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Abstract: An improved mathematical model describing acoustic emission (AE) signals generated by different types of partial 

discharges (PD) that occur in electric power transformer insulation system is presented in the paper. AE signals are analyzed 

within the AE method as applied for power transformer failure detection due to occurrence of PD. There are several types of 

basic defects, which are characterized by different types of PD. The mathematical model presented here is crucial for numerical 

analyses and simulations, where it acts as the function describing the acoustic source in an acoustic model of power transformer 

insulation system. The regression procedure was performed based on empirical AE signals, registered in a laboratory experiment. 

The AE signals are described by a mathematical model being a multi-parameter function, which involve both the time domain 

and the frequency domain. Goodness of the model was evaluated based on analysis of 480 data samples in the time, frequency 

and time-frequency domains. Also coherence between the registered and modeled signals was calculated. It was stated that the 

improved model fits very well to the real data, although, due to high level of noise embodied in signals registered in experiments, 

the coherence values remain low. Moreover, analyses of the estimated data were performed and some example results are 

presented in this paper. Based on the achieved outcomes a collection of parameter values was prepared for each of the eight 

considered PD basic types. One can simple use it now in a numerical model for simulation of AE signal source generated by 

specified type of PD, what corresponds to a particular power transformer insulation system failure. Furthermore, the regression 

procedure presented in this paper can be easily transferred to any other types of AE sources including processes of compression, 

tension and cracking. 
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1. Introduction 

Technical condition monitoring and diagnosis of electric 

power transformers constitutes a sophisticated issue, because it 

is connected with many physical phenomena, occurring during 

operation of the device [1]. Electrical partial discharges (PD) 

are examples of such phenomenon, and are reason for many 

power transformer failures [2]. Generation of PD induces 

chemical reactions, acoustic and electric signals generation, 

emission of light and other phenomena [3,4]. Scientific 

research performed to date, which concerns recognition of 

defects caused by various forms of PD, is conducted with the 

use of spark gaps, which allow their experimental modeling; 

however, this requires application of high voltage assay 

systems [5,6]. From the viewpoint of the practical usefulness 

such experiments are relatively dangerous to persons 

performing the measurements, time-consuming, costly, and 

results obtained are susceptible to a number of external factors 

that may influence their repeatability and reproducibility. 

Therefore, there is a need for design and practical 

implementation of an arrangement to allow modeling of the 

physical phenomena accompanying the generation of PD, 

without the need to conduct research with the use of high 

voltage. In this way it will be possible to carry out a detailed 

assessment of the impact of various parameters connected with 

PD generation on the measurement results. This in turn may 

contribute to improvement of the diagnosis method applied 

and increase its accuracy while reducing the costs associated 

with it. In our study we develop a multiphysical model of the 

insulation system, in which different phenomena are integrated 

into a single simulation model. For the simulation purposes the 

AE wave source is needed to be described by a mathematical 

function. Up till now, other scientists have used Heaviside 

function, linear function or Gauss type function. There exist 

also models, which consider combination of linear function 
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and multiplication of exponentially decreasing function by a 

sine or cosine function [7,8]. The advantage of such functions 

lies in their simplicity, but for our purposes they are not 

applicable, since either they give only a week mapping to the 

real world signals or the functions are not continuous, what 

causes numerical calculation troubles (the function must be 

differentiable). Therefore we have developed our own model 

for AE source, which constitutes a combinations of a sigmoid 

type function and superposition of cosine type functions, each 

having own frequency and amplitude. During research works, 

the model was further improved in terms of giving a better 

correlation between computer calculated and registered (real) 

signals and was then applied in simulations of acoustic wave 

propagation in insulation systems. The simulations consider 

AE signal path estimation while the model parameters are 

changed. In previous studies, performed in our research team, 

AE signals generated by different kinds of PD occurring in 

electric power transformer insulation systems have been 

analyzed by use of sophisticated statistical and numerical 

methods, wavelets (CFT, DWT), FFT, STFT, and many others 

[9,10,11]. Based on those analyses, the team has developed a 

number of indicators, which were then applied for 

classification purposes performed among others by use of 

neural networks. The study resulted with a classification of the 

PD AE signals into eight various classes, where each class 

corresponds to different damage occurring in the insulation 

system [11]. The considered forms of PD are described in 

Table 1. The PD types causing failures in insulation systems 

and the measurement procedure are beyond the scope of this 

paper. If interested, one might find further details in e.g. 

[12,13,14].  

Table 1. Description of the considered basic PD types [11]. 

PD type Description of basic forms of PD 

1 

PD occurring in insulation system with particles of undefined 

potential moving in oil, which can model discharges occurring in 

oil containing particles of cellulose fibers created due to aging 

and gradual degradation of the paper-oil insulation 

2 

PD occurring in a point-plane oil system, which can be related to 

discharges generated by insulation damage of two neighbouring 

turns of transformer windings  

3 

PD occurring in a surface system of two flat electrodes with 

paper - oil insulation between them, which models the most 

common discharge type occurring between electrode surfaces 

and solid or liquid dielectric 

4 

PD occurring in a surface system with one flat and one 

multipoint electrode with a paper - oil insulation between them, 

which models different electric field intensity distribution as 

compared to the surface system of two flat electrodes 

5 

PD occurring in a multipoint-plane system in oil, which can be 

related to discharges occurring between a multipoint damage of 

transformer winding insulation and its flat earthed elements 

6 

PD occurring in a multipoint-plane oil system with gas bubbles 

moving in oil, which can reflect discharges in gassy oil, due to 

multipoint winding insulation damage  

7 

PD occurring in a point-point oil system, which can model 

discharges occurring between earthed flat parts and damaged 

winding insulation of the transformer 

8 

PD occurring in a point-point oil system with gas bubbles 

moving in the oil, which can be related to discharges in gassy oil, 

due to insulation damage of two turns of transformer windings 

2. Mathematical Model Definition 

The mathematical model presented in this paper has been 

created on the basis of AE signals registered in experiments 

performed under laboratory conditions, while changing the 

setup for particular insulation defects induced by PD. One 

needs to mention that due to the very unsystematic and 

stochastic nature of PD occurrence in the negative half period 

of the supply voltage, the studies considered only the positive 

voltage half period, thus the first 10 ms of the registered 

signals. 480 selected AE timeruns, each of 25 000 samples, 

which are divided into mentioned PD classes, were applied 

during parameter estimation and optimization processes. The 

model is composed of two parts: Part1 is combination of a 

sigmoid and exponential type functions and describes 

envelop of the considered AE signal; Part2 constitutes a sum 

(superposition) of 60 cosine functions, each with own 

magnitude and frequency and relates to the frequency 

components involved in the real AE signal. The frequencies 

are set a priori: f = {10, 20, 30,., 600} (kHz). These values 

were selected on the basis of earlier gathered indicators and 

correspond to components contained in signals registered in 

real measurements. The proposed mathematical model is 

presented in eq. (1). 
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where: y(t) – AE signal generated by a PD (V), A – amplitude 

parameter of the sigmoid function (V), B – scale parameter of 

sigmoid function (-), µ1 - localization parameter of the sigmoid 

function (s), C – scale parameter of exponential function (-), µ2 

- localization parameter of the exponential function (s), Acos_i – 

amplitude of the i-th cosine function, (-), f – frequency of the 

i-th cosine function, f ∈ {10, 20, 30, ., 600} (kHz), t – 

independent variable, time (s). 

The most important parameters in Part1 of the model are 

the amplitude and scale of the sigmoid as well as the scale 

parameter of the exponential function, since they represent 

the shape of the AE signal envelop. The localization 

parameters are important only during the estimation process 

for to enable a well matching between the estimated and 

given data samples. Often the signals registered are shifted in 

time and this is due to the very stochastic nature of PD 

occurrence. However, in the numerical simulations one can 

assume that the signal is not shifted, thus the localization 

parameters might be ignored. In Part2 of the model the 

frequencies are set a priori and only the value of magnitude 

(amplitude) of each frequency component is estimated. Part2 

represents the frequency domain, while Part1 the time 

domain of AE signals generated by PD.  

During the studies also other functions were considered for 

the model envelop (Part1) [15], e.g. T-Student type function, 

Lognormal type function, Generalized Extreme Value type 

function and Tangent-Hyperbolic type function. Nevertheless 

the sigmoid type function achieved the highest values of 

goodness indicators and thus was applied for the improved 
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model, presented in this paper. 

3. Parameter Estimation and 

Optimization Procedure 

 

Figure 1. Example timerun of registered AE signal (green) with theirs 

calculated (blue) and computer-modeled (red) envelops. 

 

Figure 2. Histograms of correlation coefficients calculated between the 

registered and modeled signal envelops (only Part1 of (1)) for the eight 

considered PD classes. 

The regression procedure consists of several steps. First, 

for each registered AE signal its envelope was determined. 

The gathered envelops were then used as reference dataset 

for the model Part1 calculation. Then, parameters of model 

Part1 were estimated by means of Least Squares method 

(LSM) for rough results. In the next step, the estimates were 

optimized by use of the Nelder-Mead-Simplex (NMS) 

method in order to meet possible lowest value of the residual 

norm, which served as goodness indicator and also as a stop 

criterion in the optimization routine. In this way envelops of 

AE signals generated by eight PD classes were calculated. In 

Fig. 1 an example of timerun of AE signals registered in 

experiments is shown in green. Its envelop is marked with 

blue and the envelop calculated with model Part1 is shown in 

red. During the first step of regression procedure we used the 

Pearson correlation coefficient as a second goodness 

indicator, next to the residual norm. The correlation 

coefficient values, calculated between the two runs (envelops 

of the registered and modeled AE signals) indicate mostly 

very high correlation, above 0.8. In Fig. 2, histograms 

determined for all regression steps (for all 480 data-sample 

pairs) are depicted. Similarly good outcome we gathered for 

the residual norm, which for the most analyzed data-samples 

did not exceed the value of two, and in some rare cases the 

norm was higher but always less than 3.5. 

The second step of the regression procedure regarded to 

parameter estimation of the model Part2 and was related to 

the frequency domain. For the given 60 frequency values the 

appropriate magnitudes were determined by means of Least 

Squares analysis. In contrast to the first step, not the timeruns 

but the PSD (Power Spectra Densities) were used when 

comparing the regression result. For determination of the 

signal power at each specified frequency, the Welch's method 

was used. It is based on the concept of using periodogram 

spectrum estimates, which are the result of converting a signal 

from the time domain into the frequency domain. Application 

of the Welch's method enable for reduction of noise contained 

in the considered signals in exchange for reducing the 

frequency resolution. Due to the noise level present in the 

registered AE signals, the noise reduction from approach 

given by the Welch's method was desired in our regression 

analysis. 

 

Figure 3. Example power spectra density of AE signal registered in the 

laboratory (red) and calculated on the basis of the model (blue). The curves 

mostly overlap, what is confirmed by the low value of σ-Euclidean distance. 

After achieving rough estimates with the LSM, the 

parameter values were further optimized using the NMS 

method, similar as it was in step one. The residual norm was 

used as stop criterion in the optimization routine. For all 

considered data-samples we gathered almost overlapping 

curves, thus the correlation coefficient calculated over the 

PSD was mostly equal to 1. In Fig. 3 an example of PSD 

calculated for the registered (red) and modeled (blue) AE 

signal is shown. The curves mostly overlap, what indicates 

very well mapping of the signal modeled to the signal 

registered. This was confirmed by low value of σ, which is 

the Euclidean distance calculated over residuals.  

4. Regression Analysis Results 

For all considered data-samples the appropriate signals 

were calculated based on the mathematical model developed. 

In Fig. 4 an example of timerun of the AE signal calculated 

by the model is depicted in green, while its envelop (just 

Part1) is marked with red. 
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Figure 4. Example timerun of computer-modeled AE signal (green) and its 

envelop (red). 

 

Figure 5. Examples of time-frequency spectrograms of AE signals registered 

in the laboratory. 

We have then further analyzed the results in the 

time-frequency domain by use of STFT (Short Time Fourier 

Transform) method. This analysis was based on pure 

observation of the time-frequency structures. An example of 

spectrogram calculated over the registered AE signal is 

presented in Fig. 5. In Fig. 6. A spectrogram of the modeled 

AE signal is shown. Based on achieved results we recognized 

that the time-frequency structures contained in the modeled 

signals corresponded well to the particular data gathered from 

laboratory experiments for all types of PD. 

 

Figure 6. Examples of time-frequency spectrograms of AE signals 

computer-modeled. 

In the next step we evaluated also the coherence between 

each of data-sample pairs. This analysis did not give so 

satisfactory outcomes. For the most of PD types we 

recognized that the signals do not stay in very good relation, as 

the coherence values in average, when regarded all data, did 

not exceed 0.1, as presented in Table 2. Only for AE signals 

generated by PD type 3 and type 4 the coherence values are for 

given frequency bands above 0.6, indicating coherent 

structures between the measured and modeled signals. The 

explanation for such behavior may be in that these signals are 

less noisy despite to other measured signals. An example 

magnitude squared coherence graph is presented in Fig. 7. 

Table 2. Magnitude squared coherence values calculated for PD types. 

PD type Maximal value Arithmetic average 

1 0.2621 0.0235 

2 0.4296 0.0335 

3 0.6191 0.0237 

4 0.8841 0.1094 

5 0.3657 0.0297 

6 0.4690 0.0237 

7 0.3351 0.0281 

8 0.4754 0.0232 

 

Figure 7. Example Magnitude squared coherence graph calculated for the 

analyzed registered and computer-modeled AE signal. 

5. Analysis of the Estimated Parameter 

Values for Simulation Purposes 

As mentioned earlier, the main aim of the model 

development, presented in this paper, is to enable research 

works regarded to numerical simulations of AE signal 

propagation in a power transformer insulation system model. 

In order to implement an AE signal source that corresponds to 

a specified defect (PD class) one needs to consider the 

estimated parameter values. For this purpose, for each 

parameter estimates set and for each PD class we have 

calculated the arithmetic mean, variance and standard 

deviation values. We have also calculated data distribution 

histograms. This statistics give us certain information about 

the various differences in model parameters corresponding to 

particular PD types. Next, we have determined the data 

distribution functions over all parameter estimates for each PD 

class. For this task, one can take into account e.g. a Gauss 

function, if data is well and symmetrically distributed, or in 

other cases a Nakagami, Levy, GEV, Birnbaum-Sanders, 

Weibull, Gamma, Lognormal or other distribution function. 

These types of distribution functions are defined by just a few 

parameters, which, when estimated, can serve as indicators 

about the overall value of the considered model parameter. 

Other possibility is to take the mean or median value. But in 

situations when there does not exist a well diversity between 

parameter values of the particular PD classes, application of 

distribution function estimates provides a better solution. 
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In Fig. 8 the mean, variance and standard deviation values 

calculated for the estimates of parameter A (the amplitude of 

the sigmoid function) for all of the eight considered PD classes 

are shown. The mean and standard deviation values depict 

more or less diversity between the columns. The medians 

remain rather low. 

 

Figure 8. The A parameter values estimated in the regression process for all 

eight classes of PD. Histogram depict mean, median and standard deviation 

values calculated over the gathered data. 

In Fig. 9 the statistics calculated for the estimates of 

parameter B (the scale of the sigmoid function) for eight PD 

classes are shown. All values depict a well diversity between 

the columns. 

 

Figure 9. The B parameter values estimated in the regression process for all 

eight classes of PD. Histogram depict mean, median and standard deviation 

values calculated over the gathered data. 

In Fig. 10 the statistics calculated for the estimates of 

parameter C (the scale of the exponential function) for eight 

PD classes are shown. All values depict smaller diversity 

between the columns except the characteristics for PD class 4, 

which are much higher in this case. This is clear evidence 

showing significant difference between signals generated by 

the particular PD types, which can be applied in the numerical 

simulations. 

 

Figure 10. The C parameter values estimated in the regression process for all 

eight classes of PD. Histogram depict mean, median and standard deviation 

values calculated over the gathered data. 

 

Figure 11. Example result showing population and distribution of the 

amplitude values estimated in the regression process related to PD class 7, for 

the frequency equal to 90 kHz. 

In Fig. 11 and 12 examples of the A_cos_i parameter 

estimates of (1), which correspond to signal magnitudes at 

frequency values equal to 90 kHz and 540 kHz are shown. 

In the last step we have created a collection of indicators 

containing distribution function estimates, mean, median and 

standard deviation values, calculated for each parameter and 

each PD class. These values are currently applied in numerical 

simulations regarding multiphysical model of power 

transformer insulation system, in which different types of 

damages are simulated. 

6. Conclusion 

In this paper an improved mathematical model describing 

AE signals generated by eight different classes of PD 

occurring in electric power transformer insulation systems 

was presented. Goodness of the model was evaluated on the 

basis of timeruns, power density spectra, time-frequency 

spectrograms and coherence values. Based on the Welch and 

Fourier analyzes in the frequency domain and on the 

correlation analyzes of signal envelops in the time domain, we 

stated that the proposed model fits very well to the measured 

data. 
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Figure 12. Example result showing population and distribution of the 

amplitude values estimated in the regression process related to PD class 7, for 

the frequency equal to 540 kHz. 

We have also performed an analysis of parameter estimates 

and have selected appropriate indicators, which enable one to 

distinguish between the particular PD types. In such a manner 

the collected values can be involved in numerical simulations 

regarding AE signal propagation studies, where different 

types of defects are modeled.  

Another application possibility of the model created is to 

use it in experiment with a physical power transformer 

insulation system. Here the AE signal can be generated by a 

wideband piezoelectric transducer, controlled by a generator, 

which in turn transmits signals in accordance to our model. 

These types of experiments enable for AE propagation path 

analyses, without the need of initiation the natural phenomena 

generating the AE signal. For instance in [16] such type of 

experiment is presented. 

The procedure of signal modeling and parameter estimation 

shown in this paper might be easily applied for modeling of 

AE signals generated by any other kind of source. It is e.g. 

possible to create a mathematically described source function 

of AE signals generated due to compression, tension and 

cracking occurring in steel, ceramic or other materials but is 

not limited to this. 
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