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Abstract: Holomorphic extension of the Ackermann function is suggested. Algorithms of evaluation of tetration and 

pentation are discussed and illustrated with explicit plots and complex maps. 
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1. Introduction 

The Ackermann function is known since 20th century [2]. 

It is often mentioned as an example of function with very fast 

growth [4, 18]. The Ackermann function can be defined as 

integer valued function A of two integer arguments, with 

equations 

A (0, z) = z + 1                              (1) 

A (m+1, 0) = A (m, 1) for m > 0                 (2) 

A (m+1, z +1) = A (m, A (m+1, z)) for m > 0, z > 0    (3) 

In this article, the holomorphic extension of the 

Ackermann function A  with respect to second argument is 

considered. In this consideration, the key point is the 

formulation of set of additional requirements, which should 

be added to equation (3), in order to make solution A (m, z) 

unique for the set of complex z, while m is still assumed to be 

natural number. 

For m = 1, m = 2 and m = 3, values of A(m, z) can be 

expressed through addition, multiplication and 

exponentiation. In such a way, for the three values of the first 

argument, the generalization to the complex values of the last 

argument is trivial. Below, the generalization of A (m, z) is 

suggested for complex z at m = 4 and m = 5. In such a way, 

the first argument of the Ackermann function still remains 

positive integer. 

2. Basic Equations 

In order to extend (generalize) the Ackermann function, I 

need a little bit different notations. These notations are 

defined in this section. 

Consider set of holomorphic functions Ab,m for real b > 1 

and integer m > 0. In this article, I call these functions 

ackermanns, with lowercase letters, in order to avoid 

confusion with the conventional, canonical Ackermann 

function by equations (1),(2),(3). Parameter b is called base, 

and integer m is considered as number of the ackermann Ab, 

assuming the sequence of functions {Ab,1, Ab,2, Ab,3, Ab,4, 

Ab,5, ..}. Let these functions, id est, ackermanns Ab, satisfy 

equations 

Ab,1(z) = b + z                                  (4) 

Ab,m(1) = b   for m > 1                         (5) 

Ab,m(z +1) = Ab,m−1( Ab,m(z) )   for m > 2         (6) 

for some ranges of complex values of z, and let these 

functions be holomorphic in these ranges. 

For b = 2, it is possible to establish the relation between 

the classical Ackermann function A by (1),(2),(3) and 

ackermanns Ab,m by (4), (5), (6): 

A (m, z) = A2,m(z + 3) − 3                       (7) 

In this sense, the ackermanns A are generalisations of the 

conventional Ackermann function A. I use different fonts for 

A and A in order to simplify the identification. 

The comparison of the Ackermann function A to the 

ackermanns A is shown in Figure 1. There, y = A (m, x) and y 

= A2,m(x) are plotted versus x for m = 1, m = 2, m = 3, m = 4. 

For the last value, the ackermann is interpreted as binary 

tetration; it is evaluated in analogy with the natural tetration 

[5, 20, 21]. 

In general, solutions Ab of equations (4),(5),(6) are not 
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unique. From the intuitive wish to express the solution in 

terms of simple elementary functions, one can suggest 

expressions for some of ackermanns. The First one, id est, 

Ab,1 is determined by (4); it is just addition of a constant, 

equal to base b. Then, the Second and Third ackermanns can 

be specified as follows: 

Ab,2(x) = b z                                 (8) 

Ab,3(x) = b
z
                                    (9) 

Parameter b is called “base”, in analogy with base of the 

exponential and that of logarithm. In such a way, the Second 

ackermann is multiplication to base b, and the Third 

ackermann is exponentiation to base b. 

 

Figure 1. Comparison of notations for binary ackermanns 

Equation (6) can be interpreted as a transfer equation [14, 

22]. Each ackermann (except First) is superfunction [9, 18, 

19] with respect to the previous one; and each ackermann can 

be considered as a transfer function for the next one. Certain 

results about construction and evaluation of superfunctions 

had been reported in the beginning of 21th century [5-15]. 

Several methods of construction and evaluation of 

superfunctions have been suggested and implemented. Here, 

these methods are used to evaluate the Fourth and Fifth 

ackermanns, that cannot be defined with elementary 

functions (as the Second and Third ackermanns by eq. (8) 

and (9)). 

There is an important question about choice of the 

additional conditions, additional requirements, that should be 

added to equations (4), (5), (6) in order to provide the 

uniqueness of the solution.  These conditions should allow to 

evaluate the functions and to plot the figures. I suggest hints 

for these additional conditions and I illustrate these with 

evaluation of the Fourth ackermann, which already has 

special name, tetration: 

Ab,4 = tetb                                     (10) 

Then, for base b = e = exp(1) ≈ 2.71, I construct the 5th 

ackermann, let it be called pentation: 

Ab,5 = penb                                  (11) 

For the constructed functions, I provide the efficient 

algorithms of evaluation, real-real plots and the complex 

maps. These plots and maps are loaded to sites TORI and 

Citizendium and supplied with their generators. (Colleagues 

can load the generators and reproduce figures from this 

article, as well as make new illustrations and/or use these 

codes for other applications.) Then I formulate suggestions 

for the future work on development of ackermanns and other 

superfunctions. The superfunctions should greatly extend the 

arsenal of holomorphic functions available for description of 

physical phenomena and approximation of functions; for this 

reason I consider the topic as interesting and important. 

For base b = 2, the ackermanns Ab,m by (4), (5), (6) and the 

canonical Ackermann function A  by (1), (2), (3) are related 

through equation (7); this relation is illustrated in Figure 1. 

Each new ackermann A2, constructed here, appears as 

generalization of the canonical Ackermann function, 

mentioned in the Abstract. 

3. Tetration 

Tetration f = Ab,4 = tetb is the 4th ackermann. It is 

superfunction of exponentiation; it satisfies the transfer 

equation with the condition at zero below: 

f (z +1) = b
f(z)

                                (12) 

f (0) = 1                                    (13) 

Complex maps of tetration are shown in Figures 2, 3 for 

various values of base b. The evaluation is described in [5, 6, 

7, 8, 11, 12].  

Maps for b = 2 ≈ 1.41, b = exp(1/e) ≈ 1.44 and b = 1.5 

are shown in figure 2. Similar maps for b = 2, b = e ≈ 2.71, 

and  for b = 1.52598338517 + 0.0178411853321 i  are shown 

in Figure 3. 
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Figure 2. u+iv = tetb(x+iy) for b = 2, b = exp(1/e), and b = 1.5 

 

Figure 3. u+iv = tetb(x+iy) for b=2 , for b = e ≈ 2.71 , and for b = 

1.52598338517 + 0.0178411853321 i 

 

Figure 4. Graphics of tetration: y = tetb(x) versus x for various b 

The algorithm of the calculation of tet_b for 1 < b < 

exp(1/e) is described in the articles [8, 9, 10]. The algorithm 

for b = exp(1/e) is described in [12]. That for b > exp(1/e) is 

described in [5, 6]. 
With minimal modification, this can be applied for 

complex values of base b. This adaptation is straightforward; 

the example is shown at the bottom map of Figure 3. 

The interpretation is most simple for real base b > 1. In 

order to provide the uniqueness of the solution, it is assumed 

that the tetration tetb(z) is holomorphic at least in the range 

Re(z) > −2, and it is bounded at least in the range |Im(z)| ≤ 1. 

Conjecture about existence and uniqueness of such tetration 

(and uniquwnwss of its inverse function ateb = tetb
−1

) had 

been considered for various values of base b, in attempts to 

find any contradiction (and to negate the conjecture) [5, 6, 7, 

8, 11, 12]. Some theorems about the uniqueness are 

suggested in the recent publication [11]. 

Figures 2 and 3 show how does the complex map of 

tetration tetb modify, as the base b gradually changes from 

small values (of order of unity) to larger values. The behavior 

for real values of argument is shown in Figure 4 and 

discussed in the next section. 

4. Tetration for Real Base and Real 

Argument 

This section deals with the 4th ackermann, Ab,4 = tetb, for 

b > 1. Explicit plots y = tetb(x) versus x are shown in Figure 4 

for various values of base b.  

For moderate values of the argument, tetration can be 

approximated with elementary function. This approximation 

is described below. Let 
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(14) 

Function fit  by (14) is constructed, approximating 

tetration, evaluated with algorithms described previously [5, 

6, 8, 9, 15]. At 1.05 < b < 5, function fitb(z) approximates 

function tetb(z) for |z| < 1 with 4 significant figures. Taking 

into account the transfer equation (12), this approximation 

can be extended to the strip along the real axis. In particular, 

the resulting approximation is valid along the real axis. This 

representation is used to plot the most of curves in Figure 4, 

the error of approximation is not seen even at the zooming-in 

of the plot; but for b = 10 the original representation of 

tetration through the Cauchi integral [5] is involved. 

Figure 4 shows behavior of the 4th ackermann of real 

argument to real base b > 1. This function has logarithmic 

singularity at −2. The graphic passes through points (−1, 0), 

(0, 1), (1, b). At large positive values of argument, the 4th 

ackermann quickly grows up for b > exp(1/e), and 

approaches the largest fixed point of exponent for b ≤ 

exp(1/e). 

The approximation (14) used to plot Figure 4 can be a 

prototype of the internal implementation of tetration to real 

base b > 1 in the programming languages. The algorithm for 

the precise evaluation [5, 12, 8] is exact in the sense that it 

allows to evaluate tetration with any required precision. In 

such a way, both, the range of validity and the precision 

could be improved. One of direction of the future work can 

be covering of the whole complex plane, both in base b and 

argument z, with the precise and efficient approximations of 

tetration tetb(z); the expansions (including the truncated 

Taylor series) should provide better performance than the 

original algorithm through the Cauchi integral [5] for 

complex base b and real b > exp(1/e). 

Figures 2 and 3 show how does the complex map of 

tetration tetb changes as the base b gradually changes from 

small values (of order of unity) to large values. For same real 

values of base b, the corresponding real-real plots are shown 

in Figure 4. The efficient algorithms of evaluation of tetration 

are supplied, so, the tetration should be interpreted as 

elementary function. 

5. Natural Tetration and Pentation 

As an example of generalisation of ackermanns, in this 

section I describe the natural pentation and compare it to the 

natural tetration [5]. The 4th ackermann is already described 

and implemented for various bases [5, 6, 12, 8], and the same 

methods can be used to built-up the pentation, penb = Ab,5. 

Here, I consider the only natural pentation, id est, that to 

base b = e. It is superfunction of tetration; complex map of 

tetration is repeated in Figure 6. It is zoom-in of the map of 

natural tetration at Figure 2; it can be compared to the map of 

pentation at Figure 7. In order to provide uniqueness of a 

superfunction, one should indicate the way of the 

construction that specifies its asymptotic behaviour at large 

values of argument. Let the superfunction F of tetration 

approaches the fixed point 

L ≈ −1.85035452902718                        (15) 

of tetration, id est, the real solution of equation 

tet(L) = L                                     (16) 

at infinity. The graphical solution of equation (16) is shown 

in Figure 5.   

Figure 5 can be considered as simplified zoom-in from the 

central part of Figure 4, with additional line y = x. As 

tetration can be evaluated with arbitrary precision, solution L 

of equation (16) also can be found with arbitrary precision; in 

this sense L is exact quantity. In order to see the details, the 

zoom-in of the complex map of the natural tetration is 

repeated in Figure 6, in the same notations, as in Figures 2 

and 3. The complex map of thetration in Figure 6 can be 

compared to the map of pentation, shown in Figure 7 in the 

same notation. Construction and evaluation of pentation is 

described below.  

In Figure 5, the fixed point of tetration is denoted as Le,4,0 = 

L, in order to distinguish it from the fixed points of other 

ackermanns. The subscripts indicates that this quantity 

correspond to the natural ackermann, id est, to the ackermann 

to base b = e; that it refers to the Foruth ackermann, id est, 

tetration, and that it refers to the minimal real solution. Other 

supertetrations can be constructed using other fixed points, 

that are seen in the Figure 5, but not marked; they could be 

denoted Le,4,1 and Le,4,2. 

Only one among varies superfunctions of tetration is called 

“pentation”. I construct this pentation in the following way. I 

search for the solution F of the transfer equation 

F (z +1) = tet(F (z))                         (17) 

as the following expansion: 

F (z) = f (z) + O(ε
M

 )                       (18) 

where 

           (19) 

and 

ε = exp(kz)                                (20) 
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Figure 5. y = tetb(x) for b = sqrt(2), b = 1.7, b = τ ≈ 1.63532, b = 1.6, b = 

1.5, b = η = exp(1/e) ≈ 1.44, and b = 2 ≈ 1.41 

 

Figure 6. u+iv = tet(x+iv) 

Here, the positive constant k has sense of the increment of 

the growth of superfunction at large negative values of the 

argument, and a are real coefficients. For simplicity, I set a1 = 

1. This specification does not affect the resulting 

superfunction, but makes the calculation of the coefficients 

shorter and simpler. 

Substitution of representations (18) and (19) to the transfer 

equation (17) and the asymptotic analysis with small 

parameter ε give 

k = ln tet (L) ≈ 1.86573322821                  (21) 

 

Figure 7. u+iv = pen(x+iv) 

and the coefficients a; in particular, 

         (22) 

      (23)  

where “prime” denotes the derivative.  

For the numerical implementation, in (19), I choose M = 4; 

this is sufficient to evaluate pentation with 14 significant 

figures and to plot all the figures of this article in real time. 

This approximation is good for large negative values of the 

real part of argument of supertetration. Then, for integer n, I 

define 

Fn(z) = tet
n
 (f (z − n))                      (24) 

The exact superfunction F appears as limit 

                    (25) 

While f  is asymptotic solution, this limit does not depend on 

the chosen number M of terms in the asymptotic expansion. 

However, the larger M is, the faster the limit in (25) does 

converge. 

The pentation appears as superfunction F with displaced 

argument: 

pen(z) = Ae,4(z) = F (x5 +z)                     (26) 

where x5 ≈ 2.24817451898 is the solution of equation F(x5) = 
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1. Complex map of this pentation is shown in Figure 7, 

announced above. 

 

Figure 8. y = pen(x) by (26), its asymptotic by (27) and error of the linear 

The real-real plot of pentation by (26) is shown in Figure 8 

with thick curve. The additional horizontal line y = Le,4,0 

shows the asymptotic at large negative values of the 

argument. More advanced asymptotic, id est, the first 

approximation 

y = Le,4,0 + exp(k(x+x5))               (27) 

is also shown with thin curve. The curve for pentation lies 

between these two asymptotics. 

In vicinity of the segment −2 < x < 0, pentation y = pen(x) 

can be approximated with linear function y = x +1. Error of 

this approximation can be characterized with deviation  

δ(x) = pen(x) − (x+1)                       (28) 

In order to show this deviation in Figure 8, it is scaled up 

with factor 10. The same linear approximation had been 

suggested [3] also for the previous ackermann, id est, for 

tetration tet = Ae,4.. This approximation provides at least two 

significant figures in the range specified, and the curve of 

titration looks almost straight in the interval specified. The 

complex map of pentation in Figure 7 can be compared to the 

map of tetration in Figure 6. 

The complex map of natural tetration in figure 6 had been 

published previously [5, 6]. As for the map of pentation in 

figure 7, it is new; up to my knowledge, no complex map of 

pentation had been published at least before year 2014 [15]. 

Tetration tet(z) is holomorphic in the whole complex plane 

except the half-line z ≤ −2. Pentation is holomorphic at least 

for |Im(z)| < |P|/2 ≈ 1.683838, where P = 2πi/k is period; 

pentation, as exponential, is periodic function. A little bit 

more than two periods are covered by the range of the map at 

Figure 7. Pentation has the countable set of cut lines, parallel 

to the real axis. In Figure 7, these cuts are marked with 

dashed lines. 

The first 5 natural ackermanns are compared in Figure 9 

for real values of the argument. It corresponds to base b = e. 

The curve for pentation pen is borrowed from Figure 8. 

Similar figures can be plotted also for other values of base b. 

In the Mathematica software, there is already appropriate 

name for the procedure to calculate iterates of a function; it 

could be called “Nest”. In the current version, this procedure 

does not include construction of superfunction nor its inverse 

(abelfunction [1, 11, 16]), and it deals only with cases, when 

the number of iterates is expressed with integer constant. The 

generalization should allow to call the Nest with any 

argument and even to perform the numerical evaluation, if 

the number of iterates is expressed with a complex constant. 

Then, the automatic construction and evaluation of the 

highest ackermanns should be good test to verify and debug 

such a procedure, and this may be matter for the future work. 

 

Figure 9. y = Ae,m(x) versus x for m = 1, 2, 3, 4, 5 
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6. Conclusion 

Generalization of the Ackermann function can be 

performed thorough the formalism of superfunctions [9, 18, 

19]. Notation “ackermann” is suggested for this 

generalization. Sequence of the ackermanns is suggested. 

Each of new ackermanns (except First) appears as 

superfunction of the previous one, and as transfer function 

for the next one; this relation is expressed with the transfer 

equation (6). The already reported methods [5, 12, 8, 14] of 

construction of superfunctions can be used to build-up the 

chain of the holomorphic ackermanns. The classical binary 

Ackermann A function appears as the special case, it is 

expressed through the ackermanns A2,m with equation (7). 

This relation is illustrated in Figure 1. 

The first 5 ackermanns already have special names: 

addition, multiplication, exponentiation, tetration and 

pentation. For base b = 2, four of these functions are plotted 

in Figure 1. For natural base b = e, these functions are plotted 

in Figure 9, and the complex maps of tetration tet and 

pentation pen are shown in Figures 6 and 7. 

In order to provide uniqueness of holomorphic ackermanns, 

their asymptotic behavior should be specified. The natural 

choice is requirement that each new ackermann (except first 

and second) exponentially approaches the fixed point of the 

previous one; for pentation, it is determined by asymptotic 

(18), (19). The choice of the fixed point determines the 

superfunction. 

The future work may include elaboration of algorithms for 

the automatic construction of superfunctions. Building up the 

chain of holomorphic ackermanns as solutions of equations 

(4), (5), (6) may be a good example for testing and 

debugging of such a procedure. 
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