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Abstract: A finite difference scheme is produced when partial derivatives in the partial differential equation(s) governing a 
physical phenomenon like the propagation of seismic waves through real media are replaced by a finite difference 
approximation. The result is a single algebraic equation which, when solved, provide an approximation to the solution of the 
original partial differential equation at selected points of a solution grid. Stability of a numerical scheme like that of finite 
difference scheme in the solution of partial differential equations is crucial for correctness and validity and it means that the 
error caused by small perturbation in the numerical solution remains bound. This paper considers important concepts like the 
amplitude and phase portrait used to analyze the stability of finite difference scheme. Applying these concepts produces an 
amplification factor and celerity for the components of the numerical solution. 
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1. Introduction 
Seismic images are affected by amplitude and phase 

fluctuations of waves travelling through heterogeneous 
media, as such waves moves through elastic medium, they 
suffer from attenuation of seismic energy. The attenuation 
rate being the sum of the redistribution of seismic energy 
(scattering attenuation) and the conversion of seismic energy 
into heat (intrinsic attenuation). Coates and Schoeberge, 
(1995) and Frankel and Clayton, (1986) observed that 
scattering attenuation is the dominant factor for attenuation 
in the crust. Both scattering and intrinsic attenuation are 
frequency dependent, having its rate increasing for higher 
frequencies. Yan and Xie, (2010) however establishes that in 
addition to the frequency dependence of the two types of 
attenuation, they also depend on the medium parameter, i.e 
scattering of seismic waves causes amplitude attenuation and 
phase fluctuations. 

Phase portrait in physics represents a space in which all 
possible states of a given system are represented. Each 
possible state of the system corresponds to one unique point. 
The attenuation of the earth media affects the amplitude and 

phase of propagating seismic waves, such effects if ignored, 
can be the source resulting in errors in forward modeling, 
imaging and inversion. 

In seismology, reflection images are strongly affected by 
these two phenomena when target of investigation is located 
beneath strongly heterogeneous media representing the real 
earth composition. Saenger et al.,(2007) also reported that 
lateral variations in the phase and the amplitude of the 
primary field reducing the lateral coherence occur if the 
scattering angles are slightly larger. Numerical studies also 
shows that the variance of travel time fluctuations decreases 
with increasing offsets at small offsets (Yan and Xie,2012) 
while theoretical considerations showed that the variance of 
travel time fluctuations increases again after critical distance 
(Zeng et al.,2011). Therefore the approach used in the paper 
takes a look at these two phenomena from the basic principle 
and apply to a finite difference scheme used in modeling 
seismic wave propagation in heterogeneous medium. 
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2. Background Theory 
Finite - difference modeling in 2D and 3D has now 

become a very useful tool for seismic application, in that it is 
used in forward modeling of seismic data from known or 
possible geological model. The generated synthetic data can 
then be used to test the effectiveness of specific acquisition 
geometry, processing and interpretation methods. 

The elastic wave equation finite-difference solution in two 
dimensions (2D) requires not just a combination of 1D 
solutions along each axis, but also terms involving 
combinations of partial derivatives in two spatial directions. 
According to Manning (2008), a better approach is by the use 
of staggered grid with split of the calculations into two time 
stages namely the stress step and the velocity step. The 
staggered grid is essential to the success of the used method 
because it is more natural with Cartesian coordinates, and 
Virieux (1984, 1986) used this grid with stress/velocity 
splitting, and applied it to interesting exploration cases. 

Not all FD schemes which may be generated for a given 
PDE offer a viable numerical method. To be useful for 
modeling, a FD scheme needs to be numerically stable. A 
PDE may be generally classified as an initial value or 
boundary value problems. Stability is much greater concern 
for initial value problems. Since equation of motion presents 
an initial value problem, discussions of numerical stability 
would be restricted to PDEs of that type.   

For simplicity, if we consider a scalar PDE in one time and 
one space dimension. All the essential features of the more 
general problem of the stability of FD scheme for a vector 
PDE in multiple space dimensions are already found in the 
simplest instance of an initial value problem. Corresponding 
to the independent variable U(x,t) in the PDE, the dependent 
variable in the difference equation is  

��� = �(�∆�, 
∆�)                                (1) 

Where ∆x and ∆t are the space and time step sizes, 
respectively, and m and q are the corresponding integer 
indices. The FD solution proceeds by calculating the values 
of the dependent variable Um

q at the latest time step q from 
its values at earlier time steps. The FD scheme used to evolve 
the dependent variable maybe implicit or explicit. Given an 
implicit scheme, ���  at the latest time step q is found by 
solving a linear system of equations in which the ���  at 
different location m contains only the known values of the 
dependent variable at times earlier than q, and so ���  is given 
explicitly. Implicit FD schemes have the advantage of being 
unconditionally stable(given PDE with stable solutions), i.e 
the numerical solution does not grow without bounds with 
time, for all choices of ∆x and ∆t. While explicit schemes 
have the advantage of algorithmic simplicity, they are at best 
conditionally stable, being stable only for certain choices of 
∆x and ∆t. In what follows, we use explicit schemes 
exclusively and therefore restrict our discussion of numerical 
stability to such schemes. 

To solve a PDE using the method of FDs, the differential 
equation is approximated as a difference equation, and the 

latter is solved for the dependent variable(s) on a discrete 
grid, called the computational grid.  

Applying the finite-difference scheme require consistency 
in the reasonable approximations of the derivatives.  

Clearly, a variety of difference equations may be generated 
from the same differential equation, corresponding to 
different FD approximations. To systematize the different FD 
schemes, it is useful to introduce some fundamental 
difference operators. A FD scheme is generated from the 
PDE by approximating derivative operators in terms of 
difference operators. For time evolution PDEs (i.e hyperbolic 
and parabolic equations), the corresponding FD schemes may 
be classified in terms of the order of approximation used for 
the time and space derivatives, respectively, e.g., O(2,4) for a 
scheme second – order in time and fourth – order in space. 
Note, however, that this classification does not characterize a 
FD scheme uniquely. 

Choice of any particular FD scheme based on reasonable 
approximations of the derivatives in addition to the 
consistency, must also satisfy conditions for convergence and 
stability as applicable to the analysis of partial differential 
equation. Nature of dispersion goes a long way in 
contributing to the stability of FD schemes. However, 
according to Thorbecke and Draganov (2011), finite-
difference schemes are intrinsically dispersive and there is no 
fixed grid point per wavelength rule that can be given to 
avoid dispersion. The concept of dispersion hence can be 
better understood using the concept of phase portrait. 

Phase portrait is a useful graphical tool to understand 
stability behavior of the equilibrium points of linear and non-
linear systems. 

Stability analysis for linear partial differential equation 
(PDE) and the FD numerical scheme produced two main 
results namely (i) an amplification factor and (ii) celerity, for 
each component of the numerical solution. Defining an 
amplification parameter R1 as the ratio of the magnitudes of 
the numerical amplification factor to the true amplification 
factor (which happens to be 1.0), i.e., for the present case 
considered, 


� =	 ��(����∆�)�
1.0 	= 	 |1 − ���� (!�∆�)| 

=	"1 + �$sin	(!�∆�)$        (2) 

where a r = a∆t/∆x, a = constant speed of advection = 
��
(� , βm 

= 2π/Tm , σm = 2π/Lm = wave number of the m-th component, 
and Lm - wavelength 

A phase parameter, R2, is defined as the ratio of the 
numerical celerity to that of the true (or analytical) celerity. 
Thus, for case considered, 


$ =	 )�) = *+*,(- ./0((�∆1))
)(�∆�                         (3) 

Plots of the parameters R1 and R2 versus the dimensionless 

parameter 
2�
∆1 =	 $3

(�∆1  are referred to as amplitude portrait 

and phase portrait, respectively. These portraits can be used 
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to show graphically the stability, or lack thereof, of a 
numerical scheme. Typically, the portraits will show plots 
corresponding to the different values of r. While the 
parameter Lm represents the characteristic wavelength of the 
m-th component of the numerical solution, it can be taken to 
be length of the solution, i.e 0 < x < Lm. The dimensionless 
parameter Ls = Lm/∆x relates the length of the solution 
domain to the grid size. The smaller the grid size, ∆x, the 
larger the value of Ls.  

Considering the amplitude and phase portraits of the FD 
Scheme in use, first, the expression for R1 can be written as a 

function of 4. =	 2�∆1 =	 $3
(�∆1 , by writing !�∆� = 	 $325  , with 

this result, the amplification parameter is given by 


� =	√1 +	�$�� 7$32582                                (4) 

Also, the phase portrait can be plotted by using !�∆� =	$32 	, and a∆t = r∆x, so that 


$ =	 )�)09-./07
:;
<58=

-$3/25 =	 25$3- 	?�? 9��� 7$3258=	       (5) 

3. Results and Discussion 

 

Fig 1. Amplitude and phase portrait (R1) for 0.1< r < 1.0 

 

Fig 2. Amplitude and phase portrait (R1) for 1.0 < r < 5.0 

 

Fig 3. Amplitude and phase portrait (R2) for 0.1 < r < 1.0 

 

Fig 4. Amplitude and phase portrait (R2) for 0.1 < r < 5.0 

Therefore, by letting Ls be between 0 and 2π, the 
amplitude and phase portraits for values of r = 0.1, 0.5 and 
1.0 are plotted as shown in figures 1 to 4. 

With reference to the a plots in figures 1-4, it would be 

noted that in most cases, the values of 4. =	 2�∆1  would be 

larger than 2π and therefore, more detailed amplitude and 
phase portrait for the FD scheme will include a larger range 
for L, e.g between 0 and 100, with corresponding phase 
portrait for r = 0.1, 0.5, and 1.0. 

The amplification parameter peaks at about Ls = 3, and 
then decrease as Ls grows past the value Ls = 3. As the value 
of r grows larger than 1.0, the amplification parameter 
reaches larger values. Thus the FD scheme proposed herein 
will produce relatively large amplification parameters 
particularly for larger values of r and for small values of Ls . 

4. Conclusion 
The amplitude and phase fluctuations discussed influence 

greatly the reflectivity and the coherency of seismic images 
in heterogeneous media 

The phase portrait shows the phase parameter as an 
oscillatory signal having its amplitude and corresponding 
wavelength increasing with increasing Ls. This is in 
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agreement with earlier established fact that the celerity of the 
numerical solution produces numerical dispersion. 
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