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Abstract: A finite difference scheme is produced when padivatives in the partial differential equationg®verning a
physical phenomenon like the propagation of seismaves through real media are replaced by a fidiféerence
approximation. The result is a single algebraicagign which, when solved, provide an approximatorihe solution of the
original partial differential equation at selectedints of a solution grid. Stability of a numericatheme like that of finite
difference scheme in the solution of partial difetial equations is crucial for correctness andditgland it means that the
error caused by small perturbation in the numescdlition remains bound. This paper considers itapbrconcepts like the
amplitude and phase portrait used to analyze thialisy of finite difference scheme. Applying thesencepts produces an
amplification factor and celerity for the comporseaf the numerical solution.
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1. Introduction

Seismic images are affected by amplitude and phag#hase of propagating seismic waves, such effedtgdred,

fluctuations of waves travelling through heterogare
media, as such waves moves through elastic medhey,
suffer from attenuation of seismic energy. The ratédion
rate being the sum of the redistribution of seismmergy
(scattering attenuation) and the conversion ohsieignergy
into heat (intrinsic attenuation). Coates and Sbhoge,

can be the source resulting in errors in forwarddeting,
imaging and inversion.

In seismology, reflection images are strongly défdcby
these two phenomena when target of investigatidaciated
beneath strongly heterogeneous media represertegetl
earth composition. Saenger et al.,(2007) also tedothat

(1995) and Frankel and Clayton, (1986) observed thdateral variations in the phase and the amplitudethe

scattering attenuation is the dominant factor firerauation
in the crust. Both scattering and intrinsic attdimm are
frequency dependent, having its rate increasinghfgher
frequencies. Yan and Xie, (2010) however estaldighat in
addition to the frequency dependence of the twaegypf
attenuation, they also depend on the medium paesmiet
scattering of seismic waves causes amplitude att@muand
phase fluctuations.

Phase portrait in physics represents a space inhwdi
possible states of a given system are represeiiiadh
possible state of the system corresponds to orgearpoint.
The attenuation of the earth media affects the danag and

primary field reducing the lateral coherence ocduthe
scattering angles are slightly larger. Numericaldits also
shows that the variance of travel time fluctuatidesreases
with increasing offsets at small offsets (Yan ané,X012)
while theoretical considerations showed that theéanae of
travel time fluctuations increases again afteliaaitdistance
(Zeng et al.,2011). Therefore the approach usdtarpaper
takes a look at these two phenomena from the Ipaisiciple
and apply to a finite difference scheme used in etind
seismic wave propagation in heterogeneous medium.
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2. Background Theory

latter is solved for the dependent variable(s) odisztrete
grid, called the computational grid.

Finite - difference modeling in 2D and 3D has now" appiving the finite-difference scheme require cetesicy

become a very useful tool for seismic applicatiarthat it is
used in forward modeling of seismic data from knoam
possible geological model. The generated syntltta can
then be used to test the effectiveness of speaitfipisition
geometry, processing and interpretation methods.

The elastic wave equation finite-difference solntio two
dimensions (2D) requires not just a combination 167
solutions along each axis, but also terms
combinations of partial derivatives in two spatidections.
According to Manning (2008), a better approachyishe use
of staggered grid with split of the calculationsoitiwo time
stages namely the stress step and the velocity. Jtee
staggered grid is essential to the success ofshd method
because it is more natural with Cartesian coordsaand
Virieux (1984, 1986) used this grid with stressboitly
splitting, and applied it to interesting exploraticases.

Not all FD schemes which may be generated for argiv
PDE offer a viable numerical method. To be useful f
modeling, a FD scheme needs to be numerically establ
PDE may be generally classified as an initial valre
boundary value problems. Stability is much greatancern
for initial value problems. Since equation of matipresents
an initial value problem, discussions of numeristdbility
would be restricted to PDEs of that type.

For simplicity, if we consider a scalar PDE in dime and
one space dimension. All the essential featureth@fmore
general problem of the stability of FD scheme foveator
PDE in multiple space dimensions are already foimnthe
simplest instance of an initial value problem. @sponding
to the independent variable U(x,t) in the PDE, dependent
variable in the difference equation is

1)

ul = u(mAx, gAt)

in the reasonable approximations of the derivatives

Clearly, a variety of difference equations may beeayated
from the same differential equation, correspondita
different FD approximations. To systematize théedént FD
schemes, it is useful to introduce some fundamental
difference operators. A FD scheme is generated ftioen
PDE by approximating derivative operators in terofs

involvingyitterence operators. For time evolution PDEs fiyperbolic

and parabolic equations), the corresponding FDreeBanay
be classified in terms of the order of approximatised for
the time and space derivatives, respectively, ©¢R,4) for a
scheme second — order in time and fourth — ordespace.
Note, however, that this classification does natrahbterize a
FD scheme uniquely.

Choice of any particular FD scheme based on reasona
approximations of the derivatives in addition toeth
consistency, must also satisfy conditions for cogerce and
stability as applicable to the analysis of partidfferential
equation. Nature of dispersion goes a long way
contributing to the stability of FD schemes. Howeve
according to Thorbecke and Draganov (2011), finite-
difference schemes are intrinsically dispersive tuadge is no
fixed grid point per wavelength rule that can beegi to
avoid dispersion. The concept of dispersion herae loe
better understood using the concept of phase ftortra

Phase portrait is a useful graphical tool to urtdecs
stability behavior of the equilibrium points of dar and non-
linear systems.

Stability analysis for linear partial differenti@quation
(PDE) and the FD numerical scheme produced two main
results namely (i) an amplification factor and @élerity, for
each component of the numerical solution. Definiag
amplification parameter {Ras the ratio of the magnitudes of

in

Where Ax and At are the space and time step sizesthe numerical amplification factor to the true aifiqgrtion

respectively, and m and g are the correspondinggért
indices. The FD solution proceeds by calculating vhlues
of the dependent variable,fat the latest time step g from
its values at earlier time steps. The FD scheme tsevolve
the dependent variable maybe implicit or expli@tven an

implicit schemeu, at the latest time step q is found by

solving a linear system of equations in which tifg at
different location m contains only the known valusthe
dependent variable at times earlier than g, angf!sis given
explicitly. Implicit FD schemes have the advantafdeing
unconditionally stable(given PDE with stable salo8), i.e
the numerical solution does not grow without boumdth
time, for all choices ofAx and At. While explicit schemes
have the advantage of algorithmic simplicity, tlzeg at best
conditionally stable, being stable only for certahoices of

Ax and At. In what follows, we use explicit schemes

exclusively and therefore restrict our discussibnumerical
stability to such schemes.

To solve a PDE using the method of FDs, the diffaa¢
equation is approximated as a difference equaton, the

factor (which happens to be 1.0), i.e., for thespra case
considered,

|e1Bma0)|
R, = o - |1 — Irsin(o,,Ax)]|

= /1 + r2sin (0,,Ax)? (2)

where a r = At/AX, a = constant speed of advectioé’ﬂ:, Bm
m

=2n/T,,, o = 2n/L,, = wave number of the m-th component,
and L, - wavelength

A phase parameter, ,Ris defined as the ratio of the
numerical celerity to that of the true (or analgt)ccelerity.
Thus, for case considered,

am _ atan(r sin(omAx))

a aomAt

R, @)

Plots of the parameters Bnd R versus the dimensionless
paramete%‘= % are referred to as amplitude portrait
m
and phase portrait, respectively. These portraits lme used
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to show graphically the stability, or lack thereaff a i Phase Portrait, 0.1 <1< 1.0
numerical scheme. Typically, the portraits will shglots 7
corresponding to the different values of r. Whilbet 08l
parameter |, represents the characteristic wavelength of the
m-th component of the numerical solution, it cartddeen to 0.6}
be length of the solution, i.e 0 < x <,LThe dimensionless
parameter | = L,/Ax relates the length of the solution 0.4r
domain to the grid size. The smaller the grid siee, the
larger the value of L

Considering the amplitude and phase portraits efRb
Scheme in use, first, the expression feicBn be written as a

function ofLg = bm _ 21 , by writingo,,Ax = ZL—" with -0.21

Ax omAx s

this result, the amplification parameter is given b

R2

0.2+

0.4 I I I I I I I I I |
0 10 20 30 40 50 60 70 80 90 100

Ry = V1+ r?sin (2_7'[)2 (4) -~
Ls Fig 3. Amplitude and phase portrait (R2) for 0.1< r < 1.0
Also, the phase portrait can be plotted by usipgx = Phase Portrait, 1.0 < 1 < 5.0

27”, and at = rAx, so that v2r

R, = M == atan (rsin (i—j)) ()

r2m/Lg 2nr

R1

3. Results and Discussion

Amplitude Portrait, 0.1 <r < 1.0
1.5

o 10 20 30 40 50 60 70 80 90 100
L/Dx

R1

Fig 4. Amplitude and phase portrait (R2) for 0.1<r < 5.0

05 Therefore, by letting L be between 0 andn2 the
amplitude and phase portraits for values of r 5 0.5 and
1.0 are plotted as shown in figures 1 to 4.

With reference to the plots in figures 1-4, it would be

O e e o e T & s 1o noted that in most cases, the valued. o0& o would be

L/Dx larger than 2 and therefore, more detailed amplitude and

Fig 1. Amplitude and phase portrait (R1) for 0.1< r < 1.0 phase portrait for the FD scheme will include @éarrange

Ampitude Porta, 1.0 < < 5.0 for L, e.g between 0 and 100, with correspondingsgh
6r o ' portrait for r = 0.1, 0.5, and 1.0.

The amplification parameter peaks at aboyt=L3, and
then decrease as grows past the value,E 3. As the value
of r grows larger than 1.0, the amplification paeden
reaches larger values. Thus the FD scheme propuseth
will produce relatively large amplification pararaet
particularly for larger values of r and for smadllwes of L.

4. Conclusion

The amplitudeand phasefluctuationsdiscussednfluence
greatlythe reflectivity andthe coherencyof seismicimages
‘ ‘ ‘ ‘ ‘ ‘ in heterogeneousedia
0 10 2 %0 a0 S %0 70 80 %0 100 The phase portrait shows the phase parameter as an
oscillatory signal having its amplitude and cori@sging

wavelength increasing with increasings. LThis is in

Fig 2. Amplitude and phase portrait (R1) for 1.0< r < 5.0
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agreement with earlier established fact that therite of the
numerical solution produces numerical dispersion.
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