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Abstract: Clustering analysis has been an emerging research issue in data mining due to its variety of applications. In 

recently, mathematical algorithm supported automatic segmentation system plays an important role in clustering of images. 

The fuzzy c-means clustering is a method of cluster analysis which aims to partition n data points into k-clusters. The 

conventional FCM-based algorithm considers no spatial content information, which means it sensitive to noise. Unsupervised 

techniques need to be employed, which can be based on minimal spanning tree generated by comparing spatial neighbourhood 

information, the MST based clustering algorithms have been widely used due to their ability to detect clusters with irregular 

boundaries. We propose an automatic fuzzy c-means initialization algorithm based on Canberra distance minimal spanning tree 

for the purpose of segmentation of medical images, where vertices and edges are labelled with multi-dimensional vectors. A 

Canberra distance measure based, construct the minimal spanning tree clustering algorithm. An efficient method for 

calculating membership and updating prototypes by minimizing the new objective function of Gaussian based fuzzy c-means. 

The algorithm uses a new cluster validation criterion based on the geometric property of data partition of the dataset in order to 

find the proper number of cluster at each level. In this algorithm to apply medical images to reduce the inhomogeneity and 

allow the labelling of a pixel to be influenced by the labels in its immediate neighbourhood and reduces the time complexity 

and better clustering results than the existing traditional minimal spanning tree algorithm. The performance of proposed 

algorithm has been shown with random data set, partition coefficient and validation function are used to evaluate the validity of 

clustering and then new cluster separation approach to optimal number of clustering. Also this paper compares the results of 

proposed method with the results of existing basic fuzzy c-means. 

Keywords: Fuzzy C-Means, Gaussian Function, Lagrange Multiplier, Canberra Distance, Minimal Spanning Tree,  

Cluster Separation, Partition Coefficient, Validation Function 

 

1. Introduction 

Clustering is one of the important tools for data analysis. It 

can divide an unlabeled dataset into several subsets according 

to some criteria to ensure similar samples to be in the same 

subset and dissimilar samples to be different subset. Fuzzy c-

means algorithm is a widely used clustering algorithm in the 

field of machine learning. It was proposed by Bezdek et al in 

1984 [1]. By introducing the fuzzy membership matrix, the 

fuzzy c-means algorithm allows data points to belong to 

multiple classes according to their fuzzy membership degree. 

We choose the class with the highest value of the current data 

point in the fuzzy membership matrix as the final clustering 

result. This method solves the problem of clustering overlap 

of traditional hard clustering algorithms [2]. Fuzzy 

clustering, as a soft segmentation method, has been widely 

studied and successfully applied to image segmentation [2-4, 

6-7]. MR image signals have highly affected by shacking of 
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patients body and patients motion. So the medical MRI is 

seriously affected and it has improper information about the 

anatomic structure. Hence the segmentation of medical 

images is an important one before it to go for treatment 

planning for proper diagnosis. Initially segmentation was 

made manually; but manual segmentation is more difficult, 

time -consuming and costly. Automatic brain tumor 

segmentation from MR images which is not an easy task that 

involves various disciplines covering image analysis, 

mathematical algorithms [8-10] and etc. 

In recent world, many of the segmentation methods are 

based on the unsupervised clustering algorithms. 

Unsupervised clustering is a process for ordering objects 

in such a way that samples of the identical group are more 

similar to one another than samples belonging to different 

groups. Currently fuzzy c-means of fuzzy clustering plays 

main role in unsupervised clustering method for 

segmenting medical images [11]. In Noordam, proposed a 

geometrically guided FCM algorithm based on a semi-

supervised FCM technique for multivariate image 

segmentation. In their work, the geometrical condition 

information of each pixel is determined by taking into 

account the local neighbourhood of each pixel [5]. 

The main disadvantages of fuzzy clustering technique are 

its need for a large amount of time to converge and it is more 

sensitive to the noise and outliers in the data, because of 

squared-norm to measure similarity between prototypes and 

data points. To cluster more general dataset, lots of 

algorithms have been proposed by replacing the squared-

norm with other similarity measures. A recent development is 

to use kernel method to construct the kernel versions of FCM 

algorithm, KFCM for clustering the incomplete data and 

medical image segmentation was proposed [12-13]. However 

a disadvantage of KFCM in segmentation of medical images 

it is not  considered about any spatial information in image 

context; which makes it compute the neighbourhood term in 

each step, which is very time consuming. Although the above 

methods are claimed to be robust to noise, they are 

confronted with the problem of selecting the parameters that 

control the role of the spatial constraints. However, FCM has 

two serious shortcomings, Firstly, it easily falls into local 

minima, Secondly, it is necessary to specify the number of 

clusters and the algorithm is very sensitive to the initial 

center [14-15]. The graph data structure is being considered 

as a suitable mathematical tool to model the inherent 

relationship among data. Simple linked data are generally 

modeled using simple graph ( , )G V E= , where V is the set of 

vertices representing key concepts or entities and E V V⊆ ×
is the set of links between the vertices representing the 

relationships between the concepts or entities. There are 

many complex data link online social networks, where is 

characterized by a set of features and multiple relationships 

exist between an entity pair, such data, the concept of graph 

can be used where in each vertex is represented by an n-

dimensional vector. One of the important tasks related to 

graph data analysis is to decompose a given graph into 

multiple cohesive subgraphs, called clusters, based on some 

common properties. The clustering is an unsupervised learn 

process to identify the underlying structure of data, which is 

generally based on some similarity/ distance measures 

between data elements. 

Graph clustering is special case of clustering process 

which divides an input graph into a number of connected 

components such that intra-component edges are maximum 

and inter- components edges are minimum. Each connected 

components is called a cluster [16]. Graph clustering 

techniques on the minimum spanning tree (MST) of a 

weighted graph is minimum weight spanning tree of that 

graph with the classical MST algorithms [17, 18, 19] and the 

cost of constructing a minimal spanning tree is ( log )O m n , 

where m is the number of edges in the graph and n is the 

number of vertices. Our study on these methods have led us 

to believe that all these applications have used the MSTs in 

some heuristic way; eg cutting long edges to separate clusters 

without fully exploring their power and understanding their 

rich properties related to clustering. Geometric notion of 

centrality are closely linked to facility location problem. 

Since similarity/ distance measure is the key requirement for 

any clustering algorithm, In this paper, we have proposed a 

new weighted distance measure based on weighted Euclidean 

norm to calculate the distance between the vertices and the 

algorithm is initialized by a given kernel function using 

minimal spanning tree based FCM algorithm, which helps to 

speed up the convergence of the algorithm. 

The rest of the paper is organized as follows section 2 

presents a Canberra distance measures and Cluster Separation 

using CMST clustering algorithm. Section 3 presents the kernel 

based FCM and Validation function. Section 4 presents the 

experimental results using random data show that the proposed 

method can achieve comparable results to those from many 

derivatives of efficient initialized by a given kernel function 

using minimal spanning tree based FCM algorithm and effective 

and more robust to reduce the noise and outliers. 

2. Canberra Measure Based minimal 

Spanning Tree Algorithm 

In this section, we proposed Canberra distance measures 

for construct the minimal spanning tree. 

2.1. Canberra Distance Measure MST  

Given the grayscale point set D, the hierarchical methods 

starts by constructing a minimal spanning tree (MST) from 

the points in D. In 1 2( , ,....... )T
nx x x x= and  

1 2( , ,....... )T
ny y y y=  are two points of a MST and ( , )e x y is 

an edge between x and y then the Canberra distance between 

x and y is denoted by ( , )d x y and calculated using equation 

(1) [20],  

1

1( , )

n
i i

i ii

x y
d x y

K x y=

−
=

+∑                        (1) 

where K be the number of non-zero pairs. 
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2.2. Cluster Separation (CS) 

The definition of CS between cluster centers is given by 

the following 

min

max

E
CS

E
=                                   (2) 

where maxE is the maximum length edge in the MST, which 

represents two centroids that are at maximum separation and 

minE is the length edge in the MST, which represents two 

centroids that are nearest to each other. Then the CS represents 

the relative separation of the centroids. The value of CS ranges 

from 0 to 1. A low value of CS means that the two centroids 

are too close to each other and the corresponding MST 

Separation not valid. A high CS value means the MST 

separation of the data is even and valid. If the CS is greater 

than the threshold, the MST partition of the dataset is valid. 

Then, we increase the number of cluster by and test the CS 

again. This process continuous until the CS is smaller than the 

threshold. The value setting of the threshold for the CS will be 

practical and is dependent on the dataset. The higher the value 

of the threshold the smaller the number of clusters would be, 

generally the value of the threshold will be 0.8≻ [21]. 

2.3. Canberra Distance Based Minimal Spanning Tree 

Algorithm 

Algorithm: CMST 

Input: Data points 

Output: optimal number of cluster centers 

Let e1 be an edge in the CMST1 constructed from data points 

Let e2 be an edge in the CMST2 constructed from C. 

Let TS be the set of disjoint subtrees of CMST1. 

1. Create a node v, for each data points. 

2. Compute the edge weight using equation (1) 

3. Construct an CMST1 from 2 

4. , 1 ,T cS n Cϕ ϕ= = = . 

5. Repeat. 

6. For each 1 1e CMST∈ . 

7. Current longest edge e remove e1 from CMST1. 

8. 
' '{ }/ /T TS S T T= ∪ is new disjoint subtrees (regions). 

9. 1c cn n= + . 

10. Compute the center i ic of T using average of points. 

11. { }
iT T iC S c= ∈∪ . 

12. Compute the edge weight using equation (1) 

13. Construct an CMST2 T from C. 

14. minE =get-min length edge. 

15. maxE =get-max length edge. 

16. min

max

E
CS

E
=  

17. Until CS 0.8<  

18. Merge the closest neighbour from CMST2. 

19. Update the clusters points, repeat step 12 to step 18. 

20. Finally we obtain the cluster centers. 

3. Formulation of Proposed Kernel 

Function Induced FCM Based on 

Gaussian Function 

3.1. Fuzzy C-Means Algorithm 

This method was first introduced by Dunn in [22] and 

improved by Bezdek in [23]. It is based on minimization of 

the following objective function: 
2

1 1

( , )

N C
m

m ij i j

i j

J U V u x c

− =

= −∑ ∑ 1 m< < ∞         (3) 

where m is any real number greater than 1, iju  is the degree 

of membership of ix  in the cluster j, ix is the  i 
th

  of p - 

dimensional measured data, jc  is the p -dimension center of 

the cluster and ∗  is any norm expressing the similarity 

between any measured data and center. 

Fuzzy partitioning is carried out through an iterative 

optimization of the objective function shown above, with the 

update of membership iju  and the cluster centers jc  by: 

2

1

1

1
ij

c m
i j

i kk

u

x c

x c

−

=

=
 −
 

−  
∑

                         (4) 

1

1

N
m

ij i

i
j N

m
ij

i

u x

c

u

=

=

=
∑

∑
                                   (5) 

This iteration will stop when 

{ }1
max

k k
ij ij iju u

+ − <∈ , 

where ∈  is a termination criterion between 0 and 1, whereas 

k is the iteration steps. This procedure converges to a local 

minimum or a saddle point of mJ . 

3.2. Kernel Function Induced FCM Algorithm 

Recently, the powerful technique of kernel function using 

learning machines were proposed and found to have 

successful applications such as signal processing pattern 

recognition and image processing etc. Kernel method often 

studies and employs a high-dimensional feature space S for 

having nonlinear classification boundaries. For this a 

mapping is given below; 

: pR Sϕ → is used where by an object x is mapped into S: 

1 2( ) ( ( ), ( ),..........)x x xϕ ϕ ϕ=  
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As x is the p-dimensional vector, ( )xϕ may have the 

infinite dimension. In the nonlinear classification method, an 

explicit form of ( )xϕ  is unavailable, but the inner product is 

defined by: 

( , ) ( ), ( )K x y x yϕ ϕ=  

The function ( , )K x y is called a kernel function and we 

assume this known function, as Gaussian radial basis 

function: 

2

22( , )

x y

K x y e σ
−

−
=  

This paper proposes an efficient weighted MST based 

FCM by introducing kernel function that allows the 

clustering of objects to be more reasonable. The modified 

proposed objective function is given by  

2

1 1

( , ) ( ) ( )

N C
m

m ik k i

k i

J U V u x vϕ ϕ
= =

= −∑ ∑        (6) 

where ϕ  stands as map and the distance function can be 

expressed using in product space as  

2
( ) ( ) ( ), ( ) ( ), ( )

2 ( ), ( )

k i k k i i

k i

x v x x v v

x v

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ

− = +

−
 

To obtain kernel induced FCM based Gaussian function 

the distance function can be modified as  
2

( ) ( ) ( , ) ( , ) 2 ( , )k i k k i i k ix v G x x G v v G x vϕ ϕ− = + − where  

1, 2,3..........k N=  and 1, 2,3...........i C= . 

Let us express ( , )k iG x v , between pixel kx  and iv  as the 

product of a feature similarity term and spatial proximity 

term: 

2 2

2 2

( ) ( )
( , ) exp exp

2 2

k i k i
k i

X I

x v I x I v
G x v

σ σ

   − − − −
   = ∗
   
   

 (7) 

where σ  is a parameter which can be adjusted by users. 

Using the above expression, we obtain ( , ) 1k kG x x =  and 

( , ) 1i iG v v =  , so the distance function can be rewritten as  

2
( ) ( ) 2(1 ( , ))k i k ix v G x vϕ ϕ− = −                   (8) 

Substituting kernel induced Gaussian function based FCM 

is given by  

1 1

( , ) 2 (1 ( , ) )

N C
m

m ik k i

k i

J U V u G x v

= =

= −∑ ∑              (9) 

3.3. Obtaining Membership 

To obtain equation for calculating membership we 

minimizing the objective function 

1 1

( , ) 2 (1 ( , ) )

N C
m

m ik k i

k i

J U V u G x v

= =

= −∑ ∑              (10) 

subject to the constraints 

1

1

C

ik

i

u

=

=∑   

Therefore, the above objective function can be minimized 

using one Lagrangian multiplier: 

1 1 1

( , , ) 2 (1 ( , ) )) 1

N C C
m

m ik k i ik

k i i

J U V u G x v uλ λ
= = =

 
= − − − 

 
 

∑ ∑ ∑  (11) 

where λ  is a Lagrange multiplier.  

To adjust &ik iu v for minimum mJ , we set to zero the 

derivative of ( , , )mJ U V λ  with respect to 1iku for m≻ . 

[ ]12 1 ( 0mm
ik k i

ik

J
mu G x v

u
λ−∂ = − − − =

∂
 

( )
1 1

1 11 ( , )m m
ik k i

m

u G x vλ
− −

=  
 
 

−  

To calculate λ , Substitute the above iku in the identity 

constraint for all values of k, we get following relation,  

1

2 ( ) 0

N
mm

ik k i
i k

J
u x v

v =

∂ = − − =
∂ ∑  

The minimum of mJ  with respect to iv was computed by 

taking the partial derivative of mJ  equal to zero. 

1

1
1

1

1

1

1

(1 ( , ))

m

C
m

k ii

m

G x v

λ −

−

=

  = 
 

 
 − 

∑

 

So that iv  and iku can be calculated by the relation, 

we obtain 

1

1

1

1

1 ( , )

1 ( , )

ik C

k i m

k jj

u
G x v

G x v
−

=

=
 −
 −  

∑

                     (12) 

1

1

( ) ( , )

.

( ) ( , )

N
m

ik k i k

k
i N

m
ik k i

k

u G x v x

v

u G x v

=

=

=
∑

∑
                  (13) 

The kernel function based FCM algorithm iteratively 

optimizes mJ  by continuous updating iku and iv until the 

difference in successive iku values is very small ≤ ∈ , where 

∈ is a small positive value between 0 and 1. 
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4. Efficient Kernel Induced FCM Based 

on Gaussian Function 

The objective function (I) of the standard FCM algorithm 

does not take into account any spatial information, which 

means the clustering process is related to gray levels 

independently of the pixels of image segmentation. 

Therefore, the limitation makes FCM to be very sensitive to 

noise. The general principle of the technique presented in this 

paper is to incorporate the neighbourhood information into 

the FCM algorithm during classification. 

4.1. Efficient KFCM Algorithm 

Stage 1: Set the cluster centroids      { }
1

c

i i
v =

 by using 

Canberra MST initialization method. 

Stage 2: Compute the membership function using (12) 

Stage 3: Update the cluster centroids using (13) 

Stage 4: Estimate objective function using (10) 

Stage 5: Go to stage (2)-(3), repeat until convergence. The 

termination criterion is as follows 1m mJ J −− ∈≺  , where m 

is the iteration count, ∈  is a small number that can be set by 

the user. 

4.2. Validation Function Based on Feature Structures 

Two representative functions for the fuzzy partition 

namely; Partition coefficient pcV  and Validation function pV

are used to evaluate the validity of clustering [3, 24]. 

2

1 1

1
N C

pc ik

k i

V u
N = =

= ∑∑                                   (14) 

{ }
22

1 1

2
min

N C

ik k i

k i
p

i j

u x v

V

N v v

= =

−
=

× −

∑∑
                          (15) 

The proposed efficient weighted MST obtained cluster 

centers; the EKFCM algorithm continues iteratively updates, 

membership and centroids with these values. When this 

improved, Efficient KFCM algorithm has converged, another 

defuzzification process takes place in order to convert the 

fuzzy partition matrix to a crisp partition matrix that is 

segmented.  

5. Results and Discussion 

This section describes some experimental results on 

random data, corrupted with noise to show the segmentation 

performance of the proposed method. 

Table 1. Random data. 

Data Data 

S. No X Y Intensity S. No X Y Intensity 

1 1.80 2.00 0.50 11 12.00 4.00 0.80 

2 2.00 2.20 0.91 12 11.50 3.50 0.45 

3 2.00 1.80 0.12 13 12.50 3.50 0.55 

4 2.00 3.50 0.40 14 21.00 10.00 0.65 

5 8.80 3.00 0.50 15 21.00 11.00 0.25 

6 9.00 3.20 0.38 16 20.50 10.50 0.35 

7 9.00 2.80 0.60 17 21.50 10.50 0.75 

8 9.20 3.00 0.12 18 2.00 4.00 0.70 

9 7.00 2.80 0.80 19 19.00 20.00 0.60 

10 12.00 3.00 0.90 20 11.00 12.00 0.40 

 

Table 2. Dissimilarity matrix-I. 

Co-ordinate intensity 
          

 

S. No x y I(v) S. No 1 2 3 4 5 6 7 8 9 10 11 

1 1.8 2.0 0.50 1 0.000 0.130 0.239 0.145 0.287 0.345 0.308 0.495 0.329 0.408 0.434 

2 2.0 2.2 0.91 2 
 

0.000 0.289 0.206 0.358 0.411 0.321 0.521 0.247 0.291 0.356 

3 2.0 1.8 0.12 3 
  

0.000 0.286 0.498 0.479 0.507 0.298 0.504 0.576 0.611 

4 2.0 3.5 0.40 4 
   

0.000 0.273 0.236 0.316 0.419 0.333 0.392 0.371 

5 8.8 3.0 0.50 5 
    

0.000 0.060 0.046 0.212 0.126 0.147 0.176 

6 9.0 3.2 0.38 6 
     

0.000 0.097 0.188 0.183 0.194 0.203 

7 9.0 2.8 0.60 7 
      

0.000 0.237 0.089 0.126 0.154 

8 9.2 3.0 0.12 8 
       

0.000 0.303 0.299 0.338 

9 7.0 2.8 0.80 9 
        

0.000 0.119 0.147 

10 12.0 3.0 0.90 10 
         

0.000 0.067 

11 12.0 4.0 0.80 11 
          

0.000 

12 11.5 3.5 0.45 12 
          

 

13 12.5 3.5 0.55 13 
          

 

14 21.0 10.0 0.65 14 
          

 

15 21.0 11.0 0.25 15 
          

 

16 20.5 10.5 0.35 16 
          

 

17 21.5 10.5 0.75 17 
          

 

18 2.0 4.0 0.70 18 
          

 

19 19.0 20.0 0.60 19 
          

 

20 11.0 12.0 0.40 20 
          

 

 

Figure 1 shows a typical example of CMST1 constructed 

from point set (from Dissimilarity matrix), in which 

inconsistent edges are removed to create subtree 

(clusters/regions). Our algorithm finds the center of each 
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clusters, which will be useful in many applications. 

Table 3. Canberra distance based minimal spanning tree edges. 

S. No Edges 
Canberra 

measure 
S. No Edges 

Canberra 

measure 

1 (1,2) 0.130 11 (10,9) 0.119 

2 (2,18) 0.140 12 (10,8) 0.299 

3 (18,4) 0.113 13 (8,3) 0.298 

4 (4,6) 0.236 14 (8,20) 0.409 

5 (6,5) 0.060 15 (20,16) 0.145 

6 (5,7) 0.046 16 (16,15) 0.067 

7 (5,12) 0.088 17 (16,14) 0.112 

8 (12,13) 0.047 18 (14,17) 0.036 

9 (13,11) 0.091 19 (14,19) 0.141 

10 (11,10) 0.067 
   

 

Figure 1. Canberra distance based Minimal spanning tree connected 

through points. 

Generally in most of the clustering algorithm data points 

can be represented as dissimilarity matrix representation. It 

contains the distance values between the data points 

represented as lower or upper triangular matrix. Our 

Canberra distance based minimal spanning tree algorithm 

constructs CMST1 from the dissimilarity matrix is shown 

figure 1. First to identify the longest edge in the CMST1 to 

generate subtree (clusters). Table 3, the longest edge weight 

0.409 connecting the data points 8 and 20 is find to be 

inconsistent one. By removing the inconsistent edge from the 

CMST1, data points in the CMST1 partitioned into two 

subtrees or clusters 1T  and 2T  namely 

{ }1 1,2,3, 4,5,6,7,8,9,10,11,12,13,18T =  and

{ }2 14,15,16,17,19, 20T = . Secondly to find the center of 1T  

and 2T  using average of points, these centers is connected 

and again another minimal spanning tree CMST2 is 

constructed. The minimum edge of CMST2 is min 0.750E =
and the maximum edge of CMST2 is max 0.750E = then to 

compute cluster separation value is 1. If the CS is greater 

than 0.8 then we conclude the subtrees or clusters created are 

well separated. Next to identify another longest edge weight 

from Table 3 is 0.299 connecting the data points 10 and 8 is 

finding to be inconsistent one. By removing the inconsistent 

edge from the CMST1, data points partitioned into three sub 

trees or clusters 1T , 2T  and 3T namely 

{ }1 1,2,4,5,6,7,9,10,11,12,13,18T = , { }2 14,15,16,17,19,20T =

and { }3 3,8T = . To compute the center of 1T , 2T  and 3T

using average of points, these centers is connected and again 

another minimal spanning tree CMST2 is constructed. 

Table 4. Dissimilarity matrix-II. 

 
Cluster-I Cluster-II Cluster-III 

Cluster-I 0.000 0.381 0.317 

Cluster-II 
 

0.000 0.611 

Cluster-III 
  

0.000 

Table 5. Canberra distance based CMST2 edges. 

S. No Edges Canberra measure 

1 (1,3) 0.317 

2 (1,2) 0.381 

The minimum edge of CMST2 is min 0.317E = and the 

maximum edge of WMST2 is max 0.381E = then to compute 

cluster separation value is 0.832. If the CS is greater than 0.8 

then we conclude the subtrees or clusters created are valid. 

Continuing this process, next to identify another longest edge 

weight from Table 3 is 0.298 connecting the data points 3 and 

8 is finding to be inconsistent one. By removing the 

inconsistent edge from the CMST1, data points partitioned 

into three sub trees or clusters 1T , 2T  , 3T and 4T namely 

{ }1 1,2,4,5,6,7,9,10,11,12,13,18T = , { }3 3T = and 

{ }4 8T = . To compute the center of 1T , 2T , 3T  and 4T using 

average of points, these centers is connected and again 

another minimal spanning tree CMST2 is constructed. 

Table 6. Dissimilarity matrix-III. 

 
Cluster-I Cluster-II Cluster-III Cluster-IV 

Cluster-I 0.000 0.381 0.508 0.267 

Cluster-II 
 

0.000 0.723 0.523 

Cluster-III 
  

0.000 0.298 

Cluster-IV    0.000 

Table 7. Canberra distance based CMST2 edges. 

S. No Edges Canberra measure 

1 (1,4) 0.267 

2 (4,3) 0.298 

3 (4,2) 0.523 

The minimum edge of CMST2 is min 0.267E = and the 

maximum edge of CMST2 is max 0.523E = then to compute 

cluster separation value is 0.510 If the CS is less than 0.8 

then we conclude the subtrees or clusters created are not 

valid. Finally CMST produces three cluster centers. Canberra 

minimal spanning tree algorithm creates three cluster centers 
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for the given data points. Then the center of the cluster and 

its convergence of standard FCM and EKFCM are 

determined under successive interactions of experiments 

using data points. The standard FCM algorithm and the 

numbers of updated centers are high under the objective 

function of Euclidean distance measures. This takes more 

iteration to converge the termination value of algorithm. With 

the new efficient objective function based kernel distance 

measure the termination value is achieved, with very less 

iteration and with much better performance in getting 

membership (Table 8) than standard FCM. Table 9 gives the 

number of iteration to achieve the results of cluster on the 

data points by standard FCM and EKFCM. It is clear from 

the final cluster, membership (Table 8), scatter diagram (Fig 

2), that our proposed EKFCM is much faster than the 

standard FCM and the method is converged fast to terminate 

condition with less run time. To test the effectiveness of 

EKFCM, the weighted minimal spanning tree based FCM is 

used as center. This is done to find out the fuzzy membership 

and appropriate number of clusters. Thus, we have concluded 

the final optimal clusters formed as 3. This algorithm has 

also reduced the number of iterations. Best result is achieved 

by this measure fuzzy partition coefficient pcV  maximum 

and validation function pV  minimum (Table 10). The 

EKFCM clustering algorithm has the following membership 

value intimacy (Table 8). 

Table 8. Final membership of three clusters of EKFCM method and object allocation. 

Co-ordinate(x, y) intensity 
   appropriate cluster 

S. No x y I(v) Mem-1 Mem-2 Mem-3 

1 1.80 2.00 0.50 0.8542 0.0026 0.1432 1 

2 2.00 2.20 0.91 0.9940 0.0022 0.0038 1 

3 2.00 1.80 0.12 0.0094 0.0002 0.9905 3 

4 2.00 3.50 0.40 0.5591 0.0057 0.4352 1 

5 8.80 3.00 0.50 0.9462 0.0092 0.0446 1 

6 9.00 3.20 0.38 0.5872 0.0259 0.3869 1 

7 9.00 2.80 0.60 0.9955 0.0015 0.0030 1 

8 9.20 3.00 0.12 0.0131 0.0021 0.9848 3 

9 7.00 2.80 0.80 0.9912 0.0050 0.0037 1 

10 12.00 3.00 0.90 0.9660 0.0316 0.0024 1 

11 12.00 4.00 0.80 0.9545 0.0412 0.0043 1 

12 11.50 3.50 0.45 0.8067 0.0536 0.1397 1 

13 12.50 3.50 0.55 0.9191 0.0457 0.0352 1 

14 21.00 10.00 0.65 0.0255 0.9738 0.0007 2 

15 21.00 11.00 0.25 0.0100 0.9753 0.0147 2 

16 20.50 10.50 0.35 0.0097 0.9849 0.0053 2 

17 21.50 10.50 0.75 0.0382 0.9614 0.0004 2 

18 2.00 4.00 0.70 0.9826 0.0035 0.0139 1 

19 19.00 20.00 0.60 0.0016 0.9983 0.0001 2 

20 11.00 12.00 0.40 0.1090 0.8430 0.0480 2 

 

 

Figure 2. Scatter diagram for CMST based FCM, final cluster three. 

Table 9. Comparison of iteration count. 

 
No. of iterations No. of clusters 

Standard FCM 16 3 

IKFCM 3 3 

CMSTFCM 2 3 

Table 10. Cluster validity function. 

 
pcV  pV  

Standard FCM 0.8372 0.2532 

IKFCM 0.8423 0.2623 

CMSTFCM 0.8705 0.1253 

6. Conclusion 

Thus, this paper has proposed a new Canberra measure 

minimal spanning tree algorithm and the efficient kernel 

induced fuzzy c-means based on Gaussian function for image 

data analyzing. The algorithm was formulated by introducing 

kernel function, Gaussian function and Lagrangian methods, 

with basic objective function of the FCM algorithm to have 

proper effective segmentation of the image data and to 

overcome the noise sensitiveness of conventional FCM 

clustering algorithm. The main contribution of this algorithm 

is to incorporate the spatial neighbourhood information into 

the standard FCM algorithm by CMST. It can be 

automatically decided in the algorithm based on the 

membership function of the center pixel and its neighbouring 
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pixels and also compares the results with standard FCM 

segmentation. It is clear from our comparison that EKFCM 

performed better than FCM. The results accuracy and 

validation functions used in measuring the efficiency in 

clustering algorithm with Gaussian. In future we will explore 

and test our proposed algorithm in various domains. 
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