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Abstract: A mathematical model is presented to examine the interaction between human and vector populations. The model 

consists of five control strategies i.e.
 
campaign aimed in educating careless individuals as a mean of minimizing or eliminating 

mosquito-human contact, control effort aimed at reducing mosquito-human contact, the control effort for removing vector 

breeding places, insecticide application and the control effort aimed at reducing the maturation rate from larvae to adult in order 

to reduce the number of infected individual. Optimal Control (OC) approach is used in order to find the best strategy to fight the 

disease and minimize the cost. 
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1. Introduction 

Optimal Control theory is a powerful Mathematical tool 
used to make decisions on how to control epidemiologic 
diseases like dengue fever disease. Optimal Control theory is 
used to minimize the investments in disease’s control, since 
the financial resources are always scarce. Quantitative 
methods are applied to the optimization of investments in the 
control of the epidemiologic disease, in order to obtain a 
maximum of benefits from a fixed amount of financial 
resources [1]. Optimal control theory helps to find the 
percentage of the individuals who should be treated as time 
evolves in a given epidemic model in order to minimize the 
spread of disease and the cost of implementing the treatment 
strategy [2]. In dynamical system, the optimal control problem 
for ordinary differential equations is described by the state 

equation: ( ) ( )( )' ,  ,
i i

g t q t u tg=  where ( )u t  is control and 

ig  is the state variables which depend on the control 

variables. The control enters the system of differential 
equations and adjusts the dynamics of the state system. The 
goal is to adjust the control in order to maximize (or minimize) 
a given objective function subject to some constraints [2].The 

aim of the control is to minimize the objective function i.e. 

( )
0

min , , ( )
t

i
tu

J t g u t dt= ∫               (1) 

subject to the differential equations and initial conditions. 

Such a minimizing control is called an optimal control 

problem [2]. 

The principle technique for such an optimal control 

problem is to solve a set of “necessary conditions” that an 

optimal control and corresponding state variables must satisfy. 

The necessary conditions is generated from the Hamiltonian 

H , which is defined as 

( )( , , , ) ( ,  g ,  ) , ,i i iH t g u f t u q t g uλ λ= +       (2) 

subject to 

( ) ( )( ) , ,i

i

dg
q u t t

dt
g t=  

integrand of  (1)  adjoint * Right hand side (RHS) of  (2).H⇒ = +  
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Then it is intended to minimize H  with respect to *u u=  

(optimal control) and the conditions is written in terms of the 
Hamiltonian: 

*0 at 0u u

H
u f q

u
λ∂ = ⇒ + =

∂
 (Optimality condition), 

( )
i ig g

i

d H d
f q

dt g dt

λ λ λ∂= − ⇒ = − +
∂

 (Adjoint equation), 

1( ) 0tλ =  (Transversality condition), 

The dynamics of the state equation is given by 

'

0 0( , , ) ,   g( )i i

H
g q t g u t g

λ
∂= = =
∂

 in [2] 

Dengue fever (DF) is a vector-borne disease transmitted by 

female Aedes aegypti and Aedes albopictus mosquitoes. 

Dengue fever (DF) is still endemic in many countries. Dengue 

fever is one of the diseases that have claimed and continue to 

claim the lives of millions of people worldwide. Currently 2.5 

billion people living in areas at risk of DF transmission, each 

year, an estimated 100 million cases of dengue fever occur 

worldwide[3,4]. The disease create many burdens on families 

as some bread winners and also the governments which have 

to spent millions of money in diagnosing the disease, 

purchasing of pesticides to kill the mosquitoes and purchasing 

drugs to treat the patients and the other intervention schemes. 

It is these effects of the disease that call for continuous 

research into the prevention and control of the disease. 

Mathematical models have played a major role in 

increasing our understanding of the dynamics of infectious 

diseases. Several models have been proposed to study the 

effects of some factors on the transmission dynamics of these 

infectious diseases including Dengue fever and to provide 

guidelines as to how the spread can be controlled [5]. 

Mathematical modelling also became considerable 

important tool in the study of epidemiology because it helps 

us to understand the observed epidemiological patterns, 

disease control and provide understanding of the underlying 

mechanisms which influence the spread of disease and may 

suggest control strategies [6], The epidemiological data and 

the economic cost of infectious diseases are effective elements 

in evaluating the relevance of intervention programmes. In 

economic situation, any intervention, like treatment, that has 

been found to be cost effective would be fully funded without 

delay. Sometimes, funding and access to treatment may be 

difficult as always faced with a number of constraints. 

Optimal control theory to determine the optimal resource 

allocation as an epidemic progress has been used. Optimal 

control theory is a powerful mathematical tool to make 

decision involving complex dynamical systems [2]. For 

example, what percentage of the population should be treated 

as time evolves in a given epidemic model to minimize both 

the number of infected people and the cost of implementing 

the treatment strategies. The desired outcome depends on the 

particular situation. New drug treatments and combinations 

of drugs are under constant development. 

Optimal control problems have generated a lot of interest 

from researchers all over the world, for instance in [7], the 

authors presented a mathematical model of optimal control by 

considering the cost of insecticide application, the cost of the 

production of irradiated mosquitoes and their delivery as well 

as the social cost. In [8], the authors used three vector control 

tools: larvicide, adulticide and mechanical control, where the 

problem is studied using an Optimal Control (OC) approach. 

In [9], the authors presented an application of optimal control 

theory to Dengue epidemics. The dynamic model is described 

by a set of nonlinear ordinary differential equations that 

depend on the dynamics of the Dengue mosquito, the number 

of infected individuals, and the people’s motivation to 

combat the mosquito. The cost functional depends not only 

on the costs of medical treatment of the infected people but 

also on the costs related to educational and sanitary 

campaigns. They used two approaches to solve the problem: 

one using optimal control theory, another one by discretizing 

first the problem and then solving it with nonlinear 

programming, leading to a decrease of infected mosquitoes 

and individuals in less time and with lower costs. In [10], the 

authors used optimal control theory for control of the vector 

i.e. mosquito. Their model consists of eight mutually 

exclusive compartments representing the human and vector 

dynamics. It also includes a control parameter (insecticide) in 

order to fight the mosquito. In [6], the authors used the 

optimal control theory in which their model consists of three 

control measures; the preventive control to minimize vector 

human contacts, the treatment control to the infected human, 

and the insecticide control to the vector. In [11], the authors 

used the optimal vaccination strategies to minimize the 

susceptible and infected individuals and to maximize the 

number of recovered individuals. In [12], the authors used 

two controls representing the effort that reduces the contact 

between the infectious and susceptible individuals, and a 

therapeutic treatment. The objective function was based on a 

combination of minimizing the number of latent and infected 

individuals and the cost. The optimal controls were obtained 

by solving the optimality system. In [13], the authors 

investigated the effectiveness and optimal control strategies 

of indoor residual spraying (IRS), insecticide treated nets 

(ITNs) and treatment on the transmission dynamics of 

malaria in Karonga District, Malawi. 

Not much research has been done in the study of epidemic 

models that consider the optimal control to reduce the spread 

of the dengue fever disease through the campaign to educate 

the careless human susceptible, control mosquitoes, removing 

vector breeding places or the use of gene modifying mosquito 

where the offspring die before being matured. Moreover in 

[14], the authors presented a dynamical model that studied 

the temporal model for dengue disease with treatment. In this 

work, the model by [14] will be extended, to include 

temporary immunity, optimal control analysis and 

Susceptibles with different behaviour i.e. the dynamical 

system that incorporates the effects of Careful and Careless 
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human susceptible on the transmission of Dengue fever in the 

society. 

The optimal levels of various intervention strategies 

needed to optimally reduce the spread of the disease through 

the campaign to educate the careless human susceptible, 

control mosquitoes bite, by using mosquito nets or mosquito 

repellent, removing vector breeding places and the social cost 

(Social cost means all the expenses related to the disease like 

infectives treatment, hospital care and death) will be studied. 

The basic model to include various intervention strategies 

to obtain an optimal control problem will be analysed 

qualitatively using the Pontryagin’s Maximum principle. The 

resulting optimal control problem is also solved numerically 

to gain more insights into the implications of the 

interventions. 

2. Model Formulation 

In this paper hosts and vectors are considered. The hosts 
(humans) are divided into five mutually-exclusive 

compartments, namely,
1h

S -Careful human Susceptibles, 
2h

S

-Careless human Susceptibles , hI -infected human, hT - 

treated infected human , hR - recovery infected human,. 

Similarly, the model has three compartments for the vectors 

(mosquitoes) indexed by m  given by: mA -Aquatic phase (that 

includes the egg, larva and pupa stages), mS - Susceptibles 

(mosquitoes that are able to contract the disease), mI

-Infectives (mosquitoes capable of transmitting the disease to 
human) [15].Then we consider five controls: 

1u is the control effort aimed at changing behaviour of 

careless human susceptible i.e. 1u is the campaign aimed in 

educating careless individual ( )1u  as a means of minimizing 

or eliminating mosquito-human contact, 2u  is the control 

effort aimed at reducing mosquito-human contact, 3u represent 

the control measure for removing vector breeding places , 4u

represent insecticide application and 5u  is the control effort 

aimed at reducing the maturation rate from larvae to adult. 

These control functions 1u , 2u , 3u , 4u  and 5u are bounded 

and Lebesgue integrable. 

In formulating the model, the following assumptions are 

considered [15]: 

i. Total human population ( )hN  is constant, 

ii. The population is homogeneous, which means that every 

individual of a compartment is homogeneously mixed 

with the other individuals, immigration and emigration 

are not considered, 

iii. Each vector has an equal probability to bite any host, 

iv. Humans and mosquitoes are assumed to be born 

susceptible i.e. there is no natural protection, 

v. The coefficient of transmission of the disease is fixed 

and does not vary seasonally, 

vi. For the mosquito there is no resistant phase, due to its 

short lifetime, 

vii. The biting rate of careless human susceptible is higher 

than that for careful human susceptible. 

Considering the above considerations and assumptions, we 

then have the following schematic model flow diagram for 

dengue fever disease with control 

 

Figure 1. Model Flow diagram for dengue fever disease with control. 

From the above flow diagram, the model will be governed 

by the following equations [15]: 

( ) ( )1

1 1 22 1 1 1 21 1
h m

h h mh h h h h h

h

dS I
N u B S S R u S

dt N
π µ β µ θ θ= − − − − + + , 

( )2

2 2 22 2 1 21
h m

h h mh h h h h

h

dS I
N u B S S u S

dt N
πµ β µ θ= − − − −  , 

( ) ( )( ) ( )
1 22 1 2 21 1h m

h h mh h h h

h

dI I
u B S u B S a I

dt N
β µ η= − + − − + + , 

( )h

h h h h h

dT
I T

dt
η µ δ= − + ,             (3) 

( )1
h

h h h h

dR
T R

dt
δ µ θ= − + , 

( ) ( )( )5 31 1m m

m m A A m

h

dA A
S I u u A

dt kN
ϕ µ η
 

= − + − + − + 
 

, 

( ) ( )5 2 3 41 1m h

A m hm m m m

h

dS I
u A u B S u S

dt N
η β µ

 
= − − − + − 

 
  

and 

( ) ( )2 3 41m h

hm m m m

h

dI I
u B S u I

dt N
β µ= − − + . 

3. Model Analysis 

In this section the approach similar to [5] is used. The aim is 

to seek optimal levels of the intervention strategies needed to 

minimize the number of infected human and the cost of 
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implementing the control strategies. A functional J  given 

by 

[ ] (
1 21 2 3 4

0, 1,5
( ) ( ) ( ) ( )min

i

T

h h h m
u i

A S t A S t A I t A I t dtJ
∈

+ + += ∫  

2 2 2

3 3 4 4 5 5

1 1 1

2 2 2
D u D u D u dt

+ + + 


               (4) 

subject to the differential equations (3) and initial condition 

chosen as. ( )
1

0
h

S 0≥ , ( )
2

0
h

S 0≥ , ( )hI 0≥0 , ( )hT 0≥0 , 

( )hR 0≥0 , ( )mA 0≥0 , ( )mS 0≥0  and ( )mI 0≥0  where 

the iD s  are positive weights which measure relative costs of 

implementing the respective intervention strategies over the 

period [0,�], whilst the terms 
2

2

i i
D u

measure the cost of the 

intervention strategies, iA  is the positive weights, 
1
( )

h
S t  is 

careful human Susceptibles, 
2
( )

h
S t  is careless human 

Susceptibles, hI  is the infected human, mI  is the infected 

mosquito and i  is the number of controls applied to the 

system, T  is the final time. 

Quadratic cost on the controls is preferred and this is similar 

with what is in other literature on epidemic controls [16]. The 

goal is to minimize infection, while minimizing the cost of 
control. 

Thus, we seek an optimal control *u  such that 

{ }*( ) min ( ) |J u J u u U= ∈               (5) 

where U is the control set defined by ( ){ 1 5,..........,U u u=
such that iu are measurable with ( )0 1iu t≤ ≤ ; t∀ ε  

[ ]}0,T  is the set of admissible controls. The necessary 

conditions that an optimal must satisfy come from 

Pontryagin's Maximum Principle[17].This principle converts 

a dynamical system (differential equation of the thi  state 

variable ) and (4) above into a problem of minimizing 

pointwise a Hamiltonian H  , with respect to u where; 

1 2

2 2 2 2 2

1 2 3 4 1 1 2 2 3 3 4 4 5 5

1 1 1 1 1

2 2 2 2 2

                                                                          

h h h mA S A S A I A I D u D u D u D u D uH = + + + + + + + ++

( ) ( )
1 1 21 2 1 1 1 21 1 m

h h mh h h h h h

h

I
N u B S S R u S

N
λ π µ β µ θ θ
 

+ − − − − + + 
 

( )
2 2 22 2 2 1 21 m

h h mh h h h h

h

I
N u B S S u S

N
λ πµ β µ θ
 

+ − − − − 
 

( ) ( )( ) ( )
1 23 2 1 2 21 1 m

h h mh h h h

h

I
u B S u B S a I

N
λ β µ η
 

+ − + − − + + 
 

 ( )4 h h h h h
I Tλ η µ δ+ − +    ( )5 1h h h h

T Rλ δ µ θ+ − +  

( ) ( )6 3 51 1m

m m A m m A m

h

A
S I A u A u A

kN
λ ϕ µ η
  

+ − + − − − −  
   

( ) ( )7 5 2 3 41 1 h

A m hm m m m

h

I
u A u B S u S

N
λ η β µ
  

+ − − − + −  
   

  

( ) ( )8 2 3 41 h

hm m m m

h

I
u B S u I

N
λ β µ
 

+ − − + 
 

                                (6) 

where ( )1, 2,...,8i iλ =  are the adjoint variables or co-state 

variables which determine the adjoint system, together with 
the state system (3) describes the optimality system. 
Pontryagin’s Maximum principle [17] and the existence result 
for optimal control from [18] can be used to obtain the 
following proposition. 

Proposition 1. The optimal control 5-tuple 

( )1 2 3 4 5, , , ,u u u u u  minimizes the functional J  if there exist 

adjoint variables , 1, 2,.....,8i iλ =  that satisfy the adjoint 

system given by 

1

1

h

d H

dt S

λ ∂= −
∂ . 

But from (6), 

( ) ( )
1

1 1 2 1 3 2 11 1 .m m

mh h mh

h h h

I I
A u B u B

S N N

H λ β µ λ β
 ∂ = + − − − + −    ∂  

 

Hence 

( ) ( )1
1 1 2 1 3 2 11 1m m

mh h mh

h h

I Id
A u B u B

dt N N

λ λ β µ λ β
 

= − + − + − −    
 

 

Others will be obtained using the same method. Therefore 
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[ ] ( )2
2 1 1 2 2 2 2 1 21 m

mh h

h

Id
A u u B u

dt N

λ λ θ λ β µ θ
 

= − − + − + + 
 

 ( )3 2 21 m

mh

h

I
u B

N
λ β
 

− − 
 

, 

[ ] ( )3
3 3 4 7 2 31 m

h h h hm

h

d S
A a u B

dt N

λ λ µ η λ η λ β
 

= − + + + − + − 
 

 ( )8 2 31 m

hm

h

S
u B

N
λ β
 

− − 
 

 , 

( )4
4 5h h h

d

dt

λ λ µ δ λ δ= + −  , ( )5
1 1 5 1h

d

dt

λ λ θ λ µ θ= − + + , 

( ) ( )( ) ( )6
6 3 5 7 51 1m m A A A

h

d
S I u u u

dt kN

λ ϕλ µ η λ η
 

= + + + + − − − 
 

, 

( ) ( )7
6 7 2 3 4 8 2 31 1 1m h h

hm m hm

h h h

d A I I
u B u u B

dt kN N N

λ λ ϕ λ β µ λ β
        

= − − + − + + − −        
           

  

and 

( ) ( )1 28
4 1 2 1 2 2 21 1

h h

mh mh

h h

S Sd
A u B u B

dt N N

λ λ β λ β
   

= − + − + −   
   

 

( ) ( )( ) ( )
1 23 2 1 2 2 6 8 41 1 1mh m

h h m

h h

A
u B S u B S u

N kN

βλ λ ϕ λ µ
    

− − + − − − + +   
     

. 

To get the characterization of the optimal control we solve 

the Equations 0
i

H

u

∂ =
∂

 at 
*

i iu u=  where 1,2,...i n=  and n  

is number of controls. The first control is obtained as 

2 21 1 1 2 2 2

1

h hD u S S
u

H λ θ λ θ∂
   = + −   ∂

  

from (6) 

Then we set 
1

0
u

H∂ =
∂

 to get 

2 21 1 1 2 2 2 0
h h

D u S Sλ θ λ θ   + − =     

or

 
2 21 1 2 1 2 2h h

D u S Sθ λ θ λ= − +  

Consequently 
2 22 1 2 2

1

1

h h
S S

u
D

θ λ θ λ− +
=  

Other controls for 2u  3u 4u and 5u  are obtained similarly. 

Thus 

( )
1 2

1 2

3 1 2 8 3

2 2

1 1 2 2 7 3

m h
h h mh hm m

h h

m m h
mh h mh h hm m

h h h

I I
B S B S B S

N N
u D

I I I
B S B S B S

N N N

λ β λ β

λ β λ β λ β

    
+ + −    

     =  
      − −      
      

, 

6
3

3

mA
u

D

λ
= , 

7 8
4

4

m mS I
u

D

λ λ+
=   

and  

( )6 7

5

5

A m
A

u
D

η λ λ− +
=  

In order to satisfy the given bounds for the control functions, 

i.e. 0 ( ) 1u t≤ ≤  and [ ]0,t T∈  the optimal control is 

restricted to ( ){ }* min 1, max 0,
i i

u u= . Therefore 

2 22 1 2 2*

1

1

min 1,max 0,
h hS S

u
D

θ λ θ λ − +   =   
   

, 

( )
1 2

1 2

3 1 2 8 3

*

2 2

1 1 2 2 7 3

min 1, max 0,

m h
h h mh hm m

h h

m m h
mh h mh h hm m

h h h

I I
B S B S B S

N N
u D

I I I
B S B S B S

N N N

λ β λ β

λ β λ β λ β

      
+ + −      

       =     
         − −                 

 , 
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* 6
3

3

min 1,max 0, mA
u

D

λ   =   
   

, 
* 7 8
4

4

min 1,max 0, m mS I
u

D

λ λ  + =   
   

  

and 

( )6 7*

5

5

min 1,max 0,
A m
A

u
D

η λ λ − +  =   
   

 

4. Numerical Simulation 

In this section, we illustrate the analytical results of the 
study by carrying out numerical simulations of the model 
system (3) and study the effects of campaign to educate the 

careless human susceptible ( )1u , control vector-human contact 

( )2u , removing vector breeding areas ( )3u , insecticides 

application ( )4u and control maturation rate from larvae to 

adult ( )5u . We investigate and compare numerical results in 

the following strategies: 
(i) when all controls are set to zero, (ii) When insecticides 

application ( )4u  is used to optimize the objective function 

( )J while other controls are set to zero, (iii) When removing 

vector breeding areas ( )3u , insecticides application ( )4u and 

control maturation rate from larvae to adult ( )5u  are used to 

optimize the objective function ( )J while other controls are 

set to zero, (iv) When campaign to educate the careless 

human susceptible ( )1u , removing vector breeding areas ( )3u , 

insecticides application ( )4u  and control maturation rate 

from larvae to adult ( )5u  are used to optimize the objective 

function ( )J while control vector-human contact ( )2u is set to 

zero, (v) when control vector human contact ( )2u and 

insecticides application ( )4u  are used to optimize the 

objective function ( )J  while other controls are set to zero, 

(vi) When only control vector- human contact ( )2u  is used 

to optimize the objective function ( )J while other controls 

are set to zero, (vii)When campaign to educate the careless 

human susceptible ( )1u  and control vector-human contact

( )2u  are used to optimize the objective function ( )J while 

other controls are set to zero and (viii) When all controls are 

used to optimize the objective function ( )J . Parameter 

values are obtained from the different literatures like 
(http://www.wavuti.com/2014/05 /wizara- ya -afya- kitengo 
-cha.html), [14], [15] and [19], other parameter values are 
estimated to vary within realistic means and given as shown 

below 0.375hmβ = , 0.45mhβ = , 0.96π = , 1 0.5B = , 

2 0.9B = , 3 0.7B = , 
1

11
mµ = , 3k = , 0.35Aη = , 

0.25Aµ = , 
1

78 365h
µ =

×
, 1 / 3

h
η = , 5ϕ =  , 2 0.6θ = , 

0.001a = , 1N   20= , 1 A  10= , 2A   15= , 3A   20= ,

4A   25= , 1 D  50= , 2D   60= , 3D   80= , 4 D  10= and

5D 15=  (7) Figures 2 (i)-(viii) show the effects of optimal 

control strategies on the spread of dengue fever disease in the 

population. 
This shows effects of optimal control of the model system 

(3) using the parameter values in (7) for different strategies as 

shown below. 

1 2 3 4 51. 0 ,u u u u u= = = = =  

2 1 3 4 52. 0, 0u u u u u≠ = = = =  ,  

,  

,  

, 

  

2 4 1 3 57. 0, 0, 0u u u u u≠ ≠ = = = , 

1 2 3 4 58. 0, 0, 0, 0, 0u u u u u≠ ≠ ≠ ≠ ≠ ,  

1 2 3 4 59. 0u u u u u= = = = = .  

 

(i) 

 

(ii) 

4 1 2 3 53. 0, 0u u u u u≠ = = = =

1 2 3 4 54. 0, 0, 0u u u u u≠ ≠ = = =

1 2 3 4 55. 0, 0, 0, 0, 0u u u u u= = ≠ ≠ ≠

1 2 3 4 56. 0, 0, 0, 0, 0 ,u u u u u≠ = ≠ ≠ ≠
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(iii) 

 

(iv) 

 

(v) 

 

(vi) 

 

(vii) 

 

(viii) 

Figure 2. (i)-(viii): Simulations of model system (3) showing the effects of 

optimal control strategies on the spread of dengue fever disease in the 

population.

From figure 2(i) it is observed that when no control is 

applied careful and careless human susceptible population 

decrease and infected human and mosquito population 

increases. The control profile shows that all controls are in a 

lower bound. 

From figure 2(ii)-(viii) it is observed that careful and 

careless human susceptible population increased while 

infected human and mosquito population decreased. 
The control profile for figure (ii), insecticides application 

( )4u  is at upper bound for 1.714 years before dropping down 

to the lower bound while 1u , 2u , 3u and 5u  are maintained 

at the lower bound till the final time. 
Control profile for figure (iii) , insecticides application 

( )4u  and control maturation rate from larvae to adult ( )5u  are 
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at upper bound for 1.714 years before dropping down to the 

lower bound, removing vector breeding areas ( )3u  is at 

0.2828 and then drop down to the lower bound while 1u  

and 2u  are maintained at the lower bound till the final time. 

Control profile for figure (iv), insecticides application ( )4u  

and control maturation rate from larvae to adult ( )5u  are at 

upper bound for 1.714 years and campaign for educating 

careless human susceptible ( )1u is at upper bound for 0.5714 

years before dropping down to the lower bound, removing 

vector breeding areas ( )3u  is at 0.2116 and then drop down 

to the lower bound while 2u  are maintained at the lower 

bound till the final time. 
Control Profile for figure (v), shows that insecticides 

application ( )4u  is at upper bound for 1.714 years before 

dropping down to the lower bound while 1u , 2u , 3u and 5u

are maintained at the lower bound till the final time. 
Control profile for figure (vi) shows that control vector- 

human contact ( )2u  is at upper bound for 1.714 years 

before dropping down to the lower bound while 1u , 3u , 

4u and 5u  are at lower bound till the final time. 

Control profile for figure (vii) shows that Campaign for 

educating careless human susceptible ( )1u is at upper bound 

for 0.5714 years and control vector- human contact ( )2u  is at 

1.714 years before dropping down to the lower bound while 

3u  , 4u and 5u are at lower bound till the final time. 

Control profile for figure (viii) shows that Campaign for 

educating careless human susceptible ( )1u is at upper bound 

for 1.143 years and insecticides application ( )4u  is at 1.714 

years before dropping down to the lower bound while 2u  ,

3u and 5u  are at lower bound till the final time. 

5. Cost Effectiveness Analysis 

We use Cost effectiveness analysis to determine the most 
cost effective strategy to use to control the disease. To achieve 
this purpose we need to compare the differences between the 
costs and health outcomes of these interventions. This is done 
by calculating the incremental cost-effectiveness ratio (ICER) 
which is generally described as the additional cost per 

additional health outcome. When comparing two or more 
competing intervention strategies incrementally, one 
intervention should be compared with the next-less-effective 
alternative [20]. 

The ICER numerator includes the differences in 
intervention costs, averted disease costs, costs of prevented 
cases and averted productivity losses if applicable. The ICER 
denominator is the differences in health outcomes [20] 

We rank the strategies in increasing order of effectiveness, 
namely (1) when all controls are set to zero, (2) When 

insecticides application ( )4u  is used to optimize the 

objective function ( )J  while other controls are set to zero , 

(3) When removing vector breeding areas ( )3u , insecticides 

application ( )4u  and control maturation rate from larvae to 

adult ( )5u  is used to optimize the objective function ( )J  

while other controls are set to zero, (4) When campaign to 

educate the careless human susceptible ( )1u , removing vector 

breeding areas ( )3u , insecticides application ( )4u and control 

maturation rate from larvae to adult ( )5u  are used to 

optimize the objective function ( )J  while control vector- 

human contact ( )2u  is set to zero, (5) When control vector- 

human contact ( )2u  and insecticides application ( )4u  are 

used to optimize the objective function ( )J  while other 

controls are set to zero, (6) When only control vector- human 

contact ( )2u  is used to optimize the objective function 

( )J  while other controls are set to zero, (7) When campaign 

to educate the careless human susceptible ( )1u  and control 

vector-human contact ( )2u  are used to optimize the objective 

function ( )J while other controls are set to zero and (8) 

When all controls are used to optimize the objective function 

( )J . 

The difference between the total infectious individuals 
without control and the total infectious individuals with 
control is used to determine the ‘‘total number of infections 
averted’’ used are shown in table 1 of cost-effectiveness 
analysis [20] 

Table 1. Ranking Control strategies in order of increasing effectiveness. 

Strategy Control Total infection averted Total cost ($) J 

Strategy1 1 2 3 4 5 0u u u u u= = = = =  0 0 34682 

Strategy2 4 1 2 3 50, 0u u u u u≠ = = = =  0.3273 8.9978 17749 

Strategy3 1 2 3 4 50, 0, 0, 0, 0u u u u u= = ≠ ≠ ≠  0.363 25.3185 16416 

Strategy4 1 2 3 4 50, 0, 0, 0, 0u u u u u≠ = ≠ ≠ ≠  0.4011 51.9736 16066 

Strategy5 2 4 1 3 50, 0, 0u u u u u≠ ≠ = = =  2.1229 63.9883 15670 

Strategy6 2 1 3 4 5, 0u u u u u≠ 0 = = = =  2.1305 55.2799 22877 

Strategy7 1 2 3 4 50, 0, 0u u u u u≠ ≠ = = =  2.1305 90.8570 21754 

Strategy8 1 2 3 4 5 0u u u u u≠ ≠ ≠ ≠ ≠  2.1343 100.6025 14483 
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Table 2. we exclude strategy1 and compare strategy2and 3. 

Strategy Control Total infection averted Total cost ($) J 

Strategy2 4 1 2 3 50, 0u u u u u≠ = = = =  
0.3273 8.9978 17749 

Strategy3 1 2 3 4 50, 0, 0, 0, 0u u u u u= = ≠ ≠ ≠  
0.363 25.3185 16416 

 

This leads to the following values for the ICER, 

8.9978
ICER 2 27.49098686

0.3273
= =  

25.3185 8.9978
ICER 3 457.162465

0.363 0.3273

−= =
−

 

The comparison between ICER (2) and ICER (3) shows a 

cost saving of $ 27.49098686  for strategy2 over strategy 3. 

The ICER for strategy 2 indicates that the strategy 3 is 

‘‘strongly dominated’’. That is, strategy 3 is more costly and 
less effective than strategy2. Therefore, strategy3, the 

strongly dominated is excluded from the set of alternatives so 

that it does not consume limited resources. 

Table 3. We exclude strategy3 and compare strategies 2 and 4. 

Strategy Control Total infection averted Total cost ($) J 

Strategy2 4 1 2 3 50, 0u u u u u≠ = = = =  0.3273 8.9978 17749 

Strategy4 1 2 3 4 50, 0, 0, 0, 0u u u u u≠ = ≠ ≠ ≠  0.4011 51.9736 16066 

 

This leads to the following values for the ICER, 

8.9978
ICER 2 27.49098686

0.3273
= =  

51.9736 8.9978
ICER 4 582.3279133

0.4011 0.3273

−= =
−

 

The comparison between ICER (2) and ICER (4) shows a 

cost saving of $ 27.49098686  for strategy2 over strategy 4. 

The ICER for strategy2 indicates the strategy4 is ‘‘strongly 
dominated’’. That is, strategy 4 is more costly and less 
effective than strategy2. Therefore, strategy 4, the strongly 
dominated is excluded from the set of alternatives so that it 
does not consume limited resources. 

Table 4. We exclude strategy4 and compare strategies2 and 5. 

Strategy Control Total infection averted Total cost ($) J 

Strategy2 4 1 2 3 50, 0u u u u u≠ = = = =  0.3273 8.9978 17749 

Strategy5 2 4 1 3 50, 0, 0u u u u u≠ ≠ = = =  2.1229 63.9883 15670 

 

This leads to the following values for the ICER, 

8.9978
ICER 2 27.49098686

0.3273
= =  

63.9883 8.9978
ICER 5 30.62513923

2.1229 0.3273

−= =
−

 

The comparison between ICER (2) and ICER (5) shows a 

cost saving of $ 27.49098686  for strategy 2 over strategy5. 

The ICER for strategy2 indicates the strategy5 is ‘‘strongly 
dominated’’. That is, strategy 5 is more costly and less 
effective than strategy2.Therefore, strategy5, the strongly 
dominated is excluded from the set of alternatives so that it 
does not consume limited resources. 

Table 5. We exclude strategy 5 and compare strategies2 and 6. 

Strategy Control Total infection averted Total cost ($) J 

Strategy2 4 1 2 3 50, 0u u u u u≠ = = = =  0.3273 8.9978 17749 

Strategy6 2 1 3 4 5, 0u u u u u≠ 0 = = = =  2.1305 55.2799 22877 

 

This leads to the following values for the ICER, 

8.9978
ICER 2 27.49098686

0.3273
= =  

55.2799 8.9978
ICER 6 25.66664818

2.1305 0.3273

−= =
−

 

The comparison between ICER (2) and ICER (6) shows a 

cost saving of $ 25.66664818  for strategy 6 over strategy 2. 

The ICER for strategy6 indicates the strategy2 is ‘‘strongly 
dominated’’. That is, strategy2 is more costly and less 
effective than strategy 6. Therefore, strategy2, the strongly 
dominated is excluded from the set of alternatives so that it 
does not consume limited resources. 
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Table 6. We exclude strategy2 and compare strategies6 and 7. 

Strategy Control Total infection averted Total cost ($) J 

Strategy6 2 1 3 4 5, 0u u u u u≠ 0 = = = =  2.1305 55.2799 22877 

Strategy7 1 2 3 4 50, 0, 0u u u u u≠ ≠ = = =  2.1305 90.8570 21754 

 

The comparison between strategy6 and strategy7 shows a 
cost saving of $ 55.2799 for strategy6 over strategy7. That is, 
strategy7 is more costly than strategy6. Therefore, strategy7, 

the strongly dominated is excluded from the set of 
alternatives so that it does not consume limited resources. 

Table 7. We exclude strategy7 and compare strategies6 and 8. 

Strategy Control Total infection averted Total cost ($) J 

Strategy6 2 1 3 4 5, 0u u u u u≠ 0 = = = =  2.1305 55.2799 22877 

Strategy8 1 2 3 4 5 0u u u u u≠ ≠ ≠ ≠ ≠  2.1343 100.6025 14483 

 

This leads to the following values for the ICER, 

55.2799 8.9978
ICER 6 25.66664818

2.1305 0.3273

−= =
−

 

100.6025 55.2799
ICER 8 11940.15789

2.1343 2.1305

−= =
−

 

The comparison between ICER (6) and ICER (8) shows a 

cost saving of $ 25.66664818  for strategy6 over strategy 8. 

The ICER for strategy6 indicates the strategy8 is ‘‘strongly 
dominated’’. That is, strategy8 is more costly and less 
effective than strategy6.Therefore, strategy8, the strongly 
dominated is excluded from the set of alternatives so that it 
does not consume limited resources. 

With this result, we therefore conclude that strategy6 

(control vector-human contact ( )2u ) is the most cost-effective 

of all the strategies for dengue fever disease control 
considered. 

6. Conclusion 

In this paper, the optimal control analysis for dengue fever 
model was performed using Pontryagin’s maximum principle. 
Conditions for optimal control of the disease were derived 
and analysed with an effective use of campaign to educate 

the careless human susceptible ( )1u , control vector-human 

contact ( )2u , removing vector breeding areas ( )3u , insecticides 

application ( )4u and control maturation rate from larvae to 

adult ( )5u . The results suggest that the effective control 

vector- human contact ( )2u strategy has a significant impact in 

reducing the dengue fever disease. From the 
cost-effectiveness analysis, the results suggest that control 

vector-human contact ( )2u is the most cost-effective of all the 

strategies for dengue fever disease control considered. 
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