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Abstract: In this study, the finite difference method is applied to an optimal control problem controlled by two functions which
are in the coefficients of two-dimensional Schrodinger equation. Convergence of the finite difference approximation according to
the functional is proved. We have used the implicit method for solving the two-dimensional Schrodinger equation. Although the
implicit scheme obtained from solution of the system of the linear equations is generally numerically stable and convergent
without time-step condition, the solution of considered equation is numerically stable with time-step condition, due to the
gradient term.
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1. Introduction and Statement of Problem

We consider the following optimal control problem:
L )
IJ x,x,,T) = (xl,x2)| dx,dx, - min e
00
on the set

V:{v:v(t) :(v1 (t),v2 (t)), v, 0L, (O,T), p=12, "vp"Lz(O’T) pr, p :1,2}

subject to the problem;

.0 0 0
la—“jm[ax‘f x‘fjﬂza (5o 2 2ot o)y (=t e = (o), (505) 00
W(x,x%,,0)=¢(x.x,), (x,x,)0D (3)
W(0,x,,6) =g(1,x,,8) = (x,,0,¢) =g (x,,0,,¢) =0, t 0(0,7], @)

where > =-1; @, >0, T>0 and b, >0, p=12 are given numbers. x=(x,x,)0D=(0,4,)x(0,,)OR*; Q =Dx(0,t);

Q=Q,; yOm (D) is a given function; @, a;, b,0L,(D), j=12 are given functions satisfying the following conditions:
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0 62
oa(s) < |2 <y 1790 <)k pm12 CxniD, s = const > )
ox, ox, 0,
da, (x) 0’a, (x) 0
0<a, (x)SUO, / <u, / <v,, j,p,k=1,2,0x0D, v,,u,,U, =const. >0, (6)
Ox, Ox,0x,
ob, (x) 0°b, (x) . 0
0<b,(x)<n,, 3 <n, <n,,j,p,k=1,2,0x0D, n,,n,,1, =const.> 0. (7)
X, 0x,0x,

Moreover we assume that the function &; satisfy the

following condition:
aj(O,xz):aj(ll,xz) a (xl,O) a (xl,l) 0,7=12. (8)

¢(xl,xz) and f (xl,xz,t) are given functions satisfying
the following conditions:

0 0
¢OW, (D), fOW;°(Q). )

Definitions of the given function spaces above are such as
given in [9].

The optimal control problems for the Schrodinger equation
have been investigated by different authors. Yetiskin and
Subasi have studied the problem of determining of the
potential in the Schrodinger equation from the measured final
data [1]. Yildiz at all.have investigated the existence and
uniqueness of the solution of the optimal control problem for
non-stationary Schrodinger equation and given necessary and
sufficient conditions for the solution [2]. Beauchard and
Laurent have investigated the exact controllability for the
system which contain the linear Schrodinger equation, on a
bounded interval, with a bilinear control in any positive time,
locally around the ground state [3]. Yildiz and Subags1 have
proved two estimates the solution of the optimal control
problem for the linear Schrodinger equation and obtained

necessary and sufficient conditions for the optimal solution [4].

Baudouin at all.lhave obtained that the problem

v (r)u=0 with u(x0)=u(x) is
well-posed and the regularity of the initial data is conserved
for the solution if the electric potential V] is regular enough

and at most quadratic at infinity [5].

Yagubov and Musayeva investigated finite-difference
method solution of variation formulation of an inverse
problem for nonlinear Schrodinger equation in [6].

This paper is organized as follows: In this section we state a

ialu+Au+‘x—a(t

{(xU] ’x2/z 7[" )n} 1 = 1’2’.”’ xl/l = jlhl"

-1, hl =0, x +h1

= 1 M,, ) 1,17 7y

_hln/zajl
. _£17 x21

—1) h, =h2,,—z /( 1),

theorem for the generalized solution of Schrodinger equation
and then we discretize the given optimal control problem. In
Section 2 we state and prove a theorem for the stability of the
solution of finite difference approximations. In Section 3 we
state a theorem for the error of the finite difference
approximations. In the last section we state and prove two

theorems for convergence of the finite difference
approximations according to the functional.
Theorem 1: Suppose that the functions

a(x.x,), a;(x.x,), b,(x.x,), j =12, @(x.x,), /(x.%,.1) hold
the conditions (5)-(9). Then the initial-boundary value
problem (2)-(4) has a unique solution belonging to the space

0
WZZJ(Q) for each vUV and this solution satisfies the
following estimate:

2 <c 2
vl;/j] (Q) - rgfi‘ﬂ(gz)

where the number ¢, >0 is independent of # and f .
Proof of this problem can be obtained by similar processes
given in [9].
Suppose that conditions (5)-(9) holds, then there exist the
solution of the optimal control problem (1)-(4) according to
[9].In other words, we can write the following:

Z Lt 10

E{v* DVIJ(V*) =J, :inDIIfJ(V)} 0.

Now we solve the optimal control problem by using finite
difference method. Firstly let us separate the domain

Q=[0,4]x[0,1,]x[0,7] using the meshes 0 =X, <x;... <x, =/,

and 0= Xy <X,... <X,

=1, in space and using a mesh

0=1,<t,<..<ty =T in time. Here the mesh points are
following:

LM, -1 x,, = j,h, —h, /2,

2n

h h
=0, Xom, —1+i: 25 b kT,
2 =72

n

Finite differences for the space derivatives and the time derivatives in (2) are define in the following way according to [7,8,10].
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dx@,/zk = (¢/|/zk _@lfzk—l)/r’
50, = (0,0 -9,-4)
)

/hl 6;2@02" :(¢/|/z" _¢/1/z_lk)/h2’
5"|¢/|/2k = (w/]*l/zk _wjlizk /hl’ 5)5260/]/2" = (¢/I/Z+U‘ _qoflfz")/hz’
Jxxg@ﬂ':k :(¢/I+1/Zk - ¢/|/z ¢/| llk)/hlz’ 5"25@021‘ = (@1/2*”‘ _2¢/1izk +¢/1/z‘1k)/h22’

Q'Z _%'Z %fz _%1_ 2
O =0, Bs Z(/(;H—/z)/k)’ OBk = O ot = ( /(kh /2) llk)7
1
_ _( Tk _¢j|0k) ( Mok B ijz’lk)
& ik _JXZ@lOk _W’ %@'M 6 M1k (h /2)
2 2

Hence finite difference approximations are substituted for the derivatives to convert the optimal control problem (1)-(4) to an
algebraic form for any integer n =1as following problem according to [10]:

M, -1M,-1

L) =he 2 Xl

=l jp=1

— min (11

/1/2N Y Q2 |

on the set

E{[V] [, ‘([VI] [v.] ) ["J _( VorsVpaoes ,va),p:1,2,
N 2 2 _
[TZMU <b,p=12k=LN
k=1
subject to the problem

2
ld@l!z +Cl0 (J ¢/|Jz nggl./zk)*— Zl 1112&@111 Zb.jljz Jk¢/ljz /112 ¢J]jzk = f;'l.fzk’ (12)
=

=
L=ELM -1, 5, =1,M,-1 k= ,N

¢/’1/’20 = ¢j1j2 ! jl = O'Ml' j2 = O’MZ’ (13) Here jlh bjlh jljz s yj]jz > ¢j1]‘2 > f}l‘fzk are meSh
o functions Wthh are defined as following:
%jzk :%Ijzk:()ajz:OaMb k:L s (14)
¢110k :wlezk :0,j1:0, lak:LN- (15)
Xt 23 iy 2
afh = [ @ (xox)ddy, j=1,2,j, =L,M, =1, j, =1,M, -1, (16)

%2 =123y, =y 12

Xt 23, iy /2

b{lh:hh [ ] b(xx)dudx, j=12,j, =L,M, 1, j, =1,M, -1, (17)

1% 3, =123y, =hy 12

Xy 123, 4y /2
ah=— [ [ alx,x)dvdy, j, =LM, =1, j, =1,M, 1, (18)

h, Xy =h 123 =hy 12

iyt 12%5 5+ 12
1
¢,-,,-2 :h_ _[ _[ ¢(x1’x2)dx2dx1a jl :1’M1 _sz :1,M2 _1,

1 =2y, =1y 12 19)

¢00 = ¢0M2 = ¢M.0 = ¢M|Mz =0,

Xyt 12 x5 +hy 12

. 14
f/]fz" -

hh, ey 31, =hy 12 335y =y 12

f(x.x,,0)dx,dxdt, j, =1,M, =1, j, =1,M, =1, k =1,N, (20)
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Xyt 2, +hy /2

y(x,x,)dx,dx,, j, =1,M, -1, j, =1,M, —1. 1)

Yii =

12w =m 123, =iy 12

Using the equalities (16)-(18) and the conditions on @, a;, b, given with (5)-(8), we find

0sa" <, [6.a" <, |0, ~a"| <, kip=12, (22)
0< aj’.”'z <v,, |5};a}’f‘fz <u, O_m—pa/’f‘jz <v,, j,k,p=12, 2
0jy — Mjy — W0 — My — ( )
a;” =a; =0, al” =aj =0,
0<b” <n,, \ng;"fz < (0, b/ Sy Jikp=1.2. (24)
.\ 1 - . . .
2. Stability of the Finite Difference condition0<7 < g(Ul) ' Then the solution of finite difference
Approximations approximations (12)-(15) satisfies the following estimate for
o . . _each[V], 07
In this section, we examine whether the solution of finite
difference approximations is stable or not.
Theorem 2: Suppose that the time-step 7 satisfy the
-1 M, -1
hh Z Z !1/7”1| _Cl{hh Z Z |¢!1! 11!7k| ]’ ml:l{l’z””’N}’ (25)
=1 jp=1 W=l = k=l =1 jp=
Here the number ¢, >0 is independent of %, A, and 7 .
Proof: The scheme (12)-(15) is equivalent to the following identity for each ¢ =¢,:
M, -1 M, -1 M, M,-1 M1 M, 2 M, -1 M,-1
hth Z z (ld{ﬂm k”/y/zk) aohlh Z z ( ¢/1/zk /1/ k) aOh h Z Z( /1/ 2k "x, /1/1") z z (mmZ /1/1"’7/1/ k)
=l IEWENE
M -1 M, -1 M, -1 M, -1 o M -1 M,-1 (26)
+h h z z Z (bh v”‘@‘/ll‘,?/‘/lk) hlhz z Z ((1/']2@]/.2,(/7/_\/2,() h1h Z z ( /1/ k”/]/z") = I’N
JEL =L =L A=l =l

Here the mesh function 77, is complex conjugate of the arbitrary mesh function /7,,, which is defined on the mesh

sequence {(xljl,xzjz,tk)n} and satisfies the conditions 77y, =/y,,x =05 7500 =Mms =0, 7, =0, M, j, =0,M,, k =N . Here

substituting 7, ,x with rq_a,-] s and then subtracting complex conjugate of obtained equality from itself, we have the following

equation:
M, =1 M, -1 _ 2 M -1 M,-1 _
LADISNCTICIELTI NN LTSI IDI [ ( kB + O Bu P H
Ji=l =l J=EU =L =l
M -1 M,-1 _ (27)
=2hhry Y 1m(f, .0, ) DkO{12,...N}.
A=l =l
Using
— — _ 2
T(dtwjljzk 1ok + dt@ljzk ]‘L/‘zk) | ]1 ok | |¢/1]zk 1| |¢]l/z /1 Jok= 1| (28)
— — _ 2 2 2
hl (dxl@l]‘zk ok + 5)?]¢j1j2k jl‘fzk) - |¢/‘1‘/‘2k| - |¢/I —ljk + |¢/‘1‘/‘2k B @1 _1‘f2k| (29)
— 2
(igllz ok 6‘7@1]‘21‘ T2k ) = | /1]2 |¢]1 o~ 1k| |¢]1 ok ]1/7 lk| (30)

in (27), adding index k& from 1 through m < N and then calculating absolute value of both sides, and we use the condition (23),
we have the following:
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M -1 M, -1 1M, -~ ) N
hh 2 z‘@um _hh Z} Z:IVH ‘ +hh T i 4 : /]/:H@’rljz/t
7 =1 W= = k=1 ji=2 jp=1
m M,
+hh TZ Z Z‘d amz 11/ —lk /ukH@uzk
k=1 ji=1 j,=2 k=1 ji=1 j=1
m M -1M,-1
5}11/122 z‘¢mz ZUhlh TZZ mz
=1 j,=1 k=1 ji=1 j,=1
m 1M,
5% Z\fM s OmO{1.2,..., N}

k=1 ji=l j,=
The mth term of the last term on the right side of this inequality writing a separate and then applying € —Cauchy and

Cauchy-Bunyakovsky inequalities, we get the following inequality:

M1 M, -1 M -1 M, -1 m M =1M,-1 1M, -1 M -1 M, -1
hhzlzl\%m <h ZIZI\ /,\ +2uhhrlz;zl Zl\%k\ +£hhrzl Zl‘fmm hhrzlzl »
Vi )2 = K N J2 S J2 N J2
m—M—lM m=1 M, =1 M, -1 (31)
+hh /./k‘ +'Lllh TZZ Z /./k DMD ’2 N}
k=1 j=1 k=1 j=1 j=
Writing & =27, we obtain
M -1 M, -1 M -1 M, - m M=1M,-1
Z |//m _2hh22|¢//| 4T+2 hhrzz Z|f/./k|
J=l =l =l jp=1 k=l ji=l jp=
m M =1 M,-1 m=1 M, =1 M, -1 - (32)
+4uhhrkzz Z|¢J,hk +2hhrkzzz Mk|, =LN
1 =l jp=1 1=l jp=l

and then the m¢th term of the third term on the right side writing a separate and using the condition 0<7<—(y)" for time-step 7 ,

we have the following:

My =1 M, -1 M =1 M, -1 m=1 M, =1 M, -1
WY g, | < 4hh, Z Z|¢M (8T +4) hh rzz S (80 +4) hlhzrzz g,.[. mO{12..N}
W=l =1 W=l =l k=1 =l jp=1 k=0 j=1 jp=1
Using Gronwall Lemma in this inequality, we get the following inequality:
M, =1 M, -1 N M -1M,-1 )
220 50 5[ AR IES T 30 5 ETR) 3 39 i 0 | R (KN (3)
J= W=l = N J=

Here the number ¢, >0 is independent of %, h,and 7.

3. An Estimate for the Error of the Finite Difference Approximations

Firstly, let us define the solution ¢ = l//(x,t;v) of the optimal control problem (1)-(4) for each vUV such as following

[0(xx60)], ={0,,)

Xt 125,y +hy 12

X _
J w(xl,xz,l)dxzdxldt, 7 :15M1 _lajz :LMz -1, k=LN,

1

w/\/zk bt hh7 /:'.I . J.h,’lxl/: T (34)
l///\/:O :¢h/z’jl =0, . :0
Vo =Whj0 =0, 4, = s k=1,
Yook =Winp =0, 5, =0, M, k=
Let us define the operator O, ontheset V' for each vV such as following:
0,(v):V - (v)=[w], :([Wl]n’[WZ]n)’ 0.(v) (Wpl’wpz’""wm\')’p =12,
(35)

W :% [ v, (t)dt, p=1,2, k=1,N

It
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(2], :{Z i ,-2,(} = { G, /-2,(} is error of the finite difference approximations. The mesh function{Z i /;k} satisfies the following

problem:
07, *a (J@Z_mzk + J.ngz_n_/zk)+izzla;}{"/:5.izkf,;fzk +ib}{lh Vil ~ @2 = F
j=1 ’ =1 (36)
L=LM -1,j,=1L,M,-1, k=1,N,
Z,10=0,/,=0,M,, j, =0,M,, (37)
Zy =2y, =0,,=0,M,, k=LN, Z,,, =2, =0,j,=0,M,, k=LN. (38)
Here the function £, is defined such as the following:
o 25, 2 2
i) L el SR et
+/Z::‘b/ (xl,xz)v/ (t)l//—a(xl,xz)llj}dxzdxldt—id/l///.]j.),( (5 Wit xle//j\fzk) (39)

2 2
‘iZa}"h%’//m =2Vl Y G = LM =y =1LM, =, k=N
— .

=1

Theorem 3: Suppose that the time-step 7 satisfy the condition O<rsé(ul)’l and space-steps /,,5, satisfy the adaptation

.. h h, .
conditions ¢, 571 <c, and ¢ S? <¢,. Here the numbers ¢; >0, ¢, >0, ¢; >0, ¢, >0 are independent of 7, /4 and #%,. Then

the following estimate is valid:

M, -1 M, -1
W 2, 2, Zyu| <c7( B, *0. () =[], H) OmO{1,2,.... N} (40)
W=l =
Here the number ¢, >0 is independent of 4, h, and 7 . let us estimate the finite difference between the functionals
181'11,}12 >0’ ﬂrhlhz -0 for 70 , hl -0 and hz -0 . J(V) and 1” ([v]n)
Moreover the following equality is satisfied; Theorem 4: Suppose that the conditions of Theorem 3 are

hold. Then the following inequality is valid for vV and

() P00
)=, (0], ) < e (VB [0 (v) -1

Here the number ¢; >0 is independent/;,, 4, and T .

Proof: We consider the difference J(v) =17, ([V],1 ) Using
(1) and (11) we can write the following equality:

lo. (v)-

J)- @y

4. Convergence of the Finite Difference
Approximations According to the
Functional

In this section, we prove convergence of the finite
difference approximations according to the functional. First,

-1 M,-1

Ll M,
J(v)—ln([v]n) II X, X, T | dx,dx, —hh, Zl Zl|¢/|/"’ Vin |2
X 0,1 M1 /230, iy /2 "

=TIZI‘,IZ I _[ [(|1//(xl,x2,T)—y(xl,x2)|+|¢,|,2N—y,|,2|)

==l /2%y, —hy 12

X(|w(xl,x2,T) =y (3.3 _|¢j|ij Vi |)de2dxl.

Applying Cauchy-Bunyakovsky inequality and using (10) and (25) in this equality, we have:



Applied and Computational Mathematics 2015; 4(2): 30-38 36

M, =1 My =11 +hy /2 X2, +hy /2 %
‘J(v)—[n ([v]n) < j |(//(xl,x2,T @, N| dx,dx,
W= =Ly 2 x5, <l /2
(42)
M, -1 M, ~1%; thy /2 xy 5 iy 12 5 }é
* Z Z .[ .[ |y(x1’x2)_yj|jz dx, dx, SClo[Jl +J2]
Q=1 =l X ~h /2%y 5 =y /2
Here the number ¢;, >0 is independent 4, , and T .
Firstly let us evaluate the term J,. To this, the following inequality can be written:
M, -1 M, 1% thy 12Xy 4y /2
2 _
Jp = Z Z J- J- |(//(x15x25T “N| dx,dx,
=l jp=1 X —hy/2 X2/ =hy /2
My =1 My =153 P23, Iy 12 M, -1 M, -1 (43)
522 Z j j |(//(x1,x2,T // N| dx2dx1 +2hh z z /uzN lfljmz
Q=1 RpE Xy ~h /2 xy 5 ~hy /2 A=l =l
= Jll + J12'
Using (34), we can write the following inequality:
Xy Al /2%, Fhy /2 2
T R LT U,
|"[/(xl’x2’T)_w.il.izN <h_l — an d¢,dn,dé
2% ity Xy /2%, =l /2 ,71
Xy Hhy /2 2 t 2
3k, § 0w (x,,0,,0 Yoy (x,x,,0
+2 —40( /1:,0) d/72d6’+3rj —lﬂ( 1 2,0) do
r Iy-y Xy =y /2 602 Iy 60-
Using the last inequality in the term J|,, we have:
B2 MM, by A thi2n, 2 g g 00 g 2 Gh2 MMty Apthi2n, 2 g (0 g 2
i Z > 9 (3, x01) dx, dx, 2y > 2 (3, x01) dx, dx,dt
W=l 1’\ -1 % —hy/2 X4~ hy/2 a'xl r A=l jp=1 Iy-1 Xy —/11/2)5212 =y /2 axZ
M =1 M, -1y Xty 2y 5 +hy /2 0 Y %t 2
vory > | LUCED)) dx, dx, d.
N A by X k2%, Ry 12 ot
Considering adaptation conditions and (10) in last
inequality, we get the following: J, < ( B, +| 0 (v)—[ 2) 45)
1y n n
Jy <, (b +h +1). (44) N
Here the number ¢, >0 isindependent?,, 4, and7 .

Here the number ¢;, > 0is independent /4, h, and7T . Now let us evaluate the term J, . Considering the formula of

Using Z,,v = @,,.v ~¥, ;v and (40), we have: Y, » we can write the following:

M, -1 M, -1%j th /2%y 4y /2

2
2 _ —
Jy = Z Z _[ _[ |y(x1,x2) yj]jz| dox, dx,
W= A= 2 x5 <y )2
2

1
~hy /2%, =hy 12\ & 6/71 & 2

M, =1 M, —1%1 +h /2 X +hy /2 X +hy /2 X3 +hy 2 ( x o
I : I ’ 1 ' - : a 5 ( a 5
- — [ ] IMM +J%d@}d{2dﬁ d,dx,.

WELAF i 12 3y, <y /2] T2

Applying Cauchy-Bunyakovsky inequality, we get following:
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-1 M, - X 2 xy, vy 12 a o x —1 M, X 2 x5 vy 12 a X x 2
2 RARTRSY) 2 VXX,
J; <2k z > d ix,dx, +2h; Z > 22 dxdx,.
WL =Ly w2 x5, <l 12 0 WL =Ly =2 x5, <l 12 axz

We easily have the following from the last inequality:
Jy<c, (n+1). (46)

Here the number¢,, >0 is independent/, and#,.
Using (44)-(46) in inequality (42), we get the following:

‘J(v)—ln ([V]n) Sclo[Jl +J2]5C13 (\/Th,h,-'-‘Q (V)_[V]n

Here the number ¢;; >0 is independent /4, #, and T .

)-47)

Lemma 1: Accept that the conditions of Theorem 4 are hold.

Furthermore let the operator O, (v) is defined by the formula
(35). Then O,(v)0V, for COvOV and the following

estimate is valid:

|J(v) -1, (Qn (v))| < csm.

Lemma 2: Accept that the conditions of Theorem 4 are hold
and let the operator P, is defined by the following formula:

£(01,) =70 =0 (0% ().

v (t)=v,., t,,<t<4, k=1LN, p=12.

(48)

(49)

Then P, ([v]n)DV for D[V]nDVn and the following

estimate is valid:

(1)1 01) < B

Theorem 5: Accept that the conditions of Lemma 1 and

(50)

Lemma 2 are hold, v' OV and [v]n OV, are solutions of

problems (1)-(4) and (11)-(15), respectively. In other words let
the equality satisfy the following:

)(v)= L (0T)= ot . (01).

Then the problem (11)-(15) is approximation of the optimal
control problem (1)-(4). Namely the condition

J. :ierllfJ(v) vel, =

lim/7,. =J. (51)

is satisfied and the estimate

s¢ \lﬁh,hzr

is valid for the convergence according to the functional.
Proof: Suppose that v" OV is the arbitrary solution of the

problem  (1)-(4). 0,(v)0%,  and

s B, » 1= 1,2,

|1

(52)

ne J*

optimal  control

1,(0.(v)) —J(v")‘ <

from Lemma 1.

Using this inequality, we have the following:
1.<1,(0,(v)) 27 () *+ efBopn =+ o B
Hence we write the following inequality:
(53)

Let the control [v]n OV, is the arbitrary solution of the
problem (11)-(15). P,,([V]:)DV from Lemma 2 and the

following inequality is satisfied:

‘J(Pn O1)) =7 (1) < B m =12

Hence the following inequality is valid:

so<a( (b )1, (1)) # cfBe =1+l Bre n=12...

Using the last inequality, we can write the following

inequality:
L. =Jo 2=\ |Byer n=12,... (54)

Hence we get the following from (53) and (54):

L. =J <S¢ Bypr> n=12,...

Considering T =7,, b, =h,, h, =h,, and 1{“}» r,=0 |
yfﬁ h, :0,112 h, =0 we obtain 112 Bhl,,hz,,r,, =0 for ﬂhlhzf.
Using these in the estimate (52), we have lif{}[n* =J. for
n — o
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