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Abstract: Cholera, an acute gastro-intestinal infection and a waterborne disease continues to emerge in developing countries 

and remains an important global health challenge. In this paper, we formulate a mathematical model that captures some 

essential dynamics of cholera transmission with public health educational campaigns, vaccination, sanitation and treatment as 

control strategies in limiting the disease. The reproduction numbers with single and combined controls are computed and 

compared with each other to assess the possible community benefits. Numerical simulation shows that in a unique control 

strategy, treatment yields the best results followed by education campaign, then sanitation and vaccination being the last. 

Furthermore, we noted that the control of cholera is very much better when we incorporated more than one strategy, in two 

controls the results were better than one strategy, and in three control strategies the results were far better than in two control 

strategies. Further simulations with all four interventions showed the best results among all combinations attained before. We 

performed sensitivity analysis on the key parameters that drive the disease dynamics in order to determine their relative 

importance to disease transmission and prevalence. 
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1. Introduction 

Cholera is an example of a bacterial disease whose 

primary mode of infection is indirect; which is caused when 

individuals ingest fecal-contaminated water containing the 

bacteria V. cholera [5].Transmission between humans and 

reservoirs of pathogens implies that disease transmission 

includes an indirect route other than human-to-human contact. 

The last few years have witnessed many cholera outbreaks 

in developing countries, including India (2007), Congo 

(2008), Iraq (2008), Zimbabwe (2008–2009), Vietnam (2009), 

Nigeria (2010), and Haiti (2010). In the year of 2010 alone, it 

is estimated that cholera affects 3–5 million people and 

causes 100,000–130,000 deaths in the world annually [1]. 

In essence, Cholera is an infection of the small intestine 

caused by the gram-negative bacterium, Vibrio cholera. 

Untreated individuals suffer severely from diarrhea and 

vomiting. The disease can cause a rapid dehydration and 

electrolyte imbalance, and can lead to death. Meanwhile, 

different transmission pathways are possible. For example, a 

cholera outbreak in a Singapore psychiatric hospital indicated 

that the direct human-to-human transmission was a driving 

force [2]. 

The dynamics of cholera involve multiple interactions 

between the human host, the pathogen, and the environment 

[3], which contribute to both direct human-to-human and 

indirect environment-to-human transmission pathways. 

Due to its huge impact on public health, and social and 

economic development, cholera has been the subject of 

extensive studies in clinical, experimental and theoretical 

fields. It remains an important global cause of morbidity and 

mortality, capable of causing periodic epidemic disease [4]. 

Typical at-risk areas include peri-urban slums, where basic 

infrastructure is not available, as well as camps for internally 

displaced people or refugees, where minimum requirements of 

clean water and sanitation are not met. Outcomes behind the 

disruption of water and sanitation systems or the displacement 

of populations to inadequate and overcrowded camps can 

increase the risk of cholera transmission. Cholera remains a 

global threat to public health and a key indicator of lack of 

social development. Recently, the reemergence of cholera has 

been noted in parallel with the ever-increasing size of 

vulnerable populations living in unsanitary conditions [6]. 
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Education, which is a key tool in disease control, is often 

overlooked [9]. It requires investment in people rather than in 

biomedical interventions, but it has the potential to lead to 

enormous benefits for relatively low cost. Conversely, a lack 

of information can have a severe impact on worsening the 

spread of the disease. Cholera-specific education includes 

advising people with symptoms to seek medical care 

promptly, and improving sanitation and hygienic practices 

[13]. Failures to provide health education can be traced to 

barriers at one of six sites: to be effective, messages have to 

(1) reach the intended audience, (2) gain attention, (3) be 

correctly understood, (4) be accepted, (5) result in changed 

behavior and (6) result in improvement in health [14]. During 

the 1994 cholera epidemic of Guinea-Bissau, health 

education demonstrated that local preventive rituals, radio 

and word-of-mouth communication were effective 

educational tools [13]. 

The first scientists to suggest disinfecting water with 

chlorine were Louis- Bernard Guyton de Morveau (in France) 

and William Cumberland Cruikshank (in England), both 

around the year 1800, as it was found that water that has been 

treated with chlorine is effective in preventing the spread of 

water-borne diseases[15]. However, disinfection by 

chlorination can be problematic in some circumstances. 

Chlorine can react with naturally occurring organic 

compounds found in the water supply to produce disinfection 

byproducts (DBPs) such as trihalomethanes and haloacetic 

acids. Due to the potential carcinogenicity of these 

compounds, drinking water regulations across the developed 

world require regular monitoring of the concentration of 

these compounds in the distribution systems of municipal 

water systems. The World Health Organization (WHO) has 

stated that risks to health from DBPs are extremely small in 

comparison with inadequate disinfection. 

Understanding the fundamental mechanism in the disease 

transmission is crucial for effective prevention and 

intervention strategies against a cholera outbreak. To this 

effect, mathematical modeling provides a unique approach to 

gain basic insights into the dynamics of infectious diseases. 

Therefore, by exploring the potential effects of disease-

control strategies such as water chlorination, mathematical 

modeling can predict the dynamics of explosive epidemics 

often associated with cholera outbreaks. 

In an effort to gain deeper understanding of the complex 

dynamics of cholera, several mathematical models have been 

published. For example, Codeço in 2001 proposed a model 

[16] that explicitly accounted for the environmental 

component, i.e., the V. cholera concentration in the water 

supply, into a regular SIR epidemiological model. The 

incidence (or, the infection force) was modeled by a logistic 

function to represent the saturation effect. Hartley, Morris 

and Smith [17] in 2006 extended Codeço’s work to include a 

hyper infectious state of the pathogen, representing the 

“explosive” infectivity of freshly shed V. cholerae, based on 

the laboratory observations [18]. This model was rigorously 

analyzed in [19]. Joh, Wang, Weiss et al. [20] in 2009 

Modified Code¸co’s model by a threshold pathogen density 

for infection with a careful discussion on human-

environment contact and in-reservoir pathogen dynamics. 

More recently, Mukandavire et al. [21] proposed a model to 

study the 2008–2009 cholera outbreaks in Zimbabwe. The 

model explicitly considered both human-to-human and 

environment-to-human transmission pathways. The results in 

this work demonstrated the importance of the human-to-

human transmission in cholera epidemics, especially in such 

places as Zimbabwe, a landlocked country in the middle of 

Africa. Moreover, Tien and Earn [22] in 2010 published a 

water-borne disease model which also included the dual 

transmission pathways, with bilinear incidence rates 

employed for both the environment-to-human and human-to-

human infection routes. No saturation effect was considered 

in Tien and Earn’s work. A rigorous global stability analysis 

was conducted in [23] for many of the aforementioned 

models. In addition, Neilan et al. [24] in 2010 modified the 

cholera model proposed by Hartley, Morris and Smith [17] 

and added several control measures into the model. They 

consequently analyzed the optimal intervention strategies and 

conducted numerical simulation based on their model. No 

human-to-human infection route is considered in this work. 

Jing Wang [19] considered three types of controls: 

vaccination, therapeutic treatment (including hydration 

therapy, antibiotics, etc.), and water sanitation but he did not 

incorporate the role of education control strategy in their 

model, also they did not consider a logistic growth of vibrio 

cholera. 

Therefore our objective is to modify the model of Jing 

Wang [19] by adding education parameter as a control 

strategy and also consider that vibrio bacteria grow 

logistically. So we have four types of controls: vaccination, 

therapeutic treatment (including hydration therapy, 

antibiotics, just to mention a few), water sanitation and 

education campaign. In general, these control measures are 

functions of time. For the special case with constant controls, 

we are able to rigorously analyze the stabilities of the 

corresponding autonomous dynamical system. We will then 

use numerical simulation to explore various optimal control 

solutions involving single and multiple controls. 

The rest of the paper is organized as follows: Section 2, 

introduces the continuous model that captures all four control 

strategies, Section 3, will deal with deriving the basic 

reproduction number with all control strategies from which 

we derive other reproduction numbers basing on whether a 

strategy is unique, or a combination of two or more strategies. 

In Section 4, we perform numerical simulations of the 

reproduction numbers derived. In section 5, we perform 

sensitivity analysis. Section 6 will close up the paper with a 

conclusion and some recommendations. 

2. Model Formulation 

The cholera model developed in [4] is a combined system 

of human populations and the environmental component 

(SIR-B), with the environment-to-human transmission 

represented by a logistic (or Michaelis-Menten type) function 
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and the human-to-human transmission by the standard mass 

action law. We now extend this model by adding vaccination, 

treatment, education campaign and water sanitation.

The total human population is divided into three 

compartments depending on the epidemiological status of 

individuals.These compartments include: Susceptible, 

symptomatically infected, I(t) and Recovered, 

assume that the total population is non-constant, which is a 

reasonable assumption for a relatively short period of time 

and for low-mortality diseases such as cholera. The 

concentration of the vibrios in the environment (that is 

contaminated water) is denoted by B(t). 

susceptible population increases due to the incoming of 

immigrants and recovered individuals at the rates 

respectively. On the other hand, the susceptible population 

decreases due to the infection and vaccination strategy.

Concentration of Vibrio Cholerae in food and water that 

yields 50% chance of catching cholera disease K, γ is the 

at which infected people recovered from cholera dise

is the loss rate of Vibrio Cholerae in the environment. 

the contribution of each infected person to the population of 

Vibrio Cholerae in the environment. 

2.1. Model Assumptions 

The formulation of our model is guided by the following 

assumptions: 

i. The total population of individuals is not

ii. Controls are implemented continuously

iii. Vaccination is introduced to the susceptible population

iv. Therapeutic treatment is applied to the infected 

individuals. 

v. Water sanitation leads to the death of vibrios

vi. On recovery, there temporary immunity

The above description leads to the compartmental diagram 

in Figure 1. The parameters indicated in Figure 1 are 

described in Table 1. 

Figure 1. Compartmental diagram for a Cholera

strategies 
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Cholera Model with control 

Table 1. Parameters and their description.

Parameter Sensitivity Index 

Λ  Constant human recruitment rate

pµ  
Mortality rate for bacteria, 

hµ  
Natural human mortality rate

d  Disease induced death rate

2
α  

Effective contact rate between individuals (contact 

sufficient) 

1α  Per capita contact rate for humans and contaminated water

γ  Recovery rate of infected humans
ε  Bacteria shed rate into the water supply by infected human

φ  Per capita rate at which recovered humans are susceptible

θ  Per capita rate at which susceptible humans are vaccinated

1 eψ−  Education parameter 

b  (Maximum) per capita growth rate for 

K  Carrying capacity for 
w

 Rate at which water sanitation leads to the death of 

2.2. The Model Equations 

From the assumptions, descriptions and the compartment

diagram in Figure 1, we formulate the following system

differential equations. 

(1 ) ( )
dS

R S S
dt

φ ψ λ µ θ= Λ + − − − +

(1 ) ( )
e h

dI
S d I

dt
ψ λ µ γ= − − + +

(1 ) (1 ) ( )
dB B

b B I w B
dt K

= − + − − +

dR
I S R

dt
γ θ µ φ= + − +

Equation (1) describes the dynamics of susceptible in the 

community of size N. The death rate of the susceptible 

individuals is represented by

recruitment into susceptible class

contaminated food and water, 

susceptible catching cholera. S

the concentration of toxigenic 

food and water. 

Equation (2) describes the dynamics of infected people in 

the community, their number increases as susceptible become 

infected and decreases as the infected recovers or die from 

the disease or natural death. Measures to limit the spread of 

the disease, such as hygiene and total sanitation reduce the 

amount of Vibrio Cholerae bacteria in the environment.

Equation (3) describes the dynamics of pathogenic 

Cholerae in the environment, comprising the contaminated 

food or water consumed by people and unhyg

of cholera patients and their waste products.

Equation (4) describes the dynamics of effect of treatment 

or lack of treatment to the population of infected people.
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Parameters and their description. 

Constant human recruitment rate 

Mortality rate for bacteria, including phage degradation 

Natural human mortality rate 

Disease induced death rate 

Effective contact rate between individuals (contact 

Per capita contact rate for humans and contaminated water 

Recovery rate of infected humans 

Bacteria shed rate into the water supply by infected human 
which recovered humans are susceptible 

Per capita rate at which susceptible humans are vaccinated 

 

(Maximum) per capita growth rate for V. cholerae bacteria 
Carrying capacity for V. cholerae 
Rate at which water sanitation leads to the death of vibrios 

the assumptions, descriptions and the compartmental 

formulate the following system of 

(1 ) ( )
e h

R S Sφ ψ λ µ θ= Λ + − − − +              (1) 

(1 ) ( )
e h

S d Iψ λ µ γ= − − + +                    (2) 

(1 ) (1 ) ( )
e p

b B I w Bψ ε µ= − + − − +         (3) 

( )
h

I S Rγ θ µ φ= + − +                     (4) 

Equation (1) describes the dynamics of susceptible in the 

. The death rate of the susceptible 

individuals is represented by h
µ , 1

B

K B

α
+

is the rate of 

class, 1
α is the rate of exposure to 

contaminated food and water, 1
B

K B

α
+

is the probability of 

S  is the susceptible and B  is 

nic Vibrio Cholerae bacteria in 

Equation (2) describes the dynamics of infected people in 

the community, their number increases as susceptible become 

infected and decreases as the infected recovers or die from 

the disease or natural death. Measures to limit the spread of 

h as hygiene and total sanitation reduce the 

bacteria in the environment. 

Equation (3) describes the dynamics of pathogenic Vibrio 

in the environment, comprising the contaminated 

food or water consumed by people and unhygienic handling 

of cholera patients and their waste products. 

Equation (4) describes the dynamics of effect of treatment 

or lack of treatment to the population of infected people. 
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2.3. Basic Properties of the Model 

2.3.1. Positivity of Solutions 

Since the model monitors human population, we need to 

show that all the state variables remain non-negative for all 

times. 

Theorem 1 

Let � = {�, �, �, � ∈ ℝ��: ��0� > 0, ��0� > 0, ��0� >0, ��0� > 0} then the solutions of {�(�), �(�), R(t), B(�) } of 

the system equation (1-4) are positive for all t ≥ 0. 

Proof: 

Consider the 1st equation of the system eqn. (1-4)

 

(1 ) ( )
e h

dS
R S S

dt
φ ψ λ µ θ= Λ + − − − +  

( )
h

dS
S

dt
µ θ≥ Λ − +  

( )
h

dS
S

dt
µ θ+ + = Λ  

Solving we get 

( )( ) h t

h

S t ce µ θ

µ θ
− +Λ= +

+
 

Taking initial conditions we get: 

( )

0
( ) ( ) 0h t

h h

S t s e µ θ

µ θ µ θ
− +Λ Λ= + − ≥

+ +
 

Consider also the 2
nd

 equation of the system eqn. (1-4) 

(1 ) ( )
e h

dI
S d I

dt
ψ λ µ γ= − − + +  

( )
h

dI
d I

dt
µ γ≥ − + +  

Upon integration we get 

( )
( ) h d t

I t Me
µ γ− + +=  

Taking initial conditions we get 

( )

0( ) 0h d t
I t I e

µ γ− + +≥ ≥  

Consider also the 3
rd

 equation of the system eqn. (1-4) 

(1 ) (1 ) ( )
e p

dB B
b B I w B

dt K
ψ ε µ= − + − − +  

(1 ) ( )
p

dB B
b B w B

dt K
µ≥ − − +  

(1 ) ( )
p

dB B
b B w B

dt K
µ= − − +  

2

( )
p

dB
dt

B
w b

K
µ

= −
+ + −

 

Upon integration we get 

2

2

2 1

1 1

( )
1

a t

a t

a f e
B t

a f e

−

−=
−

 

Taking initial conditions we get 

2

2

0 2

0 1 2

( )
(1 )

a t

a t

B a e
B t

B a e a

−

−=
− +

 

As t → +∞  then 0B →  

Consider also the 3
rd

 equation of the system eqn. (1-4) 

( )h

dR
I S R

dt
γ θ µ φ= + − +  

( )h

dR
R

dt
µ φ≥ − +  

( )h

dR
R

dt
µ φ= − +  

Upon integration we get 

( )
( ) 0h t

R t Ce
µ φ− += ≥  

Taking initial conditions we get
 

( )

0( ) 0h t
R t R e

µ φ− += ≥  

2.3.2. Invariant Region 

The system equations (1-4) have solutions which are 

contained in the feasible region: 

4{( , , , ) : 0 ,0 ,0 ,0 , }
h

T S I R B R S I R B S I R
µ+
Λ= ∈ ≤ ≤ ≤ ≤ + + ≤  

where the model makes biological sense can be shown to 

be positively invariant and globally attracting in
4R +  with 

respect to our system. 

3. Model Analysis 

The model system (1-4) is analyzed qualitatively to get 

insights into its dynamical features which give better 

understanding of the impact control strategies on the 

transmission dynamics of vibrio cholera virus. 

3.1. Disease Free Equilibrium (DFE), P0 

The disease free equilibrium of model system (1-4) is 

obtained by setting 
���� = ���� = ���� = ���� = 0 , and in the 

absence of disease, I=B=0 so that: 
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0 ( )
 

( )

h

h h

S
µ θ

µ µ θ φ
+ Λ

=
+ +

                         (5) 

0

( )
h h

R
θ

µ µ θ φ
Λ=
+ +

 

Hence DFE is 

( )0 0 0 0 )
, , , ( ,0,0, )

( ) ( )

h

h h h h

S I B R
µ θ θ

µ µ θ φ µ µ θ φ
+ Λ Λ=
+ + + +

 

3.2. The Basic Reproduction Number,R0 

The basic reproduction number denoted by R0 is the 

average number of secondary infections caused by an 

infectious individual during his or her entire period of 

infectiousness (Diekmann et al) [25]. The basic reproduction 

number is an important non-dimensional quantity in 

epidemiology as it sets the threshold in the study of a disease 

both for predicting its outbreak and for evaluating its control 

strategies. Thus, whether a disease becomes persistent or dies 

out in a community depends on the value of the reproduction 

number, 
0

R . Furthermore, stability of equilibria can be 

analyzed using R0. If �� < 1 it means that every infectious 

individual will cause less than one secondary infection and 

hence the disease will die out and when �� > 1 , every 

infectious individual will cause more than one secondary 

infection and hence the disease will invade the population. A 

large number of R0 may indicate the possibility of a major 

epidemic. For the case of a model with a single infected class, 

0
R  is simply the product of the infection rate and the mean 

duration of the infection. 

In more complicated epidemics we compute the basic 

reproduction number, 
0

R using the next generation operator 

approach by van den Driessche and Watmough [26]. 

We calculate the basic reproduction number by using the 

next generation operator method on the system eqn. (1-4). 

The basic reproduction number is obtained by taking the 

largest (dominant) eigenvalue (spectral radius) of 

1

1 0 0
( ) ( )

FV i i

j j

E E

x x

−

−    ∂ ∂
=    

∂ ∂      

F V
(6) 

where i
F is the rate of appearance of new infection in 

compartment i , i
V is the transfer of infections from one 

compartment i to another and 0
E  is the disease-free 

equilibrium. 

From system equation of the system (1-4), we re-write the 

equations with infectious classes, I and B. This leads to the 

system 

1 2
(1 ) (1 ) ( )

e e h

dI BS
IS d I

dt K B
ψ α ψ α µ γ= − + − − + +

+
   (7) 

(1 ) ( )
e p

dB
I w B

dt
ψ ε µ= − − +                  (8) 

From system (7-8), 

F� = ��1 −  !� "#��$ + � + �1 −  !�"&��0 ' 

Partial differentiation of F� with respect to I and B gives: 

F = ��1 −  !�"&�� �1 −  !�"#$ ��
0 0 ' 

On the other hand, 

V� = ) �*+ + , + -��
−. /1 − �$0 � − �1 −  !�1� + 2*3 + - − .4�5 

Partial differentiation of V� with respect to I and B gives: 

V = 7 *+ + , + 8 0−�1 −  !�1 *3 + - − .9 

It follows that: 

V:# =
;<<
<= 1*+ + , + 8 0

−�1 −  !�1�*+ + , + 8��*3 + - − .� 1*3 + - − .>??
?@
 

Thus, 

FV:# = )�1 −  !�"&��*+ + , + 8 + �1 −  !�&"#1��
�*+ + , + 8�2*3 + - − .4$ �1 −  !�"#2*3 + - − .4$0 0 5 

The spectral radius for FV:#  gives the effective 

reproduction number denoted by ��A which given by: 

��A = �#:BC�DE�F
GH���I + �#:BC�EDJK�F

�GH���I�2GL�M:N4O               (9) 

Substituting �� = �GH�P�QGH�GH�P�R� in equation (9) we get 

��A = Q�GH�P��#:BC�[�#:BC�DJK�2GL�M:N4DEO]GH�GH�P�R��GH���I�2GL�M:N4O              (10) 

Thus ��A , is the effective reproduction number (basic 

reproduction number with controls). 

When there is no any intervention we have: V = - =  ! =8 = 0. 

Thus, the basic reproduction number for system (1-4) is: 

�� = Q[DJK�2GL:N4DEO]GH�GH���2GL:N4O                          (11) 
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3.2.1. Analysis of WXY  with Unique Control Strategy 

In this section, we use effective reproduction number in 

equation (10) to compute reproduction numbers for 

individual control strategy (intervention). The similar 

approach was done by Stephen [27, 28] and Nyerere [29, 30]. 

If vaccination is the only control that is V ≠ 0, - =  ! =8 = 0 then the basic reproduction number with vaccination 

only is given by: 

�[ = Q�GH�P�[DJK�2GL:N4DEO]GH�GH�P�R��GH���2GL:N4O                (12) 

If education is the only control that is  ! ≠ 0, V = - =8 = 0 then the basic reproduction number with vaccination 

only is given by: 

�!� = Q�#:BC�[�#:BC�DJK�2GL:N4DEO]GH�GH���2GL:N4O                (13) 

If treatment is the only control, we have 8 ≠ 0, V = - = ! = 0 then the basic reproduction number with treatment 

only is given by: 

�\ = Q[DJK�2GL:N4DEO]�GH�R��GH���I�2GL:N4O                 (14) 

If sanitation is the only control that is - ≠ 0, V = 8 = ! = 0 then the basic reproduction number with sanitation 

only is given by: 

�]^ = Q_DJK�2GL�M:N4DEO`GH�GH���2GL�M:N4O                  (15) 

3.2.2. Analysis of WXY  with Two Control Strategies 

In this section, we further analyze the effective 

reproduction number in equation (10) by computing 

reproduction numbers for the combination of two control 

strategies (interventions).If the combination of vaccination 

and education campaign is the only intervention that 

is  ! ≠ 0, V ≠ 0, 8 = - = 0  then the basic reproduction 

number with vaccination and education campaign only is 

given by: 

�[!� = Q�GH�P��#:BC�[�#:BC�DJK�2GL:N4DEO]GH�GH�P�R��GH���2GL:N4O           (16) 

If the combination of vaccination and treatment is the only 

intervention that is 8 ≠ 0, V ≠ 0,  ! = - = 0 then the basic 

reproduction number is given by: 

�[\ = Q�GH�P�[DJK�2GL:N4DEO]GH�GH�P�R��GH���I�2GL:N4O               (17) 

If the combination of vaccination and water sanitation is 

the only intervention that is - ≠ 0, V ≠ 0,  ! = 8 = 0 then 

the basic reproduction number is given by: 

��A = Q�GH�P�[DJK�2GL�M:N4DEO]GH�GH�P�R��GH���2GL�M:N4O                      (18) 

If the combination of treatment and education campaign is 

the only intervention that is  ! ≠ 0, 8 ≠ 0, - = V = 0 then 

the basic reproduction number is given by: 

�\!� = Q�#:BC�_�#:BC�DJK�2GL:N4DEO`�GH�R��GH���I�2GL:N4O              (19) 

If the combination of water sanitation and education 

campaign is the only intervention that is  ! ≠ 0, - ≠ 0, 8 =V = 0 then the basic reproduction number is given by: 

�]^!� = Q�#:BC�_�#:BC�DJK�2GL�M:N4DEO`GH�GH���2GL�M:N4O              (20) 

If the combination of water sanitation and treatment is the 

only intervention that is 8 ≠ 0, - ≠ 0,  ! = V = 0 then the 

basic reproduction number is given by: 

�]^\ = a_DJK�2GL�M:N4DEO`�GH�R��GH���I�2GL�M:N4O               (21) 

3.2.3.Analysis of WXY  with Three Control Strategies 

Lastly, we analyze the effective reproduction number in 

(10) by computing reproduction numbers for the combination 

of three control strategies (interventions). 

If the combination of water sanitation, treatment and 

education campaign is the only intervention that is  ! ≠0, - ≠ 0, 8 ≠ 0, V = 0 then the basic reproduction number is 

given by: 

( ) ( ) ( )
( )( )

1 2
Λ 1 [ 1 ]

( )

e e p

saTed

h h p

b K
R

d b K

ψ ψ α ε µ ω α

µ φ µ γ µ ω

− − + + −
=

+ + + + −
      (22) 

If the combination of water sanitation, vaccination and 

education campaign is the only intervention that is V ≠0,  ! ≠ 0, - ≠ 0, 8 = 0 then the basic reproduction number 

is given by: 

�[]^!� = Q�GH�P��#:BC�[�#:BC�DJK�2GL�M:N4DEO]GH�GH�P�R��GH���2GL�M:N4O         (23) 

If the combination of treatment, vaccination and education 

campaign is the only intervention that is V ≠ 0,  ! ≠ 0, 8 ≠0, - = 0 then the basic reproduction number is given by: 

�[\!� = Q�GH�P��#:BC�[�#:BC�DJK�2GL:N4DEO]GH�GH�P�R��GH���I�2GL:N4O            (24) 

If the combination of treatment, vaccination and water 

sanitation is the only intervention that is V ≠ 0, 8 ≠ 0, - ≠0,  ! = 0 then the basic reproduction number is given by: 

�[]^\ = Q�GH�P�[DJK�2GL�M:N4DEO]GH�GH�P�R��GH���I�2GL�M:N4O             (25) 

3.3. Local Stability of the Disease-Free Equilibrium 

Here, we investigate the local stability of the disease-free 

equilibrium point, ( )0 0 0 0

0
, , ,P S I B R .Thus, we linearize 

model system (1-4) by computing its Jacobian matrix, bc . 

The Jacobian matrix is computed by differentiating each 

equation in the system with respect to the state 

variables �, �, �, �. 
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If 0 0c bS− > then ( ) 0tr A <  so we only need to show that 
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Since all parameters are assumed positive then

(( )( ) ) ( ) 0
h h h h

µ θ µ φ θφ µ µ θ φ+ + − = + + >  

Consider the term 

0
0
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− −
0

0
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= − +

0

(1 ( ))
S

gc Kbg fa
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01
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gc bgS

gc K
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Hence we have: 

0
0

0[ ( ) ][( )( ) ] (( )( ) ) (1 ) 0h h h h

fS a
g c bS gc R

K
µ θ µ φ θφ µ θ µ φ θφ− − + + − = + + − − >  

Thus det�b�d��� > 0 provided 0 1cR < , therefore the DFE 

is locally asymptotically stable. 

4. Simulation and Discussion 

An SIR-B model was formulated and analyzed. The main 

objective of this study was to assess the impact of the 

incorporated control strategies on the transmission dynamics 

of the disease. Numerical simulations of model system (1-4) 

are carried out using a set of parameter values given in Table 

2. Matlab is used in the numerical simulations. 

Graphical representations showing the variations in 

reproduction numbers with respect to contact rate between 

the susceptible and the contaminated environment are 

provided in Figures 2-4. Since most of the parameters values 

were not readily available; we used data from literature and 

the missing data were estimated. Table 2 shows the set of 

parameter values which were used. 

Table 2. Parameters values used in model simulations. 

Parameters Value Source 

θ  0.4/year Estimated 

φ  
0.1days-1 Estimated 

1
α  

variable Estimated 

2
α  0.00005day-1

 
Mukandavire[33] 

ω  0.0005/day
 

Estimated 
γ  0.2days-1 Hartley[34] 

Parameters Value Source 

e
ψ  0.4/day [0-1] Mwasa [38] 

k  100000cells/ml Estimated 

Λ  10/day Musekwa[35] 

hµ  
0.022/year WHO[36] 

pµ  0.02 days-1

 Estimated 

d  0.015/day WHO [37] 

b  0.01/year [0-1] Mwasa [38] 

ε  0.5(cell/ml day -1 person -1 Estimated 

 

Figure 2.Variations of a mono-control reproduction number with respect to 

human-environment contact rate 

Figure 2 shows that, 0
R .ed T sa vR R R R< < < <  We see 

from the figure that 0
R  is worst case scenario, it occurs when 

there is no any control strategy for the epidemic. The basic 

reproduction number 0
R grows very sharp with respect to an 

increase in human-environment contact rate. Such an 
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increase in 0
R above unity implies that there is a high 

eruption of cholera in the community. 

The best case scenario occurs at graph R

is the only intervention offered to infected individuals. It can 

be noticed that the reproduction number with treatment 

strategy is very small indeed less than unity, which means 

that the disease dies out. After treatment individuals recover, 

since recovery is not permanent the recovered individuals 

might become susceptible again to the disease.

The next to best case scenario occurs at graph 

education campaign is emphasized to individua

includes education on self hygiene, importance of using 

toilets, drinking boiled water, humans not to contaminate 

water, use of oral salts to help already infected individuals, 

avoiding direct contact to infected individuals etc. It can be 

noticed from Figure 2 that education campaign is more 

important as compared to sanitation and vaccinati

individual awareness about the disease limit the spread of the 

epidemic better. 

The next to the best case scenario is 

account for water sanitation. It is noted that treating water 

with chlorine plays an important role in combating cholera as 

compared to vaccination. This is because addition of chlorine 

in water kills the vibrio cholera virus whereas vaccinati

individual just boost immunity of an individual, it is clear 

from literature that no vaccine is perfect, the vaccines usually 

wanes with time and thus previously vaccinated individual 

might be easily infected with the disease if the vaccine has 

already expired [31]. Another concern about vaccination is 

coverage; it is practically not easy to attain mass vaccination 

because of several reasons; including financial constraints 

and infrastructure constraints. That 

governments opt to offer clean water to its individuals 

because it is not only cheaper but also is healthier than 

vaccination. In so doing they tend to limit the eruption of the 

disease. 

Figure 3. Variations of a bi-control strategies reproduction numbers with 

respect to human-environment contact rate 

Clearly, we observe in Figure 3 that there is a drastic 

reduction in disease as compared to

simulations with bi-controls lead to the inequality: 

R
Ted vT saT saed ved sav

R R R R R< < < < <  as seen from Figure3. 
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as seen from Figure3. 

It is obvious that sav
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a combination of sanitation and vaccination as control 

strategies to limit the epidemic cholera. It is at the peak, this 

implies that there is a high increase in reproduction number 

with respect to human-environment contact 

increase results in the eruption of 

The best case scenario occurs at graph

control strategies namely treatment and education are 

incorporated. The next to best case scenario occurs at graph

R
vT , in which the combination of vaccination and treatment 

were considered, followed by R

water sanitation and treatment. Furthermore

which is a combination of sanitation and education.

From Figure 3, it can be further seen that 

reproduction numbers are less than 

there is a good control of the disease. Therefore, increa

the number of controls together with their associated 

parameters values yield a rapid decay of the reproduction 

number curves. This means that the disease is not endemic 

and it dies out. 

We can therefore conclude that combination of two control 

strategies is better than one control strategy as it yields better 

results in diminishing cholera from the community.

Figure 4.Variations of a tri- control strategies reproduction numbers with 

respect to human-environment contact rate

Clearly, we observe in Figure 4 that there is a drastic 

reduction in disease as compared to both Figure 2 and Figure 

3, where most of the reproduction numbers are far less than 

unity. This implies that there is a control of the disease. Three 

controls gives results that are marked

obtained with unique control and a combination of two 

interventions. Therefore, increasing the number of controls 

together with their associated parameters values yield a rapid 

decay of the reproduction number curves. This means tha

disease is not endemic and it dies out.

Our simulations with tri-controls lead to the inequality: 

R
all vTed saTed vsaed

R R R< < <  as seen from 

obvious that vsaed
R  is worst case scenario, which is a 

combination of sanitation, education

 60 
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R
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From Figure 3, it can be further seen that most of the 

reproduction numbers are less than 0.25; this implies that 

there is a good control of the disease. Therefore, increasing 

the number of controls together with their associated 

parameters values yield a rapid decay of the reproduction 

number curves. This means that the disease is not endemic 

We can therefore conclude that combination of two control 

gies is better than one control strategy as it yields better 

results in diminishing cholera from the community. 
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unity. This implies that there is a control of the disease. Three 

controls gives results that are marked lower than the results 

obtained with unique control and a combination of two 
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together with their associated parameters values yield a rapid 

decay of the reproduction number curves. This means that the 

disease is not endemic and it dies out. 
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control strategies to limit the epidemic cholera. vsaed
R  is at 

the peak, this implies that there is a high increase in 

reproduction number with respect to respect to human-

environment contact rate. Such an increase results in the 

eruption of cholera in the community. 

With regard to the three controls, the best case scenario 

occurs at graph R
vTed , where three control strategies such as 

vaccination, treatment and education are incorporated. The 

next to best case scenario occurs at graph saTed
R , in which the 

combination of sanitation, treatment and education were 

considered. Furthermore, we have R
vsaed , which is a 

combination of vaccination, sanitation and education. 

From Figure 3, it can be further seen that most of the 

reproduction numbers are less than 0.25, which implies that 

there is a good control of the disease. Therefore, increasing 

the number of controls together with their associated 

parameters values yield a rapid decay of the reproduction 

number curves. This means that the disease is not endemic 

and it dies out. It is obvious from Figure 4, reproduction 

number with all four controls, R
all  is the least and of course 

the best strategy among all controls. 

We can therefore conclude that the more you increase 

combination of control strategies the better you control 

cholera. 

5. Sensitivity Analysis 

Sensitivity analysis is used to determine how “sensitive” a 

model is to changes in the value of the parameters of the 

model and to changes in the structure of the model. 

Sensitivity analysis helps to build confidence in the model by 

studying the uncertainties that are often associated with 

parameters in models. Sensitivity indices allow us to measure 

the relative change in a state variable when a parameter 

changes. Sensitivity analysis is commonly used to determine 

the robustness of model predictions to parameter values 

(since there are usually errors in data collection and 

presumed parameter values). Thus we use it to discover 

parameters that have a high impact on R0 and should be 

targeted by intervention strategies. If the result is negative, 

then the relationship between the parameters and R0 is 

inversely proportional. In this case, we will take the modulus 

of the sensitivity index so that we can deduce the size of the 

effect of changing that parameter. On the other hand, a 

positive sensitivity index means an increase in the value of a 

parameter. 

The explicit expression of R0 is given by the equation (10). 

Since R0 depends only on six parameters, we derive an 

analytical expression for its sensitivity to each parameter 

using the normalized forward sensitivity index as by 

Chitnis[32] as follows: 

0 0

0

1R

k

R k

k R

∂
= × = −

∂
Ύ  

0 0

0

1R R

R
Λ

∂ Λ= × = +
∂Λ

Ύ  

The rest of sensitivity indices for all parameters used in 

equation (14) can be computed in the similar approach. Table 

3 shows the sensitivity indices of R0 with respect to the six 

parameters. 

Table 3. Sensitivity indices of R0 with respect to each parameter 

Parameter Sensitivity Index 

θ  +0.0323 

φ  
-0.1916 

1
α  

+0.9524 

2
α  +0.476 

ω  -0.0074 γ  -0.8434 

e
ψ  -1.3016 

k  -1 

Λ  +1 

ε  +0.4711 

From Table 3, we can obtain 0 1
R

k = −Ύ , this means that an 

increase in k  will cause a decrease of exactly the same 

proportion in R0. Similarly, a decrease in k will cause an 

increase in R0, as they are inversely proportional. We can also 

note that φ or - or e
ψ or 0γ <  hence these parameters are 

inversely proportional to R0. 

We also note that 0 1
R

Λ = +Ύ , this means that an increase in 

Λ  will cause an increase of exactly the same proportion in 

R0. Similarly, a decrease in Λ  will cause a decrease in R0, as 

they are directly proportional. We can also note that θ  or 1
α

or 1  or 2
0α > hence these parameters are directly 

proportional to R0. 

We can arrange these parameters in the order of their 

magnitude from the largest to the smallest as follows: e
ψ , Λ ,

k , 1
α , γ ,ε ,φ , θ and the least sensitive parameter is ω . 

Therefore, in order to minimize cholera transmission in a 

population, this study recommends that, education campaign 

should be given high emphasis followed by reducing contact 

rate with contaminated water and food. 

The other important issue that follows is treatment; sick 

people should be quickly given medical attention since the 

disease kills within in just few hours. Treatment of infected 

people increases the progression rate to recovered stage and 

treatment of infectious people will stop them from 

transmitting the disease. 

It can also be noted that there is a need to minimize contact 

between the susceptible and the infected so as to limit the 

spread of cholera; it is customary to quarantine the infected 

individual with the main purpose of minimizing contact rate 

hence reducing the outbreak of cholera. 

It can also be noted that there is a need to minimize 

contribution of infected people to water and food through 

fecal contamination. When such contaminated water is drunk 

by individuals then cholera spreads rapidly in the community. 

Another concern that should be given emphasis is 

vaccination, it is clear that vaccination in many disease has 

proved to be efficient intervention means , even though most 
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vaccines are not 100% efficient they wane with time. This is 

due to the fact that, vaccination reduces the likelihood of an 

individual to be infected. 

6. Conclusions and Recommendations 

6.1. Conclusions 

In this paper, we have formulated a deterministic 

mathematical model for transmission dynamics of cholera 

that incorporates four control strategies namely education, 

vaccination, treatment, and sanitation. From the model we 

have derived the effective reproduction number from which 

we have deduced the basic reproduction number, and the 

reproduction numbers with combination of two, and three 

control strategies. The effective reproduction number 

computed has been used to measure the relative impact for 

individual or combined intervention for effective disease 

control. We have derived both the Disease Free Equilibrium 

(DFE) and the Endemic Equilibrium points (EE) and proved 

that the DFE is locally asymptotically stable (l.a.s) when

1
e

R < . 

Moreover, we have performed sensitivity analysis on the 

basic reproduction with all control strategies, from which we 

have noted that the most sensitive parameters are the 

education campaign, therapeutic treatment, effective contact 

between the susceptible and infected individuals, bacteria 

carrying capacity, and recruitment rate. These strategies need 

high attention when at all we need to control cholera 

outbreak wherever it occurs. 

Numerical simulations of the model have shown that, 

whenever the control strategies are carried out solely then 

treatment is best alternative to cholera, but when there are 

two combinations strategies then the best combination is 

treatment and education. 

On the other hand when a combination of three control 

strategies is implemented then the best combination is the 

one with vaccination, treatment and education. It has been 

noted that the best combination is the one that incorporated 

all four control strategies. From this study we conclude that 

the more one increases combination of control strategies then 

cholera is can be eradicated from the community. 

6.2. Recommendations 

Based on our findings, we recommend that proper 

education and sensitization be given to the public by relevant 

authorities and NGO's of the dangers of open defecation and 

urinating in source of drinking water. This will reduce the 

contribution of each infected person to the aquatic reservoir 

(parameter ε ). 

Also, we recommend that the Government should provide 

portable water to the populace in order to discourage 

drinking of untreated water. This will reduce the rate of 

exposure to contaminated water (parameter 1
α ).The same 

was recommended by Ochoche [7]. 

In addition, it is recommended that people suffering from 

cholera should be immediately quarantined so as to reduce 

the contact rate between the infected and the susceptible 

humans (parameter, 2
α ). Early treatment of all cholera 

patients is highly recommended to save the life of the sick 

humans since cholera kill in very short time (parameter γ ). 

People should be restricted to enter in places where cholera 

outbreak occurs, this will help to limit the spread of the 

disease (parameter Λ ). In case the economy allows, 

vaccination strategy should be established to areas where 

cholera is chronic. 
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