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Abstract: In recent years, the deep learning algorithms were gradually understood and accepted. It needs to take too many 

samples to train. Since the implementation of deep learning algorithm, it seems that the past classical algorithms have become 

gloomy. In this paper, we get an intelligent pattern recognition model by combining some classical algorithms in the past and 

extrapolating the convolution algorithm. This new model is based on a single regular sample, with its advanced generalization 

capabilities far beyond those of deep learning algorithms. Experimental results on MNIST, QMNIST, CMU PIE and Extended 

Yale B databases indicate that the proposed model is better than the related methods as compared with. 

Keywords: Pattern Recognition, Convolution Algorithm, Single Sample, Face Recognition,  

Handwritten Digital Recognition 

 

1. Introduction 

In the process of designing the deep learning algorithm, 

there was no consensus on the size of the convolution kernel. 

In general [1], the size of the convolution kernel contains 

3 3×  and 5 5× . Another problem was which layer to use 

which kind of convolution kernel. Obviously, all of these 

works require manual attempts over and over again. Artificial 

design of network architecture makes it difficult to debug 

network parameters and determine network structure. There 

are so many questions, why don't we think backwards? For 

example, we start with the study of convolution kernels. 

The literature [2, 3] illustrated the visualization of features 

learned by layers and units. Each kernel or unit was a shared 

weight, which was acquired by back propagation algorithm. 

By convoluting the obtained weights with the input values of 

the layer, the feature can be obtained. Backing of the 

beginning, the kernel had some properties, such as size ( 3 3× , 

5 5×  and so on), mode of action (full, same, valid), form 

(normal or dilated convolution) etc. In this paper, we will 

study some information hidden in these convolution kernels 

in another way. 

The rest of this paper is organized as follows: We review 

some related work on kernel in Section 2, these work lay a 

solid foundation for our idea and provide motivation in 

developing the new view. Then we introduce our algorithm 

with theoretical analysis in Section 3. In Section 4, we 

evaluate the performance of our new algorithm on MNIST
1
, 

QMNIST
2
 [4], CMU PIE [5] and Extended Yale B [6] 

datasets. We discuss the problems and draw a conclusion in 

Section 5. 

2. Related Work 

2.1. Kernel View 

Kai Yu [7] believed that learning results of the first layer of 

convolution were image edge features (see Figure 1). In his 

presentation
3
, he demonstrated the computational flow in 

tasks such as human face recognition, cars recognition, 

elephants recognition, chairs recognition, and presented the 

visualization results of each layer (see Figure 2). 

For the features of 1st layer, it's very easy to recall the 

traditional operator of edge features calculation, such as 

                                                             

1 http://yann.lecun.com/exdb/mnist/. 

2 https://github.com/facebookresearch/qmnist. 

3 https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/. 
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Sobel operator
4
 (see”(1)”), Prewitt operator [8] (see “(2)”) 

and so on. 

 

Figure 1. Visualization of results at each layer. 

 

Figure 2. Visualization results at different levels under different tasks. 
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These operators are all third-order matrices. For any 

third-order matrix, there are always nine orthogonal vectors 

which can be used as its base (see “(3)”). Therefore, formula 

(1) can be represented as follows (see “(4)”). 

                                                             

4 https://en.wikipedia.org/wiki/Sobel_operator. 
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2.2. Gradient Descent Method 

According to the point of view in the paper of Sebastian 

Ruder [9], given an input data , , and 

the coefficients ( ) of existence were assumed that it made 

the following formula valid (see “(5)”). 

If n takes a finite value, there is a bias (b) between the True 

Value (Y) and the Estimated Value ( ). The formula (see (5)) 

can be reformed as “(see (6))”. And the loss function can be 

defined as “(see (7))”. Minimizing the loss value, we can get 

the formula (see (8)). In the formula above,  is the 

learning rate and b is the bias. 

                  (5) 

               (6) 

    (7) 

     (8) 

2.3. Similar Principal Component Analysis (SPCA) 

Principal Component Analysis (PCA, see Algorithm 1) 

algorithm was widely used in dimension reduction, but 

O'TOOLE [10] deemed that it was unreasonable. HAN [11] 

gave an improved algorithm called Similar PCA (SPCA) 

algorithm. The detailed algorithm is shown in Algorithm 2. 

The dimensions of PCA’s results and SPCA’s results were the 

same. What's more, SPCA retained some information which 

discarded by PCA and this can be used for sample 

generation. 
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Input: 1 2 n{ , , , }= n dx x x A ×∈⋯ ℝ , spatial dimension q . 

Output: 
1 2 q

={ , , , }D w w w⋯ . 

1: Centralizing of sample data, 
1

1 n

i
i i ix x xn =

← − ∑ ; 

2: Converting the data from the previous step into column 

vectors, i ix l→ , 1 2 n={ , , , }X l l l⋯ ; 

3: Computing the eigenvalues and eigenvectors of matrices 
T

XX ; 

4: Calculating the eigenvectors corresponding to the 

largest q eigenvalues 
1 2 q
, , ,w w w⋯ . 

Algorithm 2 SPCA 

Input: A , D , q . 

Output: 
1 2 q

={ , , , }D x x x′ ′ ′ ′⋯ . 

for 1, ,i q= ⋯  do 

for =1, ,j n⋯  do 

Computing angle ijθ  between jx
�

and iw
�

, 

(0, )ijθ π∈ ; 

end for 

Sorting iθ
i
, and let 0 arg ( )imin θθ =

i
, recording the j; 

i jx x′ = . 

end for 

3. Advanced Cognitive Model (ACM) 

3.1. Main Theorem 

For the pattern recognition or statistical pattern recognition, 

Bishop [12] believed that pattern recognition was a 

combination of theories and methods that contained a great 

deal of information processing. From the root, there was no 

accurate definition of this term. Hinton [13, 14] proposed the 

concept of deep learning and used it to solve the problems in 

pattern recognition. 

For any third-order matrix, defining the formula (3) as 

true kernel (K), and it can be represented as follows (see 

“9”). 
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∑           (9) 

The  is the coefficient of  (true kernel), the  

denotes a weight matrix or a convolution kernel. 

Convolving the weight matrix with the input data matrix 

(see “(10)”): 

x w x= ⊗                      (10) 

And the action mode is “same”. Assuming that a series of 

results can be linearly combined, which is shown in the 

formula (6). Lastly, the bias b is the distance between Y and 

hθ , which we named “impression”. 

Definition1. Pattern consists of , ik  and .  is 

expressed as patterns implied by all third-order matrices: 
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In the formula (11), each w  needs to compute one-time 

summation, and there is just only one impression (b). In order 

to layering the impression, w  was split as follows (see 

Table 1). 

Table 1. Sub w and Corresponding Impressions of 3P . 

Symbol Combination Impression & expression 

w  1 3= -b Y P  

1
1= i iw k K⋅  9 1

9

1
( )1b Y xi

i
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=
⋅∑  

36
2

2
1

= ( )j j
j

w k K
=

⋅∑  36 
36

2 1 1
1

( )2i
i

b b w bθ= − ⊗
=

′ ⋅∑  

So the Pattern can be rewritten as (see “(12)”): 

   (12) 

The impression 1b  is the bias of 1st layer. The impression 

2b  is the bias of 2nd layer. By analogy, the patterns of all 

fifth-order matrices are as shown in Table 2. 

Table 2. Sub w and Corresponding Impressions of 5P . 
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The Pattern of 5P  is (see “(13)”): 

   (13) 

The relative parameters of the expression of 7 9 11, ,P P P  are 

shown in Table 3. 

Table 3. Sub w and Corresponding Impressions of 7 9 11, ,P P P . 
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K  

2
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3.2. Supplementary Views 

In the process of pattern learning, only θ  is a 

hyper-parameter to be learned (see“(8)”), and the parameter 

k  should be artificially designed. Assuming input is single 

sample image data, the impressions b1 and b2 can be used as 

data source of pattern discrimination after training. In the 

process of testing, each test data can be impressed by the 

pattern learned. 

Hypothesis1. If the pattern is learned, for example, if we 

trained one figure data of number 1, the following statement 

should hold true: 

(1) All numbers mapped to 1 should be recognized as 1 by 

the pattern; 

(2) Numbers other than (1) should not be recognized as 1 

by the pattern. 

(3) More importantly, the input data can be replaced with 

other numbers’ data. 

Hypothesis2. The training picture data should be more 

regular, and the impressions after learning can be 

misidentified. 

Methods of data normalization contains normalization of 

input data [15, 16], normalization of weight data [17]. In this 

paper, the training data were normalized by 2-norm, each 

column of training data was divided by the module length of 

the column. In the process of learning pattern, a drop method 

was referred to dropout [18] and in order to reduce 

calculation data (see Algorithm 3), the viewpoint of 

contribution in the method of PCA [19] was adopted. In the 

output layer of ACM, function ( , )x σ∆  (see “(14)”) is 

similar with rectified linear unit (ReLU) [20]. 

Algorithm 3 Drop 

Input: θ, λ . 

Output: θ’, ω υ, . 

1: Descending order of θ; 

2: Calculating the minimum value of m that satisfies the 

formula 1

1

, (0,1)

m

ii

n

ii

θ
λ λ

θ
=

=

≥ ∈∑
∑

, and let =mω ; 

3: θ’ is the larger value of the first ω  of θ, and υ  is the 

label of the original position of θ’; 

             (14) 

The pseudo-code of Algorithmic (ACM) computing flow 

is (see Algorithm 4): 

Algorithm 4 ACM 

Input: ���� = 1,2, … ,10�, �	, �, K, P, �, �, and the test data 

y . ( ix  is one of the 0-9 10 graphs.) 

Output: Predictive labels l . 

Learning pattern: 

1: Initializing parameter k,�,�; Calculating 
1

K  and 
2

K ; 

2: Bring formula (11) (
1

K ) into formula (7) and updating 

parameters with formula (8). Using dropout method to get 

parameter of the 1
st
 layer ��

� , ɷ�, �� and the impression 1b ; 

1

11 1 1( )

1
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j

b x w x
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3: Replacing 
1

K  in step two with 
2

K , and change input 

data to 1b  in step two, we can get ��
� , ɷ�, �� and 2b ; 

2
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ω
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=
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Testing pattern: 

4: According to the pattern learned at the 1
st
 layer, 10 types 

of impressions of training samples are calculated: 

1

11 1 1( )

1

( )i i j i
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b x w x

ω
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1 1= ( , )i ib b σ∆  

5: Calculating the impression of 1
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 layer of the test sets: 

1
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1
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6: For the 2
nd

 layer: 
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1
st
 level prediction: 

7: for i =1,…, 10 do 

1 1 1( )i y id norm b b= − , norm is 2-norm. 

1 1( )T min d= , the value of i  1( )l i=  corresponding to 

1T  is the predictive label of y . 

2
nd

 level prediction: 

8: for i =1,…, 10 do 

2 ( )i y2 2id norm b b= − , norm is 2-norm. 

2 2( )T min d= , the value of i  2( )l i=  corresponding to 

2T  is the predictive label of y . 

4. Experimental Results 

4.1. (Q) MNIST Data Set 

All experiments were based on the MNIST hand-written 

digit recognition benchmark. All the images were 

pre-normalized into a unitary 784-dimensional vector. The 

data set was divided into a training set with 60000 images 

,
= ( , )=

0,

x if x
x x

if x

σσ σ
 ≥∆  <
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and a test set with 10000 images. 

The QMNIST dataset was generated from the original data 

found in the NIST Special Database 19
5
 with the goal to 

match the MNIST preprocessing as closely as possible. The 

QMNIST test dataset contained the 60000 testing examples. 

All the test data were divided into two categories. One was 

the original test data and the other was that converted the 

non-zero value of the original test data into 1 (“*”_1, * is the 

name of test data set). The second category only retained 

calligraphy. In order to facilitate the calculation with 

MATLAB, the test set data was collated as shown in the 

Table 4. MNIST and MNIST_1 test data were matrices with 

784 × 10000, QMNIST and QMNIST_1 test data were 

matrices with 784 × 60000. 

The experimental training set was also divided into two 

categories: 

1. From the original training set of 0-9 classes, each class 

was randomly selected one picture to form a group, lastly, a 

total of 10 groups and 100 pictures. 

2. According to SPCA and Hypothesis2, 0-9 regular library 

of original library were made based on original library, and 

saw the regular data as a new training set. 

Table 4. The test data set. 

MNIST/(MNIST _1) QMNIST/(QMNIST _1) Real 

label Col num Col num 

1-980 980 1-5952 5952 0 

981-2115 1135 5953-12743 6791 1 

2116-3147 1032 12744-18769 6026 2 

3148-4157 1010 18770-24853 6084 3 

4158-5139 982 24854-30633 5780 4 

5140-6031 892 30634-36087 5454 5 

6032-6989 958 36088-42044 5957 6 

6990-8017 1028 42045-48275 6231 7 

8018-8991 974 48276-54165 5890 8 

8992-10000 1009 54166-60000 5835 9 

Total 10000  60000  

Referring to algorithm 4, the experimental flow is shown 

in Figure 3. 

 

Figure 3. Image of experimental flow. 

Random selection of training data 

                                                             

5 https://www.nist.gov/srd/nist-special-database-19. 

We took a group of data for example (see Figure 4). Using 

data “0” for training, the original data and normalized data 

were as follows (see Figure 5). According to algorithm 4, the 

loss curve under Pattern refer to Figure 6, the impression 

under Pattern refer to Figure 7. And the correct recognition 

rate (CRR) on MNIST test set was shown as Table 5. CRR on 

MNIST test set was shown that all Pattern and two kinds of 

impressions can map to number 1. However, the recognition 

rate was very unsatisfactory. CRR on QMNIST test set was 

shown as Table 6, CRR on QMNIST test set was the similar 

with MNIST test set, the overall recognition rate was low. 

There were remaining 99 groups of training results in the first 

category, referring to the open source link (OSL)
6
 which 

included all the recognition results and all the unrecognized 

results. From the above experimental analysis, the results 

were closed to Hypothesis1, but not ideal. 

 

Figure 4. Images of training data in MNIST. 

 

Figure 5. Images of training data of “0”. 

Regular library of training data 

The figure (see Figure 8) was generated based on SPCA. 

These pictures look much more regular than original 

handwriting. Similarly, the number 0 was used to train for 

comparison, the impression under Pattern refer to Figure 9. 

Experimental data of numbers 1 to 9 were shown in the OSL. 

The training data of “0” and the normal data were shown as 

Figure 10. And the training progress was shown in Figure 11 

(refer to Algorithm 4), the results (impressions) of 

intermediate process were shown in Figure 12. The first row 

(origin_*) is the initial data, the 2
nd

 row is the impression of 

1
st
 layer, and the 3

rd
 row is the impression of 2

nd
 layer. 

 

 

                                                             

6 https://github.com/Starryskyer/ACM. 
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Figure 6. Images of Loss curves corresponding to different modes and layers. 

 

Figure 7. Images of impressions corresponding to different patterns and layers. 

 

Figure 8. Images of regular data. 

 

Figure 9. Images of impressions corresponding to different patterns and layers. 
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Figure 10. Images of regular data of “0”. 

 

Figure 11. Data training process. 

 

Figure 12. Figures of impressions corresponding to different modes and layers. 

Compared with the 1st category, the CRR on MNIST, 

MNIST_1, QMNIST, QMNIST_1 test set was shown as 

Tables 7, 8, 9, 10 respectively. In the end, the learning results 

and all the recognition results were shown in the OSL. These 

results declared that Pattern should be worth exploring and 

studying. 

Table 5. The test results of MNIST. 

Pattern 
CRR 

Overall rate 
0 1 2 3 4 5 6 7 8 9 

P3 
b1 0.2602 0.6247 0.0814 0.6010 0.1059 0.2377 0.5438 0.5185 0.1756 0.0803 0.3277 

b2 0.2031 0.9454 0.0455 0.4842 0.0611 0.1413 0.3935 0.4056 0.0996 0.0505 0.2936 
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Pattern 
CRR 

Overall rate 
0 1 2 3 4 5 6 7 8 9 

P5 
b1 0.3102 0.1709 0.1279 0.6327 0.0672 0.3442 0.6409 0.5496 0.3460 0.1031 0.3262 

b2 0.3061 0.2123 0.1231 0.6267 0.0733 0.3408 0.5908 0.5263 0.2977 0.1070 0.3182 

P7 
b1 0.3010 0.1507 0.1240 0.6416 0.0662 0.3330 0.6441 0.5253 0.3860 0.0951 0.3233 

b2 0.2867 0.2150 0.1202 0.6426 0.0723 0.3285 0.6127 0.5146 0.3634 0.0942 0.3227 

P9 
b1 0.3061 0.1304 0.1298 0.6564 0.0601 0.3464 0.6785 0.5545 0.4230 0.0942 0.3340 

b2 0.3051 0.1304 0.1289 0.6554 0.0601 0.3475 0.6754 0.5535 0.4220 0.0951 0.3334 

P11 
b1 0.3071 0.1392 0.1308 0.6307 0.0519 0.3318 0.7296 0.5788 0.4363 0.0951 0.3393 

b2 0.3061 0.1383 0.1298 0.6317 0.0519 0.3307 0.7286 0.5788 0.4353 0.0932 0.3386 

Trained only one picture (see Figure 5) and let the Pattern on the whole test set (MNIST, 10000). Different patterns and 

different layers of impressions were used to recognize the 0-9 numbers. The overall recognition rate (ORR) was around 30%. 

Table 6. The test results of QMNIST. 

Pattern 
CRR 

Overall rate 
0 1 2 3 4 5 6 7 8 9 

P3 
b1 0.2772 0.6140 0.0785 0.5411 0.1161 0.2231 0.5488 0.5364 0.1569 0.0865 0.3252 

b2 0.2231 0.9246 0.0508 0.4129 0.0666 0.1249 0.3868 0.4282 0.0829 0.0620 0.2886 

P5 
b1 0.3249 0.1777 0.1279 0.5848 0.0618 0.3421 0.6369 0.5750 0.3095 0.1066 0.3253 

b2 0.3149 0.2148 0.1180 0.5771 0.0708 0.3337 0.5855 0.5484 0.2706 0.1093 0.3154 

P7 
b1 0.3159 0.1635 0.1253 0.5924 0.0649 0.3331 0.6517 0.5595 0.3431 0.0985 0.3251 

b2 0.3048 0.2240 0.1162 0.5876 0.0728 0.3277 0.6194 0.5380 0.3156 0.0991 0.3212 

P9 
b1 0.3184 0.1409 0.1351 0.6050 0.0566 0.3506 0.6792 0.5805 0.3820 0.0982 0.3345 

b2 0.3172 0.1408 0.1341 0.6047 0.0566 0.3508 0.6779 0.5794 0.3813 0.0982 0.3340 

P11 
b1 0.3261 0.1539 0.1391 0.5838 0.0464 0.3326 0.7252 0.5996 0.3961 0.0977 0.3403 

b2 0.3253 0.1537 0.1379 0.5845 0.0469 0.3322 0.7239 0.5988 0.3958 0.0973 0.3399 

Trained only one picture (see Figure 5) and let the Pattern on the whole test set (QMNIST, 60000). Different patterns and 

different layers of impressions were used to recognize the 0-9 numbers. The ORR was around 30%. 

Table 7. The test results of MNIST. 

Pattern 
CRR 

Overall rate 
0 1 2 3 4 5 6 7 8 9 

P3 
b1 0.9786 0.6070 0.4273 0.7327 0.2424 0.0078 0.7557 0.3307 0.9138 0.8494 0.5885 

b2 0.9745 0.7339 0.4370 0.7545 0.2637 0.0280 0.7599 0.4222 0.9014 0.8741 0.6207 

P5 
b1 09827 0.7260 0.4709 0.7624 0.2546 0.0101 0.7537 0.4144 0.9055 0.8672 0.6207 

b2 0.9796 0.7736 0.4787 0.7683 0.2617 0.0135 0.7516 0.4553 0.8973 0.8751 0.6322 

P7 
b1 0.9796 0.7260 0.4922 0.7941 0.2851 0.0224 0.7766 0.4718 0.8984 0.8642 0.6370 

b2 0.9786 0.7912 0.5000 0.8099 0.2933 0.0404 0.7714 0.5243 0.8778 0.8771 0.6533 

P9 
b1 0.9857 0.7947 0.5058 0.7851 0.2800 0.0179 0.7474 0.4912 0.8973 0.8672 0.6444 

b2 0.9857 0.8035 0.5078 0.7851 0.2811 0.0179 0.7474 0.4990 0.8943 0.8702 0.6465 

P11 
b1 0.9857 0.7762 0.5281 0.7970 0.3096 0.0247 0.7735 0.5477 0.8922 0.8692 0.6573 

b2 0.9857 0.7859 0.5300 0.7990 0.3147 0.0247 0.7693 0.5554 0.8912 0.8692 0.6596 

Trained only one picture (see Figure 10) and let the Pattern on the whole test set (MNIST, 10000). Different patterns and 

different layers of impressions were used to recognize the 0-9 numbers. The ORR was around 60%. Compared with Table 5, 

ORR had been greatly improved. The recognition rate of digits 0 was higher than that rate of other digits, which illustrated the 

correctness of hypothesis 1. 

Table 8. The test results of MNIST_1. 

Pattern 
CRR 

Overall rate 
0 1 2 3 4 5 6 7 8 9 

P3 
b1 0.9378 0.9471 0.7471 0.8267 0.7668 0.5348 0.8194 0.8288 0.8285 0.8404 0.8122 

b2 0.9378 0.9427 0.7326 0.8168 0.7749 0.5247 0.8278 0.8317 0.8162 0.8157 0.8065 

P5 
b1 0.9378 0.9524 0.7326 0.8287 0.7688 0.5291 0.8058 0.8307 0.8285 0.8444 0.8105 

b2 0.9398 0.9463 0.7306 0.8198 0.7739 0.5291 0.7975 0.8278 0.8234 0.8404 0.8074 

P7 
b1 0.9398 0.9542 0.7364 0.8376 0.7800 0.5336 0.8173 0.8375 0.8234 0.8424 0.8148 

b2 0.9398 0.9498 0.7287 0.8337 0.7862 0.5235 0.8173 0.8405 0.8162 0.8385 0.8120 

P9 
b1 0.9449 0.9533 0.7364 0.8327 0.7688 0.5404 0.8017 0.8327 0.8214 0.8375 0.8115 

b2 0.9449 0.9515 0.7384 0.8317 0.7699 0.5392 0.7996 0.8327 0.8193 0.8375 0.8110 

P11 
b1 0.9469 0.9542 0.7481 0.8366 0.7709 0.5448 0.8132 0.8375 0.8265 0.8365 0.8160 

b2 0.9469 0.9542 0.7471 0.8366 0.7719 0.5482 0.8132 0.8356 0.8255 0.8355 0.8159 
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Trained only one picture (see Figure 10) and let the Pattern 

on the whole test set (MNIST_1, 10000). Different patterns 

and different layers of impressions were used to recognize 

the 0-9 numbers. The ORR was more than 80%. Compared 

with Table 7, ORR had been greatly improved. The 

recognition rate of digits 0 and 1 was higher than that rate of 

other digits, but other rates were not low, which further 

verified the correctness of hypothesis1 and hypothesis 2. 

Table 9. The test results of QMNIST. 

Pattern 
CRR 

Overall rate 
0 1 2 3 4 5 6 7 8 9 

P3 
b1 0.9691 0.5977 0.4262 0.6921 0.2545 0.0055 0.7578 0.3130 0.9110 0.8351 0.5802 

b2 0.9684 0.7292 0.4403 0.7155 0.2772 0.0246 0.7610 0.4155 0.8905 0.8605 0.6141 

P5 
b1 0.9713 0.7217 0.4731 0.7204 0.2721 0.0092 0.7546 0.4147 0.8980 0.8622 0.6156 

b2 0.9703 0.7721 0.4773 0.7345 0.2779 0.0171 0.7569 0.4628 0.8866 0.8720 0.6294 

P7 
b1 0.9718 0.7159 0.4890 0.7608 0.3028 0.0227 0.7719 0.4726 0.8878 0.8595 0.6314 

b2 0.9713 0.7916 0.4957 0.7788 0.3149 0.0451 0.7737 0.5357 0.8686 0.8751 0.6520 

P9 
b1 0.9726 0.7975 0.5098 0.7502 0.2979 0.0207 0.7509 0.4945 0.8898 0.8586 0.6414 

b2 0.9726 0.8052 0.5113 0.7533 0.2993 0.0224 0.7509 0.5001 0.8869 0.8612 0.6435 

P11 
b1 0.9758 0.7843 0.5402 0.7643 0.3285 0.0286 0.7740 0.5527 0.8839 0.8641 0.6566 

b2 0.9758 0.7959 0.5422 0.7678 0.3310 0.0315 0.7735 0.5612 0.8815 0.8643 0.6596 

Trained only one picture (see Figure 10) and let the Pattern on the whole test set (QMNIST, 60000). Different patterns and 

different layers of impressions were used to recognize the 0-9 numbers. The ORR was around 60%. Compared with Table 7, 

the ORR was similar. 

Table 10. The test results of QMNIST_1. 

Pattern 
CRR 

Overall rate 
0 1 2 3 4 5 6 7 8 9 

P3 
b1 0.9271 0.9544 0.7484 0.7654 0.7597 0.5372 0.8268 0.8374 0.8024 0.8302 0.8064 

b2 0.9232 0.9524 0.7370 0.7827 0.7659 0.5288 0.8286 0.8434 0.7866 0.8070 0.8002 

P5 
b1 0.9271 0.9560 0.7395 0.7980 0.7661 0.5323 0.8101 0.8437 0.7976 0.8398 0.8056 

b2 0.9278 0.9532 0.7376 0.7949 0.7702 0.5275 0.8054 0.8445 0.7905 0.8380 0.8035 

P7 
b1 0.9289 0.9585 0.7420 0.8044 0.7718 0.5304 0.8289 0.8517 0.7968 0.8386 0.8098 

b2 0.9288 0.9566 0.7375 0.8026 0.7798 0.5253 0.8273 0.8556 0.7871 0.8353 0.8082 

P9 
b1 0.9278 0.9576 0.7426 0.8006 0.7588 0.5455 0.8069 0.8435 0.7930 0.8367 0.8058 

b2 0.9278 0.9576 0.7431 0.8013 0.7597 0.5447 0.8064 0.8435 0.7927 0.8367 0.8059 

P11 
b1 0.9304 0.9589 0.7509 0.8060 0.7637 0.5534 0.8217 0.8514 0.7956 0.8353 0.8112 

b2 0.9304 0.9591 0.7506 0.8067 0.7645 0.5539 0.8219 0.8511 0.7944 0.8343 0.8111 

Table 11. Average recognition rate for CMU PIE database/%. 

WF [22] LTP [23] RM [24] MSR [25] WD [26] 

92.59 75.07 78.33 72.20 92.13 

GF [27] OGPF [28] AWOGBP [21] ACM  

90.07 87.40 95.50 92.00/99.46  

 

Trained only one picture (see Figure 10) and let the Pattern 

on the whole test set (QMNIST_1, 60000). Different patterns 

and different layers of impressions were used to recognize 

the 0-9 numbers. The ORR was more than 80%. Compared 

with Table 9, ORR had been greatly improved. The 

recognition rate of digits 0 and 1 was higher than that rate of 

other digits, but other rates were not low, which further 

verified the correctness of hypothesis1 and hypothesis 2. 

4.2. Experiments on CMU PIE Database 

Considering the frontal face samples and the influence of a 

single factor, for example, lighting changes, CMU PIE [5] 

and Extended Yale B [6] databases were chosen to conduct 

experiments. In order to compare with [21], the latest 

research under the same conditions was selected to design the 

experiment. In the process of dis-crimination, the average 

value of each group was subtracted to weaken the influence 

of illumination change, and the illumination threshold was 

set to adjust the optimal value. 

The CMU PIE database contained 68 subjects with 41368 

face images under varying pose, illumination and expression. 

In this paper, a subset (C27) was chosen which contained 

1428 images of 68 individuals un-der different illumination 

conditions. The images were all reshaped to 32 × 32. 21 

experiments were also con-ducted to evaluate the 

performance of ACM model. The sample images in CMU 

PIE database were shown in Figure 13. The image from each 

subject was chosen as the training image and all the other 20 

images as the test data. The average recognition accuracy of 

the methods for all training images in CMU PIE data base 

was shown in Table 11. ACM achieved the highest average 

recognition accuracy of 92.00% (1st layer) and 99.46% (2nd 

layer). We can draw a conclusion that the ACM model is 

more robust to illumination changes than other methods in 

the task of single face sample recognition. 
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Figure 13. Sample images in CMU PIE database. 

4.3. Experiments on Extended Yale B Database 

Considering that the condition of light changes in the 

CMU PIE database was not complex, ACM was also verified 

on Extended Yale B database which covered more complex 

illumination variation in this section. The database included 

38 subjects under nine poses and 64 illumination conditions. 

Most importantly, all the images contained positive face only. 

The only factor that interfered with positive face recognition 

was the change in illumination. For comparison, the frontal 

pose images captured under 64 different lighting conditions 

for each of the 38 persons. And these images were divided 

into 5 subsets according to the angle of the light source 

directions, refer to Table 12. 

Table 12. The subset of angles. 

Refer Sub1 Sub2 Sub3 Sub4 Sub5 

0° 1°-12° 13°-25° 26°-50° 51°-77° others 

In our experiments, the images were all resized to 64 × 64. 

Images with the light condition (0°) were treated as training 

data, and all the data of subsets were used for testing. The 

sample images were shown in Figure 14 and Table 13 listed 

the experiment results on Extended Yale B database. 

Table 13. Recognition rate for Extended Yale B/%. 

Methods 
Testing subsets 

Sub1 Sub2 Sub3 Sub4 Sub5 

WF 99.56 99.34 90.57 85.15 81.16 

LTP 98.24 99.12 87.93 82.70 73.26 

RM 99.56 99.12 83.77 77.06 71.05 

MSR 96.92 97.58 74.12 59.58 45.98 

WD 95.17 98.02 82.67 81.57 69.25 

GF 99.12 99.12 84.87 70.87 73.27 

OGPF 100 99.34 92.33 71.62 66.07 

AWOBBP 100 99.34 94.46 90.04 83.93 

ACM 
1st 99.56 99.34 99.12 88.53 93.07 

2nd 99.56 99.34 98.25 92.48 90.86 

As shown in Table 13, ACM expressed the competitive 

performance in Sub1, Sub2, and had the best performance in 

Sub3, Sub4 and Sub5, especially in Sub4 and Sub5 where the 

illumination conditions are extremely poor. Each layer of 

ACM deepened the subjective impression of this class. By 

adjusting the illumination threshold parameters, the influence 

of illumination changes can be reduced. Hence, we can draw 

a conclusion that ACM is better for single sample recognition 

under varying illumination. 

 

Figure 14. Subset images in Extended Yale B database. 

5. Conclusion 

In the experimental process, we adopted convolution 

instead of neural network alone, and we got the surprising 

results under the condition of single sample training. ACM 

focuses on the shape of the sample itself and learns about it. 

Regardless of the handwritten number or the face sample, the 

shape of the sample has not changed, and the learning pattern 

should be consistent and this has been verified by the 

experimental results. ACM gives an attempt on pattern 

recognition. The following parts analyse its characteristics. 

5.1. Sparse Property 

The K has obvious sparse property. Many algorithms are 

pursuing sparse property, because the property has the 

following two advantages: firstly, it has the property of 

automatic feature selection; lastly, it makes the model easier 

to interpret. Considering the sparse property, we need to 

supplement the property in the later stage of the ACM 

algorithm. For example, increasing the number of layers and 

making patterns more abundant (refer to Table 14), the sparse 

property of later patterns will gradually decrease. There are 

so many combinations that one of the next tasks is studying 

whether these modes are combined or duplicated or their 

effects are equivalent. 

Table 14. Patterns and Combination Numbers. 

Layer P3 P5 P7 P9 P11 

L1 9 25 49 81 121 

L2 36 300 1176 3240 7260 

L3 84 2300 18424 85320 

… 

L4 126 12650 

… … 

L5 126 53130 

L6 84 177100 

L7 36 

… 
L8 9 

L9 1 

… … 

Last 

layer 
1 1 1 1 1 

5.2. Combining Neural Network Algorithms 

For the above combination, if the sparse property 

de-creases, the combination of deep learning algorithm (DLA) 

is considered. Because in the neural network algorithm, the 
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bigger sparse property will lead to vanishing gradient, so in 

the process of debugging parameters of such algorithms, 

bigger sparse property is generally not allowed. When the 

sparse property is reduced, the fusion of ACM and DLA is 

also one of the next tasks. 

5.3. Pattern Fusion 

In addition to the aforementioned algorithm fusion scheme, 

Can we try the pattern fusion? 

As the various operators proposed in the traditional 

algorithms in the past, combining with each other, we can 

refer to them completely. From the experimental results, the 

advantages of the patterns itself are not outstanding, such as 

the results of P3 and P5 are not absolutely superior or inferior. 

For this reason, another branch of the next task is to study the 

integration of these models in order to achieve major 

breakthroughs. 

After carefully study of these results, it can be concluded 

that in the sparse layer, the pattern has learned the common 

characteristics of samples. The shallow understanding of the 

algorithm is the common characteristics of the samples. From 

this point of view, the algorithm should deepen the number of 

layers, whether it is pattern fusion or algorithm fusion. 

In this paper, we proposed ACM algorithm which is a 

novel pattern recognition model for single sample 

recognition. Compared with other classical algorithms 

related to illumination changes, ACM is a more efficient 

and stable representation in the task of single face sample 

recognition. ACM combines convolution kernel and drop 

operation to extract information. And the most important 

is that the information is extracted from sample which 

should be expressed regularly, and this has verified by the 

experiments of (Q) MNIST recognition. ACM is worthy of 

further study. 
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