + + + −


+


  

( )( )
*

2

2

2

0

m mh

h

m mh h h h

k t
I

k tm a R

µ β
β ϕ µ η µ θµ

=
+ + + +  

 

( ) ) ( )( )* 2 2 3

1 1 2 1 2 2 2

2 0

4
( )

hm mh

mhh h h h h h h m

h m

kB t
B R N B B a

R

β βθ θ µ β µ η µ θ µ µ
ϕ µ θ µ


+ + √ + + + +



 

 

( ) ( )( )( 2

*

3 1 3–h h h h h h hhm h hm mRm B N B m B N aβ µ θ µ π β µ η µ µ+ + + + − + + + +

( )( ) ( )( )((1 2 3 2– 1h h h m hhm h hB a m B Nη µ θ µ µ β µ θ π µ+ + + − − − + +

( ) ))) ( ) ( )( )( )( )2
2

1 2 1 2 0 0

* / 2 1 1h mhh h h mB B a m T R T RRθ θ µ β η µ µ+ + +



+ +


−  

where 
( )( )( )2

2

1

*

m hh h h h h

mh

a N
T

R

mk t

ϕ µ η µ θ
β

µ µ θ+ + + +
=

( ) ( )
2 3

0

2

hm mh

m h m h h

kB t
R

a

β β
ϕµ µ θ µ µ η

−
=

+ + +  

3.6.2. Local Stability of the Endemic Equilibrium 

In order to analyse the stability of the endemic equilibrium, 

the additive compound matrices approach is used, using the 

idea of [19]. Local stability of the endemic equilibrium point 

is determined by the variational matrix ( )*J E  of the 

nonlinear system (6) corresponding to *E and get the matrix 

( )

1

2

1 2

**
11

2

22

2

1

**

* ** *

* *

21 2

3 3

3

0

0 0

( )

0 0

J

mh hmh m

mh hmh m

*

mh h hmh m mh m

hm m hm h

h

h h

h

h h

h h

h h h

m

h h

hm

SI

SI

E
S SI

BB

N N

BB

N N

B BB B
a

N N N

I

B IBI
mB

N N

ββµ θ

ββθ µ

ββ β η µ

β ββ µ

− − −

− − − −

+
− −

 
 
 
 
 
 

=  
 
 
 


−

−


 


−


− 

                (7) 

( )( ) ( ) ( )((
2

*

2

2 0 2 2

1 1 2 2 1 24
h h h

h h h h h

m

m

h

h

R
a R

B N B B a
k t

ϕ µ η µ θ
θ θ µ β µ

β
µ

η µ
+ + + 

+ + √ +


+ ( ) ( ) ((3
2 3 1 22

2 0

* –
( )

hm mh
hm h h

h m

hh m h

kB t
m B N B m

R
R

β βθ µ µ β µ θ µ π
ϕ µ θ µ
 
+ + + 
 

+ + −
+

( )( ) ( )( )( )
2

2 0 2

2

2

1 2

* 1
h h h

h hm h h

m

mh

h

m a R
m N B B

k t
I

µϕ µ η µ θ
β µ π µ θ π µ

β
+ + +

+ + + −= +




( )( ) ( )( ) 2

2 03
2 2 1 2

2

2

2

0( )

h h h

h h h

h m mh

mhm mh
a RkB t

N B B m
R k t

ϕ µ η µ θβ ββ µ θ µ
ϕ µ θ µ β

µ + + +
+ + + + +
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From (7) the second additive compound matrix is given by 

( )
[ ]

2 1

1

*

2

* *

11

**

22 23

*

33

2

**

4

2 1

12

2

3

3 1 2

21

3

3

4 45

*

55

* *

6

1 2

6

0 0 0

0

0 0 0

J

0 0

0 0 0 0

0 0 0

mh h mh h

mh hmh m

hm m

E

mh hmh m

hm m

h h

h h

h

h h

h

hm

mh m mh m

h h

B B

N N

BB

N N

B
mB

N

BB

N N

B

S S
a

mB
N

B B

N N

SI
a a

I
a

SI
a a

I
a

I I
a

β β

ββ θ

ββ θ

ββ

ββ

β β

 
 
 
 
 
 
 
 
 
 =
 
−






−



−





-

 in [11]










 

where 

( )
1 21 21 2 1

2 22

*

2

*

3

* * *

11
, 2 ,

h h

mh h hmh m

h h

mh m

h h

mh m

h h

B BB B B
a a a

N

SI

N

SI I
a

N N

ββ β βµ θ µ η µ
+

− −= − − = − −− − − = 1

33

* *

3mh m hm h

h m

h h

B B
a

N

I

N

Iβ βµ µ−= − − −  

( )
1 21

* *

22 2 3

44 2 2

* * *

45 55, ,
mh h hmh m m

h h h h m

h h h

h

h

m hm h
B BB B B

a a
S SI I I

a a
N N N N

ββ β βθ µ η µ θ µ µ=
+

= − − − − − − −= − − − − , 

*

3

66

hm h

h h m

h

B
a a

I

N

βη µ µ= − − − − −  

 

The following lemma was stated and proved by [20] to 

demonstrate the local stability of endemic equilibrium point
*E . 

Lemma 3.2: 

Let ( )*J E  be a 4 4×  real matrix. If ( )( )J *tr E , 

( )( )det J *E  and 
[ ] ( )( )det J
2

E*
 are all negative, then all 

eigenvalues of ( )J *E have negative real parts. 

Using the above Lemma, we will study the stability of the 

endemic equilibrium. 

Theorem 3.3: If 0
R >1,  the endemic equilibrium *E of the 

model (6) is locally asymptotically stable in Ω  

Proof: 

From the Jacobian matrix ( )J E∗
 in (7), we have 

( )( ) 1 2 3

2

* * *

J * mh m m

h h h h m

h

h

h m h

h h

mI I I
tr E =

B B B
a < 0

N N N

β β βµ θ µ η µ µ− − − − − − − − − −  

( )( ) ( ) ( )3

3 13 2

2

* *

2

0

1
det

( )
J hm mh

h m h h

h h

*

hm h mh m

m

kB t
N B N B I

N R
E I

β β µ µ
ϕ µµ

β β
θ

= − + +
+





 

( )( ) ( ) ( )(
2

* * *

2 2 3 2 2mh m hm mh mh h h h h h hI IN B B mN B N Sθ µ β β β µ θ µ+ + + − + +  ( ) ( )( )))1 1 2

* * *

1 2 2 2

*

h h h m h hB N S B SI S < 0θ µ β+ + +  

 

  

)))) ( )( ) ((
2

* * *

2 2 2 3 2h h h h m h m h hhm mhB N S N B I B I G N aθ θ µ µ β β η+ + + + + + + +  

)( )( ) ( )(
2

2 * * *

0 0 0 1 2 2
1 1

mhh m h m h m h
yR yR fR B B N I mN I Sµ µ β θ+ + − − +  

[ ] ( ) ( ) ( )((( * 2 *

3 06

1
det 2hm m h m h

h

h h m h hJ = B mN IE fR mN I F N a
N

β β η µ∗( − − − + + +( )) +2 ) ( )( ) ( )(((* * *

1 2 3m m h hm h m h hm h mh h m hB I B I V N a B I Nβ β η µ µ β µ µ+ + + + + +

) ( ) ( )( )( )
1 2

* * * * *

3 1 2 1 2 1 2
2

h m h h m h hhm mh mh
B I B I N B B I B S B Sβ β θ µ β+ + + + + + + ( )( ) ( )( )( 1

* * * *

1 1 3 0 0 11 1m h h m hmh hm mh mhBI B N B I S R R BIβ µ µ β δ δ β+ + + − +
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( )( ) ( )( )(* *

2 2 1
2 2

h h h m h hmh mmh h
N a B I N a B I Qη θ µ β η µ β+ + + + + + + +  

( ) ( )( )))2

2 * * * 2 *

2 3 0h m m h hhm mh mh mB B mN I I S fR mN I J < 0β β β 



− 


+ −   

where 2
( ) ( )

h h m h m
a

f
kt

µ η ϕµ µ θ µ+ + +
= , ( )( )

1

1

1

3 3

* *

* *

h h

m h

hm h hm hm

I SB f

kIB BSN t
δ

µ µ β β
=

+ +
 

( )( )
1 1

2

1 3 1

* * * *( hmh h h m h h mh m hI SF B N a I SB Bη µ µ β β= + + + + + + ( )( ) )
22 3

* *

2

*

hm h mh hh m mh hB N a IB IB Sη µ µ β β+ + + + +

( ) ( ) ( )( ))2 1 1 22 2 1 2

* * * *

2

*2 ( 2h h m hh hh hh mhB N B NS S SB I Sθ µ θ µ β+ + + + +  

( ) ( ) ( )( )2 * * *

1 3 2 1 22h m mh h m mm m h hhG B B mN I I N B B Iβ β θ µ β= − + + +  ( )( )( )
1 2

*

1 2 2 2

* *

22 mh hh h h m hhB N a BSI SB Nη θ µ β θ+ + + + +   

( ) ( )( )( )
1 2

*

2

*

1 2 1 2

*2 mh h mh h hJ N B B B BSI Sθ µ β= + + + +  

( ) ( )( ) ( ) ( )
2

* * *

2 1 2 2 3 1

*

2 2(( )2 )h h m h h mmh hm mhh h m hV N B B I B N B I B B SN Iθ µ β µ µ β θ β= + + + + + + +  

( )( ) ( ) ( )* * *

3 1 2 1 2( 2 )hmh h m h m h h m mmh hQ N B I B I N B B Iµ µ β β θ µ β= + + + + + +  

( )
*

h

h h h m mh

fI
y

N a ktη µ µ β
=

+ + +
 , 

( ) ( )
2 3

0

2

hm mh

m h m h h

kB t
R

a

β β
ϕµ µ θ µ µ η

−
=

+ + +  

Thus, from the lemma 1, the endemic equilibrium *E of the 

model system (6) is locally asymptotically stable in Ω . 

3.6.3. Global Stability of Endemic Equilibrium Point (EEP) 

Theorem 3: If 0R > 1 the endemic equilibrium *E of the 

model system (1) is globally asymptotically stable 

Proof: To establish the global stability of endemic 

equilibrium *E  we construct the following positive 

Lyapunov function V  as follows; 

        (8) 

Direct calculation of the derivative of V along the solutions of (8) gives, 

( ) 1 1

1 2

1

*

* * * * * * * *, , , , , , 1
h h

h h h h h m m m

h

S dSdV
S S I T R A S

dt S dt

 
& Ι = − + 

 
 

 
2 2

2

* * * *

1 1 1 1
h h h h h h h h

h h h h h

S dS I dI T dT R dR

S dt I I T dt R dt

       
− + − + − + −               

* * *

1 1 1 .m m m m m m

m m m m

A dA S dS I dI

A dt S S I dt

     
+ − + − + −     
     

 

Consequently  

1 1 1 2 2 2

1 2

* * *
h h h h h h h h h

h h h

S S dS S S dS I I dIdV

dt S dt S dt I dt

   − −  −
= + +             

 

* * *

h h h h h h m m m

h h m

T T dT R R dR A A dA

T dt R dt A dt

     − − −
+ + +     
     

* *

m m m m m m

m m

S S dS I I dI

S dt I dt

   − −
+ +   
   

 

which gives  

dV
A B

dt
= −                                           (9) 

where 

( ) ( )
1 2 1 1 1

* * * * * * * * *, , , , , , lnh h h h h m m m h h hV S S I T R A S S S S& Ι = − + ( ) ( )( ) ( )
2 2 2

* * * *
ln ln ln lnh h h h h h h h h h h hS S S I I I T T T R R R− + − − + −

( ) ( ) ( )* * *ln ln ln (8)m m m m m m m m mA A A S S S I I I+ − + − + −



202 Laurencia Ndelamo Massawe et al.:  Modelling Infectiology of Dengue Epidemic  

 

( )
1 11 1 1

2 2

1 1 1 1

2
** * **

* *1

1 1 2 2

h hh h hmh m

h h h h h h h h

h h h h h

S SS S SB I
A N N R R S S

S N S S S

βµ πµ θ θ θ θ
−

= + + + + + +

( )
2 2

1 1 1

2

2
** * * *

*2

1 1 1

h hmh m mh m mh m h mh m h

h h h h h

h h h h h h h

S SB I I I I I I
N B S B S B S

N S N N I N I

β β β βπµ
−

+ + + + +

1 2 2 2 2

* * * * *

* * *

1 2 2 2 2

mh m mh m mh m h mh m h mh m

h h h h h

h h h h h h h

I I I I I I I
B S B S B S B S B S

N N N I N I N

β β β β β
+ + + + +

( )2
** * *

* * * *m mh h m

h h h h h h h h m m m m

h h m h m
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Thus from equation (9), if A < Β  then 
dV

dt
will be 

negative definite, meaning that 
dV

dt
< 0 . It follows that 

dV

dt
= 0 if and only if 

1 1

*

h hS S=  
2 2

*

h hS S= , 
*

h hI I= , 
*

h hT T= ,

*

h hR R= ,
* ,m mA A= *

m mS S=  and 
*

m mI I= .Therefore the 

largest compact invariant set in 

1 2

* * * * * * * *, , , , , , , : 0h h h h h m m m

dV
S S I T R A S I

dt

 ∈Ω = 
 

is the singleton 

{ }*E where *E is the endemic equilibrium of the model 

system (1). By LaSalle’s invariant principle, then it implies 

that *E is globally asymptotically stable in Ω  if 

A < Β .This completes the proof. 

4. Numerical Simulations 

In this section, we illustrate the analytical results of the 

study by carrying out numerical simulations of the model 

system (1) using a set of reasonable parameter values. 

Parameter values are obtained from the different literatures 

like [12], [13] and [17] (http://www.wavuti.com/ 

2014/05/wizara- ya- afya- kitengo-cha.html). Other parameter 

values are estimated to vary within realistic means and given 
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as shown below. 

0.375
hm

β = , 0.45
mh

β = , 0.96π = , 1
0.5B = , 2

0.9B = , 

3
0.7B = , 

1

11
mµ = , 3k = , 0.35

A
η = , 0.25

A
µ =  ,

1

78 365h
µ =

×
, 1/ 3

h
η = , 5ϕ = , 1

0.01θ = , 2
0.6θ = ,

0.001a = , 0.98
h

δ =            (10) 

Figures 2 (i)-(vi) show the proportion of Dengue fever 

disease infectives, treated and recovery proportion all plotted 

against the proportion of susceptible population. This shows 

the dynamic behaviour of the endemic equilibrium of the 

model system (1) using the parameter values in (10) for 

different initial starting values in three cases as shown below 

[16]. 

( ) ( ) ( ) ( ) ( )
1 2
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2
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( ) ( ) ( ) ( ) ( )
2

3.  0 949 , 0 950 , 0 65 , 0 50 , 0 =49 ,h h h h hS S I T R= = = = ( ) ( ) ( )0 20000 , 0 10000 and 0 3000m m mA S I= = =  
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(v) (vi) 

Figures 2. (i)-(vi): Variation of proportion of Dengue fever disease infectives, treated and recovery proportion all plotted against the proportion of susceptible 

population.

 
The equilibrium point of the endemic equilibrium *E was 

obtained as
1

*
950 hS = ,

* 75hI = ,
* T 50h =  and  

*R 50h =  

and then
2

*
946 hS = * 66 hI = ,

* 50 hT = and 
*R 49h =  

It is observed from figures 2(i)-(vi) that for any starting 

initial value, the solution curves tend to the equilibrium *E . 

Therefore we conclude that the model system (1) is globally 

stable about this endemic equilibrium point *E  for the 

parameters displayed in (10). 

Figure 3 shows the variation of population in different 

classes. 

 

Figure 3. Distribution of population with time in all classes of human and 

mosquito. 

From figure 3, it is observed that careful human susceptible 

population increases in time reaching its equilibrium position 

due to treatment and change of behaviour of careless 

susceptible. Moreover, careless human susceptible population 

decreases with time, due to careless individual moving to 

other classes. Dengue fever disease infected population 

decreases in time then reaches equilibrium due to the increase 

in the number of population changing behaviour and become 

careful and increase of recovered population. Treated infected 

population decrease due to the increase of the recovered 

population. Furthermore aquatic phase increases and then 

reach the equilibrium point due to its short life span and other 

move to susceptible class. Mosquito susceptible increases 

with time and reaches its equilibrium point due to its short life 

span and others move to infected class. 

Figures 4(i)-(iv) show the variation of careful and careless 

human susceptible, infected human and infected mosquito 

population for different values of maturation rate from larvae 

to adult (per day) A
η  
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(ii) 

 

(iii) 

 

(iv) 

Figure 4. (i)-(iv) variation of careful and careless human susceptible, infected 

human and infected mosquito population for different values of maturation 

rate from larvae to adult (per day) 
A

η . 

From figure 4(i)-(iv) the maturation rate from larvae to 

adult (per day) A
η  is varied, and it is observed that when 

maturation rate from larvae to adult (per day) increases, 

careful human susceptible increases and then decreases with 

time due to the increase of production of infected mosquito. 

Moreover careless human susceptible decrease with time 

while infected human and mosquito population increase. 

5. Conclusion 

A compartmental model for Dengue fever disease was 

presented, based on two populations, humans (with temporary 

immunity, careful and careless susceptible) and mosquitoes 

with treatment. Sensitivity analysis revealed that the most 

sensitive parameter is maturation rate from larvae to adult (per 

day). Simulation shows that when maturation rate from larvae 

to adult (per day) increase, the number of infected individual 

increase while careful and careless susceptible decrease. This 

indicates that on the reduction of maturation rate from larvae 

to adult (per day), it is possible to maintain the basic 

reproduction number below unity and the disease can be 

eradicated from the community. 
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