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Abstract: This paper presents an efficient proportional-plus-integral (PI) current-output observer-based linear quadratic 

discrete tracker (LQDT) design methodology for the non-minimum-phase (NMP) discrete-time system with equal input and 

output number, for which the minimalized dynamic system contains the unmeasurable system state and unknown external 

matched/mismatched input disturbances. Illustrative examples are given to demonstrate the effectiveness of the proposed 

approach. 

Keywords: Optimal Linear Quadratic Tracker, State Estimator, Disturbance Estimator, Non-Minimum Phase System,  
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1. Introduction 

The unknown input observer (UIO) design methodology 

involves the state estimation for a dynamic system subject to 

unknown input excitation [1], in which it may contain internal 

uncertainties and exogenous loads that cannot be measured or 

inconvenient to measure. Several developed approaches to 

simultaneously estimate the system state and unknown input 

can be referred to [1-4] and in the literature therein. 

Nevertheless, most UIO design methodologies presented in 

the early literatures require that the transfer function from the 

unknown input to the system output is minimum-phase and of 

relative degree one. Recently, some design methodologies, 

which exempted the assumptions that the transfer function 

must be the minimum-phase (with respect to the relation 

between the unknown input to the system output, but not the 

relation between the control input to the system output) and 

unit-relative-degree constraints have been reported in [1, 3, 4] 

under some rank conditions. More precisely, in order for the 

design methodology to be feasible in [1, 3], the dimensions of 

the unknown inputs/disturbances must be no greater than the 

output dimensions. In addition, the distribution matrix of 

unknown inputs/disturbances with some pre-specified rank 

conditions has be known a priori. 

It is noticed that, in the real world, either the distribution 

matrix of unknown inputs/disturbances or the number of 

unknown inputs might be known, or both might be unknown. 

Even both are known, they might not satisfy the rank 

conditions. This implies that there can be more unknown 

inputs than both the control inputs and measured outputs. Also, 

noticed that when both the distribution matrix of unknown 

inputs/disturbances and the number of unknown inputs/ 

disturbances are unknown, it is difficult to precisely estimate 

the components of unknown inputs/disturbances. For a given 
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controllable and observable continuous-time dynamic system 

with unknown mismatched inputs/disturbances, the 

theoretical design methodology has been investigated by She 

et al. [5], and it has been reported that, for all times, the output 

of the plant with mismatched disturbances would be identical 

to the output of the plant with matched disturbances, which 

were produced via an equivalent input disturbance (EID) 

entering into the plant through the control input channels. The 

above fact is called as the (continuous-time) EID principle. 

Thus, one can use a matched disturbance model as an 

equivalent of the mismatched disturbance model. As a result, 

the control objective for this case is to estimate and feedback 

the effects produced by the EID through the input channels to 

cancel the negative effects induced by the mismatched 

disturbance. More detailed comments on improving 

disturbance-rejection performance based on an EID principle 

can be found in [5, 6]. Hence, based on the EID principle, a 

given NMP continuous-time plant with the mismatched 

non-minimum-phase disturbance model can be replaced by a 

given NMP continuous-time plant with the matched 

non-minimum-phase disturbance model. Nevertheless, neither 

the unknown input estimation nor the servo design 

methodology for the NMP plant has been fully addressed in [5, 

6]. 

Some new optimal proportional-integral-derivative (PID) 

filter-shaped PI feedback linear quadratic analog 

tracker/linear quadratic digital tracker (LQAT/LQDT) design 

methodologies for non-square NMP continuous-time and 

discrete-time transfer function matrices and their minimalized 

dynamic systems are proposed in the recent works [7] and [8], 

respectively. It is known that for the square NMP plant (with 

equal input and output number), it is difficult to find a 

non-singular square transformation matrix to ensure that the 

transformed closed-loop system becomes a minimum-phase 

(MP) one (in the sensor of ‘control zero’). As a result, the 

PID-filter shaped PI feedback LQAT/LQDT design 

methodologies for the square NMP system are left for future 

research as shown in [7, 8]. At this point, it must call the 

attention that the recently proposed approaches [7, 8] still 

work well for the square and/or non-square MP plants with 

explicitly known disturbances, but not for the plants with 

unknown disturbances. An advanced design approach of 

observer-based optimal tracking controllers for time delay 

systems with external disturbances can be referred to the 

recent work in [9]. Also, new simultaneous state and output 

disturbance estimations for a class of switched linear systems 

with unknown inputs have been presented by Yang et al. [10]. 

Some precocious disturbance estimations and disturbance 

cancellation controller design methodologies can be referred 

to [11, 12]. Nevertheless, the design methodologies for the 

NMP plant have not been addressed in [9-12]. 

In the real world, an unknown external disturbance usually 

occurs at the plant input, which would result in poor tracking 

performance. To overcome this issue, Chang [13] constructed 

the discrete-time proportional-integral observer (PIO) to 

develop a state and disturbance estimator for the discrete-time 

system with an unknown external disturbance to improve its 

tracking performance. Consequently, an advanced algorithm 

on the robust discrete-time output tracking controller design 

for NMP systems has been proposed by Chang et al. [14]. 

However, some restrictive conditions have been imposed on 

the existing design methodology in [14], namely: (i) The NMP 

plant has to be in square dimension; (ii) Only the matched 

input disturbance is considered; (iii) The variation of the 

disturbance in two consecutive sampling instants is not 

changed significantly; (iv) The model-following-based 

command generator which uses the constant input has to be 

constructed to generate the desired output; and (v) The use of 

the past output measurements to simultaneously estimate the 

system state and its equivalent input disturbance.  

In this paper, for the NMP square strictly proper 

discrete-time transfer function matrix, for which the minimalized 

dynamic system with unmeasurable system state and its 

unknown external matched/mismatched input disturbances, 

we propose a PI current output-based observer (PICO) design 

methodology to simultaneously estimate the system state and 

its equivalent input disturbance. In the proposed approach, a 

variable input signal instead of the constant in [14] is used to 

generate a drastic command input. Then, a current-output 

observer-based LQDT with a high-gain property is developed 

to have the desired tracking performance. 

This paper is organized as follows. An efficient PI 

current-output observer-based LQDT for the NMP 

discrete-time system with equal input and output number, for 

which the minimalized dynamic system with unmeasurable 

system state and unknown external matched/mismatched 

input disturbances is presented in Sec. 2. Numerical 

simulations are given in Sec. 3 to demonstrate the 

effectiveness of the proposed approach. Finally, conclusion is 

given in Sec. 4. 

2. Current-Output Observer-Based 

LQDT for NMP Discrete-Time System 

with an Unknown Disturbance 

Comparison with the results developed in [14], some 

extensions over [14] are summarized as follows: (i) The use of 

the past output measurements to estimate the system state with 

unknown matched input disturbances developed in [14] has 

been extended to the use of the current output measurements 

to estimate the system state and the EID principle for the 

unknown matched/mismatched input disturbances, so that the 

tracking performance can be rapidly improved; (ii) The 

restriction on the constant command input of reference model 

presented in [14] has been relaxed to time-varying command 

input of reference model, so that a more robust and flexible 

tracker can be achieved; (iii) The closed-loop poles of the 

observer error dynamic system presented in this paper are 

optimally assigned inside a circle with a pre-specified radius

α ( 0 1 ),α< ≤  but not just lying inside the unit circle 

( 1α = ) presented in [14], so that the transient response of the 

designed servo can be significantly improved.  

To present the discrete-time EID principle, let the dynamic 
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discrete-time NMP systems with the mismatched and matched 

input disturbances ( ) nf k ∈ℜ  and ( ) md k ∈ℜ  be 

respectively described by 

( 1) ( ) ( ) ( ),o ox k Gx k Hu k f k+ = + +            (1) 

( ) ( )oy k C x k=                    (2) 

and 

( )( 1) ( ) ( ) ( ) ,x k Gx k H u k d k+ = + +           (3) 

( ) ( ),y k C x k=                    (4) 

where ( )o
nx k ∈ℜ , ( ) nx k ∈ℜ  are the state vectors, 

( ) mu k ∈ℜ  is the control input vector, ( ) py k ∈ℜ  is the 

measured output vector, and ( ) md t ∈ℜ  are state- 

independent disturbance signals. Equations (1)-(2) present the 

dynamic system with mismatched disturbance at the input, 

while (3)-(4) present the same dynamic system with matched 

disturbance. The discrete-time EID principle states that 

outputs of the plant with mismatched disturbances ( )f k  in 

(1) and matched disturbances ( )Hd k  in (3) are identical in a 

dead-beat sense; however, the states of both models ( )ox k  

and ( )x k  are not identical if m < n .  

The discrete-time EID principle can be proved directly as 

follows. Taking the z-transformations of (1)-(4), one has  

( ) ( )
( ) ( )

1 1

1 1

( ) ( ) ( )

       = ( ) ( ),

n n

n n

z C zI G H z C zI G z

C zI G H z C zI G H z

− −

− −

= − + −

− + −

y υ

υ

f

d

    (5) 

provided that ( ) ( )1 1
( ) ( ) p

n nC zI G H z C zI G z
− −− = − ∈ℜd f  

holds, where ( )zy , ( )zu , and ( )zf  are z-transformations of 

( )y k , ( )u k , and ( )f k , respectively. Since ( ) 1

nC zI G H
−−  

is of dimension p m× , where p m≤ , the desired EID ( )zd  

exists theoretically. However, 

( ) ( )1 1
( ) ( ) n

n nzI G H z zI G z
− −− = − ∈ ℜd f  does not hold if 

,m n<  since it has more equation numbers than variable 

( ( ))d •  numbers. More precisely, a linear combination of 

pre-specified columns of ,H  i.e. 

1 2 1 2( ) [  ] [ ( ) ( ) ( )]
T

m mHd k h h h d k d k d k= ×… …  1 1( )d k h= +

2 2( )d k h +… ( )m md k h+ n∈ ℜ  (combining with only m  

pre-specified independent column vectors of dimension )n  

does not span the arbitrarily specified vector space ( )
n

f k ∈ ℜ  

which has n  independent signal components, where n

ih ∈ℜ  

and ( )id k ∈ ℜ  for 1,  2, ,  .i m= …  This complete the proof 

of the discrete-time EID principle. 

The objective of this paper is to design (i) a 

current-output-based state and disturbance observer and (ii) 

the observer-based optimal tracker, which would ensure that 

the controlled system in (1)-(4) has a desired tracking 

performance for a given arbitrary reference trajectory with 

some drastic variations. In this regards, the following 

assumptions are pre-assumed throughout the paper. 

Assumption 1 [13, 14]: The system (1)-(4) is observable 

and controllable. 

Assumption 2 [13, 14]: The sampling time sT  is selected 

sufficiently small such that the disturbance satisfies

( ) ( 1) ( ) ( )  sd k d k d k O T k∆ = + − ∈ ∀ . 

Assumption 3 [13, 14]: The condition

rank
0

n n n n m

p n p m

G I H
n p

C

× ×

× ×

−
= +

  
   
  

 is satisfied and 

0.det( )CH ≠  This condition implies that the dynamic system 

(1)-(4) has no transmission zeros lying at ‘one’, which often 

arises in the response to the robust tracking problem. 

The design procedure of the PICO-based LQDT for the 

square NMP systems with equal input and output number and 

unknown matched/mismatched input disturbances is 

described in the following. 

Lemma 1 [14]: Suppose that ( )d k  is bounded and smooth 

and Assumption 3 holds, then ( )d k  satisfies the following 

equations: 

( 1) ( ) ( ),sd k d k O T+ − ∈               (6) 

2
( 2) 2 ( 1) ( ) ( ).sd k d k d k O T+ − + + ∈          (7) 

Proof of Lemma 1: See [14, 15]. 

Then, we offer the following design steps, and each step is 

developed based on the insights of classical control theory. 

Step 1: Specify the structure of the current output-based 

state estimator and disturbance observer.  

Construct a current output-based observer, which uses 

previous and the current measurements of the output ( ( ),y k

( 1),  ( 2), ...y k y k− − ) to predict state and disturbance, without 

requiring the information on ( )f k , as follows 

[ ]2 1 1 2

( 1)ˆ ˆ ˆ( ) ( 1) ( ) ( )

                          ( 1) ( 1) ,

ou kx k G x k H L y k y k

H L p k L p k

−

+

= − + + −  

− + −
     (8) 

ˆ ˆ( ) ( ),y k Cx k=                  (9) 

1 1
ˆ( ) ( 1) ( ) ( ) ,p k p k y k y k= − + −           (10) 

2 2 1( ) ( 1) ( 1),p k p k p k= − + −           (11) 

2 1 1 2
ˆ( ) ( ) ( )d k L p k L p k= + ,           (12) 

where ˆ( )x k , ˆ( )y k  and, ˆ( )d k  are the estimations of the state 

vector ( )x k , output vector ( )y k , and disturbance ( )d k , 

respectively. The parameter matrices n p
oL

×∈ ℜ  and 

m p
iL

×∈ ℜ  for 1,  2i =  are to be designed. Physical 

interpretation of (11) associated with (10) is given by 
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ˆ( 1) ( ) [ ( ) ( 1)] [ ( ) ( )]

ˆ                          [ ( 1) ( 1)]

ˆ                      [ ( ) ( 1)] [ ( 1) ( 1)],

d k d k d k d k y k y k

y k y k

d k d k y k y k

+ − ≅ − − + −
− − − −

≅ − − + − − −
 

where 2 ( ) ( 1) ( )k d k d kp = + −  and 1 ( ) ˆ( ) ( )k y k y kp = − . 

Step 2: Construct error dynamic equations for state 

estimator and disturbance observer designs. 

i) Derive the state estimation error dynamic equations. 

According to Lemma 1, one can obtain  

( ) ( ) 2
( ) ( 1) ( ) ( ),o o sx k G L CG x k H L CH d k O T+= − − + − ɶɶ ɶ  (13) 

and derive ( )y kɶ  as 

( ){
( ) }

( 1)

            ( 1)

         ,

ˆ( ) ( ) ( )

       ( 1) ( 1)

ˆˆ( 1) ( 1)

( 1) ( 1)

u k

u k

y k y k y k

C Gx k H d k

Gx k H d k

C Gx k Hd k

 − 

 − −
  

 =
 

= −

≅ − + + −

− + + −

− + −

ɶ

ɶɶ

    (14) 

where ˆ( ) ( ) ( ),d k d k d k= −ɶ  ˆ( ) ( ) ( )y k y k y k= −ɶ  and 

ˆ( ) ( ) ( )x k x k x k= −ɶ  are disturbance estimation error, output 

estimation error, and state estimation error, respectively. 

ii) Derive the disturbance estimation error dynamic 

equations.  

Define two disturbance estimation error variables as 

1 1 1( 1) ( ) [ ( 1) ( 1)],w k d k d k L p k− = − − + −      (15) 

2

2 1 1 2( 1) ( 1)],

ˆ( 1) ( 1) ( 1)

             ( 1) [L p k L p k

w k d k d k

d k − + −
− = − − −

= − −
    (16) 

where 1 2( ),  ( ) mw k w k ∈ℜ . From (14)-(16) and (8)-(12), the 

dynamic equations of 1( )w k  and 2 ( )w k  can be derived as 

[ ]
1

1 1

1 1

1

1 2 1

           =

( ) ( 1) ( ) ( )

          = ( 1) ( ) ( ) ( 1)

( 1) 2 ( ) ( 1) ( 1)

                         ,( 1) ( 1)

L

w k d k d k L p k

d k d k y k p k

d k d k d k L CGx k

L CHw k w k

+

= + − −
+ − − −
+ − + − − −

− +− −

ɶ

ɶ
    (17) 

[ ] [ ]
2 1 2 2 1

1 1 2 2 1

1 2 2

1 2 2 2

( ) ( )

           ( 1) ( 1) ( 1) ( )

( )

          ( ) ( 1)

( ) ( )

= ( )

          = ( 1) ( 1)

( 1) ( 1) .m

L p k L p k

L p k p k L p k y k

L y k

I L CH L CGx k

w k d k

d k

w k w k

w k w k

− − + − − +

+
= −

= − −
−

− − −
− + − − −

ɶ

ɶ

ɶ

   (18) 

iii) Construct the integrated state and disturbance 

estimation error dynamic equations.  

From (13)-(14) and (17)-(18), one has 

2

1 1

2 2 1

( 1)

0 ( )

( ) ( 1) 2 ( ) ( 1)

0

o n m o s

m

m m m

w k

G L CG H L CH O T

w k L CG I L CH d k d k d k

L CG I I L CH

×

×

− +

− −

= − − + − + −

− −

  
  
  
     

2
       ( ) ( 1) ,( )sG LC w k O T− − +=              (19) 

,( ) ( )y k Cw k=ɶ                  (20) 

where 2
1 2( ) ( )  ( )  ( ) ,

T
T T T n mw k x k w k w k + = ∈ ℜ

 
ɶ

1 2 ,
T

T T T
oL L L L =

 
  0  p mC CG CH× =   , and 

0

0 0

0

n m

m n m m m

m n m m

G H

G I

I I

×

× ×

×

 
 =  
  

. 

Step 3: Perform the optimal linear quadratic observer 

design. 

To have a desired observer gain L  in terms of 

1 2( ,  ,  )oL L L  for the current output-based observer in (8)-(12) 

such that the closed-loop observer error dynamic system poles 

are optimally assigned inside a circle with a pre-specified 

radius α  ( 0 1 ),α< ≤ let us perform the following 

transformations ,G G α=ɶ  C C α=ɶ , and 0 1α< ≤ , which 

yield to a transformed equation as 

2

2

1
( ) ( ) ( 1) ( )

        ( ) ( 1) ( ).

s

s

t t

t

w k G LC w k O T

G LC w k O T

α
= − − +

= − − +ɶ ɶ

         (21) 

Then, solving the following steady-state algebraic Riccati 

equation, 

1
( )( ) ( ) ,

T T T T T
o oP GPG GPC R CPC GPC Q

−= − + +ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ     (22) 

yields the desired observer gain as 

1
( )( ) ,

T T
oL GPC R CPC

−= +ɶ ɶ ɶ ɶ             (23) 

where the weighting matrices ( 2 ) ( 2 )n m n m
oQ

+ × +∈ ℜ  and 

p p

oR
×∈ ℜ  are selected with a high-gain property. Hence, the 

eigenvalues of ( )G LC−ɶ ɶ  are guaranteed to be inside the unit 

circle. The obtained observer gain L  in (23) is then applied to 

the original observer system in (8)-(12), which results in the 

closed-loop characteristic equation 

( 2 )

( 2 )

  det ( )

det ( ) 0.

n m

n m

zI G LC

zI G LC α

+

+

− −

= − − × =

  

  
ɶ ɶ

        (24) 

The equality in (24) implies that the eigenvalues of 

( )G LC−  are equal to those of ( )G LC−ɶ ɶ  multiplied by the 

factor α . Clearly, it is desirable to choose a small value of α , 

which would speed up the convergence of the estimation 

errors [16]. 

Step 4: Specify the structure of the 

proportional-plus-integral (PI) model-following servo control 

design. 

i) Realize the command generator tracker.  

To proceed the PICO-based tracker design, let the reference 
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output ( )
p

my k ∈ ℜ  be generated by the following 

square/non-square minimum phase reference model 

( 1) ( ) ( ) ( )

              ( ) ( ),

m m m m m

m m m m

x k G I x k H u k

G x k H u k

κ+ = + +

= +
      (25) 

†( ) ( ),   (0) (0),m m m m m yy k C x k x C= =      (26) 

so that ( ) ( )m my k r k→  and expect the controlled system 

output ( ) ( ) ( )m my k y k r k→ →  as well for any command 

input ( )mr k , in which 

( ) ( ) ( 1),m m m m mu k K x k E r k= − + +        (27) 

( ) ,T T
m m m m m m m mK R H P H H P G= +        (28) 

( ) 1
1

( )  ( )  ,
T T T T

m m m m m m m m m m m
E R H P H H I G H K C Qκ

−−= + − −     (29) 

where n m l pκ≥ ≥ ≥ ≥ . In addition, ( )mx k κ∈ℜ  and 

( ) l
mu k ∈ℜ  are the state and input vectors of the reference 

model, respectively. Furthermore, the weighting matrices 
p p

mQ
×∈ ℜ  and 

l l

mR
×∈ ℜ  are selected with a high-gain 

property, and mP κ κ×∈ ℜ  is obtained via solving the 

following Riccati equation for servo control design [8, 16] 

( ) 1
T T T T
m m m m m m m m m m m m m mG P G P G P H H P H R H P G

−
−− +

 

0.T
m z mC Q C+ =                 (30) 

ii) Perform the proportional model-following servo control 

design. 

If Assumption 3 holds, system (1)-(4) has no transmission 

zeros lying at ‘one’, then one can obtain  

1

( ) 1 ( ) 1( ) ( )

( ) ( ) ( ) 1( ) ( )

0 ( )

0( ) ( )

( )

0 ( )

nn

p mn p n mn p n m

n m

p m mn m l ln p n m

G zI H X z

CY z U z

G zI H X z

C U zκ κ

×

×+ × + ×+ × +

× + × + + ×+ × +

−    
=     

    

−    
=     

    

F V

W Z

   (31) 

(representing ( )X z  and ( )U z  as the weighted feedbacks 

of ( )
m

X z  and ( )
m

X z ) 

1

( ) 1( ) ( )

0
=

( )

n n p

p p p m pn p p
I Y z

κ κ

κ κκ

× × ×

× × + ×+ × +

   
   

  

0

0

F
 

( ) 1( ) ( ) ( ) ( )

( ) ( )

0 ( )

n n p m m m

p p p m p l m ln p p p l

G I zI H X z

I C U z

κ κ κ

κ κκ κ κ

× ×

× × × + ×+ × + + × +

+ −
=
     
     

    

0

0

F

 (32) 

(matching the dimension of the Rosenbrock system matrix 

of the pre-assigned MP system in (25)-(26) with the one of the 

controlled NMP system in (1)-(4), without alternating 

transmission zeros of the pre-assigned MP system in (25)-(26) 

subject to n κ≥ ) 

( )
= ;   1,

0 ( )

m m m

m p l m

G H X z
z

C U z×

   
=   

  

F F
     (33) 

(an intermediary MP model to be matched at the steady 

state) 

where , , , 
n n l mκ κ× × ×∈ ℜ ∈ ℜ ∈ ℜ   V  WF  and m l×∈ ℜZ  are 

undetermined parameter matrices [14]. Since Assumption 3 

holds, from (31)-(32) it can be observed that 

1

11 12

21 22

,
0 00

m m m mn

m m

G H G HG I H

C CC

−− Ω Ω
= =

Ω Ω
        
        

       

F F F FF V

W Z
 (34) 

where 
11 12 21,  ,  , 

n n n p p n× × ×Ω ∈ ℜ Ω ∈ ℜ Ω ∈ ℜ  and 

22
p p×Ω ∈ℜ . Then, by given the known matrices ,mG  mC , 

11 ,Ω  and 12 ,Ω we can obtain the solution for the matrix F  

as the solution of Lyapunov equation 
1 1

11 12m m mG C G− −− Ω = ΩF F  [17]. Hence, matrices 

, , ,   F V W  and Z  can be obtained.  

iii) Derive error dynamic equations for the PI 

model-following servo control design. 

Based on the pre-designed parameters , , ,   F V W  and Z  

presented in Step ii), one can then derive error dynamic 

equations for the PI model-following servo control design as 

follows. Let  

( ) ( ) [ ( ) ( )],x m me k x k x k u k= − +F V         (35) 

.( ) ( ) ( )y me k y k y k= −            (36) 

Then, substituting (1)-(4) and (25)-(26) into (35) yields 

2

( 1) ( 1) [ ( 1) ( 1)]

             ( ) ( ) ( ) ( ) ( )

                 ( 1) ( ) ( )

             ( ) ( ) ( ) ( ) ( )

                [ ( )

x m m

m m m

m s

m m m m

e k x k x k u k

Gx k Hu k G I x k Hu k

u k Hd k O T

G x k x k u k G x k G u k

H u k

κ

+ = + − + + +

= + − + +  

− + + +

= − − + +  

+ −

F V

F

V

F V F V

2

( ) ( )]

                [ ( ) ( )] ( )

                ( ) ( ) ( 1) ( )

                ( ) ( ) ( )

             = ( ) [ ( ) ( ) ( )]

               

m m

m m m

m m m m m m

m s

x m m

x k u k

H x k u k x k

G x k H u k u k u k

u k Hd k O T

Ge k H u k x k u k

−
− + −

− − − + −  

− + +
+ − −

W Z

W Z F

F F V

V

W Z

( ) ( )

               + ( ) ( )

n m m

n m m

G I H G x k

G I H H u k

+ − + −  

− + −  

F W F

V Z F

2
              ( 1) ( ) ( ) ( ).m m su k u k Hd k O T− + − + +  V     (37) 

Since the first row components of (34) show 

( )n mG I H G− =+F W F  and ( )n mG I H H− =+V Z F , 

one has 



19 Jason Sheng-Hong Tsai et al.:  An Efficient Robust Servo Design for Non-Minimum Phase Discrete-Time  

Systems with Unknown Matched/Mismatched Input Disturbances 

2

( 1) ( ) [ ( ) ( ) ( ) ( )]

                 ( 1) ( ) ( ).

x x m m

m m s

e k Ge k H u k x k u k d k

u k u k O T

+ = + − − +

− + − +  

W Z

V
  (38) 

Also,  

( )
( ) ( ) ( )

        ( ) ( ) ( )

y m m

m m

e k Cx k C x k

C x k x k u k

= −

 = − + F V
 

.( )xCe k=                  (39) 

Now, define the integral of ( ) ( )my k y k−   as another state 

variable 

1
( ) ( ) ( ) .

1
mz Y z Y z

z
η = −  −

          (40) 

By taking the inverse z-transform, from (40) one has 

( 1) ( ) ( ) ( ) ( ) ( ).m xk k y k y k k Ce kη η η+ = + − = +      (41) 

Error dynamic equations for the PI model-following servo 

control design can then be formulated as 

2

( 1) ( ) [ ( ) ( ) ( ) ( )]

              ( 1) ( ) ( ),

z m m

m m s

zz k G z k H u k x k u k d k

u k u k O T

+ = + − − +

− + − +  

W Z

V
  (42) 

,( )( )y zz ke k C=                 (43) 

where 
( )

( ) ,
( )

x n pe k
z k

kη
+ 

= ∈ℜ 
 

0
,  ,

0
z z

p

G H
G H

C I
=
   

=   
  

 

and [ ]0zC C= . 

Step 5: Perform the PICO-based optimal LQDT design. 

By neglecting the last two terms in the right hand side of 

(42), replacing the unknown ( )d k  by the estimated ˆ( )d k , 

replacing the unmeasurable ( )x k  by the estimated ˆ( )x k , and 

performing the transformations ,z
zG

G
β=ɶ z

zH
H

β=ɶ , in 

which 0 1β< ≤ , the optimal control law is given by 

1 2
ˆˆ( ) ( ) ( ) ( ) ( ) ( ),x m mu k K e k K k d k x k u kη= − − − + +W Z  

(44) 

where 

ˆ ˆ( ) ( ) ( ) ( ),x m me k x k x k u k= − −F V         (45) 

1
1 2 ( ) ,T T

m n m p z z z z z z zK K K H P H R H P G−
× × = = + 

ɶɶ ɶ ɶ   (46) 

in which zP  is the positive definite solution of the following 

algebraic Riccati equation 

( ) 1
.0

T T T T

z z z z z z z z z z z z z z zG P G P G P H H P H R H P G Q
−

−− + + =ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ  (47) 

Finally, the structure of the PICO-based LQDT for the 

square system with an unknown external disturbance is shown 

in Figure 1. 

 

Figure 1. PICO-based optimal LQDT for the discrete-time system with an unknown external disturbance. 

Remark 1: If the pair ( , )G C  is observable, the matrix 

( )G LC−  can be stabilized. That is, an observer gain L  can 

be found such that all eigenvalues of the matrix ( )G LC−  are 

lying inside the unit circle. As for the observability condition 

for the pair ( , )G C  is concerned, we may state it in Lemma 2. 

Lemma 2: Under Assumptions 1 to 3, the pair ( , )G C  is 

observable and the estimation errors are constrained in the 

small region of 
2

( )sO T .  

Proof of Lemma 2: By Popov-Belevitch-Hautus rank test 

[13], the pair ( , )G C  is observable if and only if the matrix 
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2n mI G

C

λ + −
 
 

 has full column rank (i.e.,

2
rank 2

n mI G
n m

C

λ + −
= +

  
  
  

) for all λ ∈C . Hence, it can be 

observed that  

2

0

0 ( 1) 0
rank rank

0 ( 1)

               0          

rank 2 ,      1

                                  

n m

m n m m m

m n m m

p m

n

n m

n

I G H

II G

I IC

CG CH

I G
m

CG

λ
λλ

λ

λ
λ

×

× ×

×

×

+

− −

−−
=

− −

−
+ ≠

=

  
  

     
          

    

  
  
  

  .

rank ,     1
nG I H

m
CG CH

λ
−

+ =






  
     

    (48) 

From (48), one can conclude that the pair ( , )G C  is 

observable if Assumption 3 holds. In addition, the estimation 

errors will be constrained in the small region of 
2

( )sO T , since 

the sampling time sT  is assumed to be sufficiently small. 

3. Illustrative Examples 

In this section, three numerical examples are given to 

illustrate the proposed approach. 

Example 1: Consider the practical discrete-time 

non-minimum-phase MIMO flight control model considered 

in [16] with unknown external disturbances in (3), where  

     

0.000    0.000

      

G

  0.9805   0.0005    0.0007   − 0.0000   − 0.0494   − 0.0000   0.0000

  0   0.9948     0   − 0.1141      0.0000      0.0000     0.0000

  0.0000   0.0011    0.9988   − 0.0001    0.02

=

  

.0000   0.000   0.000

     

   

83    0.0000    0.0000

  0     0.0050     0    0.9931      0      0.0000    0.0000

  0.0001   − 0.0000   − 0.0050    0.0000    0.9989    0.0002    0.0000

  0.0050    0.0000    0

 

  

.0000    0.000 0.000  

,

.0000   − 0.0000   − 0.0001    1.0000     0.0000

  0    0.0050     0   − 0.0003      0      0.0000    1.0000

 
 
 
 
 
 
 
 
 
    

 

H

−0.2269   − 0.0378   − 0.0000

 0.0000      0.0000   − 0.1413

−0.0046   − 0.0325   − 0.0001

=   0.0000      0.0000   − 0.0012

  0.0000      0.0001      0.0000

−0.0006   − 0.0001   − 0.0000

  0.0000      0.0000   − 0

0     0     0     0     1     0     0

, 0     0     0     0     0     1     0 ,

0     0     0     0     0     0     1

C =

.0004

 
 
 
   
   
   
    
 
 
    

with the (unstable) open-loop system poles 

1,  1,  0.9939 0.0238 ,  0.9807,  0.9988 0.0120{ }i i± ±  and the 

(unstable) ‘control zeros’ {−1.1600, − 0.9936, − 0.9981, 0.9941}  

[7, 8]. The initial conditions and sampling time are given 

[ ] [ ]ˆ(0) 0.1 0 0 0.1 0 0 0 , (0) 0  0  0  0  0  0  0 ,
T T

x x= =  

and 0.005 s,sT =  respectively. The pole-zero distribution of 

this open-loop system, i.e. seven poles are located at or near 1, 

one unstable zero, and one zero (0.9941) are located near 1, 

makes the robust servo control design more challenging (see 

Assumption 3). Assume the system state is not measurable. 

The high-frequency unknown input disturbances are 

generated by 

1.2 cos(30 ) sin(10 ) 0.8 cos(5 ) 0.6 sin(10 / 3 ) 0.4 cos(2.5 )

( ) 1.2 cos(15 ) sin(5 ) 0.8 cos(2.5 ) 0.6 sin(5 / 3 ) 0.4 cos(1.25 )

0.5 cos(10 ) sin(3 ) 0.7 cos(15 ) 0.3sin(10 / 3 ) 0.2 cos(5 )

k k k k k

d k k k k k k

k k k k k

π π π π π

π π π π π

π π π π π

− − − − −

= − − − − −

− − − − −






.





   

The design procedure is given as follows. 

Step 1: Perform the optimal linear quadratic observer 

design. 

Choose an appropriate weighting matrix pair 
8

3 3{ ,  } {10 ,  }o oQ R I I=  and the radius 0.07α =  to have the 

observer gain  

3
10

    

  

L =

−0.0001   − 0.0004   − 0.3644   − 9.1446    0.0010    0.0000    0.0000

  0.3481    0.0000   − 0.0033     0.0781     0.0000    0.0010    0.0000

  0.0001    0.3487   − 0.0000   − 2.0647     0.0000  

×

T
−1.0323     6.1973   − 0.0469 −2.6374   − 2.1973   − 0.0045

−0.8611   − 0.0428   − 0.0003  15.8270      0.0906      0.0248

  0.0000    0.0010 −0.0027     0.0141    − 1.4033   7.3791     − 0.0640   − 1.8352

 
 
 
 

,

 

which results in the closed-loop eigenvalues of the observer 

error-dynamics system at  

0.0038 0.0003i, ( ) {0.9940, 0.0068 0.0018i, G LCσ ±− = ±
 0.0048 0.0010i, 0.0055 0.0005i, 0.0056, 0 , 0 ,0 .}± ±  The 

performance of the proposed discrete-time current 

output-based estimator is depicted in Figure 2. It shows that 

the system state ( ) x k and unknown external disturbance

 ( )d k  are well estimated, which implies ˆ( ) ( )y t y t→  and 

ˆ( ) ( )d t d t→  also. 

 

(a) 

 
(b) 
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(c) 

 

(d) 

Figure 2. The closed-loop responses of the PI observer for 1~ 3=i : (a) 
ˆ( ) vs. ( )i iy k y k , (b) estimation errors of the system state; ɶx , (c) 
ˆ( ) vs. ( )i id k d k  in global scope; (d) ˆ( ) vs. ( )i id k d k  in local scope: up to 2 

s. 

Step 2: Construct the command reference model and 

solutions of undetermined parameter matrices. 

The reference model is given by 

               2   0    0

    00  0

        

                 

( 1) ( )m mx k x k

0.01     0         0       0

  0    0.07    − 0.0320      0

  0    0.0313         0        0

  0      0         0    0.05

 
 
 + = +
 
 
 

    1     0

 0    0     0

 0    0    2

         

        

               

( ),

( )

m

m m

u k

y k C

1.3847         0         0         0

   0   −1.3499    0.0432      0

   0         0         0    1.5175

 
 
 
 
 
 


= = 


( ),mx k





   

with the eigenvalues 0.0200, 0.0500, 0.0100, 0.0500{ }  and a 

finite control zero 
3

10
−

, so that ( ) ( ),m my k r k→  for the 

desired command input ,1 ,2 ,3( ) ( )  ( ) ( )
T

m m m mr k r k r k r k =   , 

where 

,1

,2

,3

0.5sin(0.2 ) 0.5, 0 4
( ) ,

cos(0.2 ) 0.1,   4 10

cos(0.2 ) 0.1,     0 4
( ) ,

0.5sin(0.3 ) 0.5, 4 10

0.5sin(0.2 ) 0.5, 0 1.5
( ) ,

cos(0.2 ) 0.1, 1.5 10

m

m

m

k k
r k

k k

k k
r k

k k

k k
r k

k k

π
π
π

π
π

π

+ ≤ <
=  + ≤ <

+ ≤ <
= − + ≤ <

+ ≤ <
= − + ≤ <  

05    

( )  690 32 ( )

        025

  

            

m mu k x k

0.0 0  − 0.0000   − 0.0000    0.0000 
 = − 0.0000    0.0    − 0.0 0    − 0.0000 
 0.0000   0.0000   0.0000    0. 0 

  0.3611    0.0000   − 0.0000
+ −0.0000   − 0.7408   ( 1),

  

mr k

 
     0.0000 + 
 −0.0000   − 0.0000    0.3295   

for the weighting matrices 5
310mQ I=  and 3.mR I=  Then, 

by given the known matrices ,mG  mC , 11,Ω  and 12 Ω  in 

(34), we calculate the matrices , , ,   F V W  and Z  as  

    

                  

     

                 

−0.0409  470.7045   15.1612   0.0445
     0         0         0 − 549.6157
506.0737   35.5533    2.7705  0.1016
     0         0         0   −1.7388
1.3847    

=F

                 

                     

                           

 
 
 
 
  , 
      0        0         0
 
    0   −1.349  0.0432   0 
      0         0    0  1.5175 

 

3

  

         

       

        

 

0.0001   − 0.5061   − 0.0001
      0         0       1.1571
−1.0229   − 0.0383   − 0.0002

10 ×       0            0       0.0037
      0            0           0
      0            

=V

       

       

,

 
 
 
 
 
 
 
 

0           0 
       0            0            0 

 

 

4

4

        

 

−0.2626    0.1759    0.0115     0.0001 
 10 ×   1.5755    0.0764    0.0104   − 0.0007 , 
      0         0            0      − 0.3674 

  0.5304   − 0.1894   − 0.0001
 10 × −3.1825   − 0.0824   

=

=

W

Z .

             

 
  0.0015 
       0         0   0.7734 

 

Step 3: Realize the PICO-based optimal LQDT design. 

Realize the optimal control law  

1 2
ˆˆ( ) ( ) ( ) ( ) ( ) ( ),x m mu k K e k K k d k x k u kη= − − − + +W Z  

for the appropriate weighting matrix pair 
5

10 3{ ,   } { 10 ,   }z zQ R I I=  and the radius 1β = , where 

from (22) the PI state-feedback is 

      

        

 

K

−4.6632    0.0017     5.5094   − 0.0000  − 106.8625   − 90.6368     − 0.0371

=   0.7654   − 0.0168  − 33.0510     0.0000     638.2899      2.3725       0.3658

  0.0000   − 7.3857   − 0.0000      

  .

       

−5.0437   − 4.2270   − 0.0017

29.9360     0.2138     0.0169

0.7899        0.0010      0.0000  − 145.0735   0.0001      0.0000   − 6.7310

 
 
 
   

The eigenvalues of the closed-loop error-dynamics system 

matrix 1[ 0 ]

0

z z z zG H K H K H

G LC

−

−
 
 
 

 are  
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4 4{0.1849 10 , 0.4980 10 ,  0.0010,  0.9497 0.0478 ,  i− −× × ±  

0.9503 0.0472 ,  0.9499 0.0474 ,  0.994,  0.9940,i i± ±
0.0068 0.0018 ,  0.0038 0.0003 ,  0.0055 0.0005 ,  i i i± ± ±  

0.0056,  0,  0,  0}.  

Since ( )z zG H Kσ − = 4 4
{0.1849 10 ,  0.4980 10 ,  0.0010,  

− −× ×  

0.9497 0.0478 , 0.9503 0.0472 ,  0.9499 0.0474 , 0.994}i i i± ± ± and 

  0.9940, 0.0068 0.0018 ,  0.0038 0.0003 ,( ) { i iG LCσ ± ±− =
,0.0055 0.0005 ,  0.0056,  0,  0,  0}i±  it follows that the 

separation principle is valid and the stability is guaranteed. 

The tracking response and control input of the closed-loop 

system are shown in Figure 3, although the system of interest 

is NMP and under disturbances, the system output ( )y k  well 

tracks the reference trajectory ( )my k .  

 

(a) 

 

(b) 

Figure 3. The closed-loop responses of the system with unknown matched 

disturbances for 1~ 3=i : (a) tracking response ( ) vs. ( ) iy k y km i , (b) 

control input ( )iu k .  

In Figure 4, we compare the estimation and tracking 

performances of two observers obtained by the proposed 

approach and by Chang et al. method in [14], where the 

closed-loop eigenvalues of the observer error-dynamics 

system in [14] are 

, ,( ) 0.9444 0.0857 0.9542 0.0755{− = ± ±ChG L C i iσ  

5 50.9723 0.0453 ,  0.8998,  0.9475,  0.9168,  0.9941,  10  ,  10 ,i − −±  

5 10 }−
for the appropriate weighting matrix pair 

5
13 3{ ,   } { 10 ,   }o oQ R I I= . The comparison shows that our 

proposed method obviously outperforms that in [14].  

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

Figure 4. Comparison between [14] (denoted by the subscript Changetal.) 

and the proposed method with matched disturbances for 1~ 3=i :(a) 

.  vs. ɶChangetalx  ,ɶProposedx  (b) 2 2 .ˆ( ) vs. ( )Chngetaly k y k and 

2 ˆ ( )Proposedy k  (shown by parts: up to 1.5 s), (c)  .
ˆ( ) vs. ( )i i Chngetald k d k  

and  
ˆ ( ),i Proposedd k  (d)  .  

ˆ ˆ vs. ,− −i i Changetal i i Proposedd d d d  (e) 

tracking responses  2 ( ) vs.my k 2 . ( )Chngetaly k and 2 ( )Proposedy k  

(shown by parts). 

Example 2: Consider the same open-loop system given in 

Example 1 with the mismatched disturbance ( ) nf k ∈ℜ , 

st kT= , 0.005 ssT =  as follows 

0.2

sin(6 ) 0.4cos(2.5 )

0.2cos(5 )

( ) ,0.3sin(7 )

0.1cos(5 ) 0.2cos(6.5 )

0.5cos(7.5 )

sin(5 )

k

k

f k k

k k

k

k

π π
π
π

π π
π

π

 
 − 
 
 =  
 −
 
 
 
 

 

where ( ) nf k ∈ℜ  has more unknown inputs than the control 

inputs and measured outputs and the distribution matrix of 

unknown inputs ( D ) is unknown. Then, apply the proposed 

approach to the system of interest. The tracking responses and 

control inputs of the closed-loop system are shown in Figure 5.  

Figure 5 demonstrates that although the system has not only 

unknown mismatched disturbances but also an unstable zero, 

parts of the system output ( )y k  well track the corresponding 

command inputs of ( )my k . However, for the third 

component, there is still room for improvement. Besides, the 

comparisons on the estimation performances and tracking 

responses of two observers depicted in Figure 6 show that our 

proposed method obviously outperforms that in [14].  

 

(a) 

 

(b) 

Figure 5. The closed-loop responses of the system with unknown mismatched 

disturbances for 1~ 3=i : (a) tracking responses ( ) vs. ( ) iy k y km i , (b) 

control inputs ( )iu k . 
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(b) 

Figure 6. Comparison between [14] and the proposed method with 

mismatched disturbances: (a) 2 2 .ˆ( ) vs. ( )Changetaly k y k and 

2 ˆ ( )Proposedy k  (b) tracking responses  2 ( ) vs.my k 2 . ( )Changetaly k  and 

2 ( )Proposedy k  (shown by parts). 

Example 3: To show the unexpected situation appeared in 

Step 1 of Example 1 (as well as Example 2), in which one of 

the closed-loop eigenvalues of the observer error-dynamics 

system ( )G LCσ − , i.e. 0.9940 , is not optimally assigned 

inside a circle with a pre-specified radius 0.07α =  due to the 

characteristic of the challenging system given in [16], let us 

consider the non-minimum-phase MIMO system with 

unknown external disturbances in (3), where  

0.0562 0     0   0 1     0     0

0   0.5882  0.2809 0 0    
,  

0  0.1463   0.1201 0

0  0     0   0.7640

G H

                             
            −         = =
                       
                                

 2     0
,

0     0     0

0     0     1

     

  ,

        

C

 
 
 
 
 
 

−0.5583          0          0           0 
 =        0    − 0.1557    1.4949         0 
        0          0          0     − 0.570 

 

in which the open-loop system poles are 0.1,  0.1, 0.3, 0.65{ }  

and the ‘control zeros’ are 1 2 3 4{z ,  ,  ,  }z z z = 

.
−5 −6 −6{1.5245, 1.1756×10 , 3.7786×10 ,0.9021×10 } This example 

relaxes the challenging condition that appeared in Example 1, 

namely, one of the open-loop zero 0.9941 is located near 1. 

Notice that feedback control does not affect the distribution of 

open-loop zeros.  

The initial conditions and sampling time are 

,ˆ(0) 0.1 0 0 0.1 , (0) 0  0  0  0 
T T

x x      = =  and  

0.0025 s,sT =  respectively. Assume the system state is not 

measurable. The high-frequency unknown input disturbances 

are generated by 

1.2 cos(30 ) sin(10 ) 0.8 cos(5 ) 0.6 sin(10 / 3 ) 0.4 cos(2.5 )

( ) 1.2 cos(15 ) sin(5 ) 0.8 cos(2.5 ) 0.6 sin(5 / 3 ) 0.4 cos(1.25 )

0.5 cos(10 ) sin(3 ) 0.7 cos(15 ) 0.3sin(10 / 3 ) 0.2 cos(5 )

k k k k k

d k k k k k k

k k k k k

π π π π π

π π π π π

π π π π π

− − − − −

= − − − − −

− − − − −






.





 

 

For comparison, we apply the traditional optimal LQT 

integrated with the linear quadratic analog observer to the 

system to have ˆ( ) ( ) ( 1),d d d du k K x k E r k= − + +  for 5
310cQ I=  

and 3.cR I=  The resulting closed-loop eigenvalues are 

( )  }0.6560
d

G HKσ −5 −5 −4,− = { →0.1804×10 , 0.7557×10 , 0.2351×10

1 2 3 4{1 , , , }.z z z z  The observer gain oL  is obtained based 

on the optimal linear quadratic regulator for 
6

410oQ I=  and 

3.oR I=  Simulation result is given in Figure 7, which 

demonstrates a poor tracking performance due to the nature of 

a NMP system, and it cannot be improved just by the 

traditional state-feedback/output feedback control.  

 

Figure 7. Tracking response of the traditional optimal state-estimate LQT 

controlled NMP system: 2 ( )my k  vs. 2 ( )Tranditionaly k  (shown by parts). 

To overcome this difficulty, the design procedure is 

demonstrated as follows. 

Step 1: Perform the optimal linear quadratic observer 

design. 

Choose an appropriate weighting matrix pair 
8

3 3{ ,  } {10 ,  }o oQ R I I=  and the radius 0.07α =  to have the 

observer gain L , which results in closed-loop eigenvalues of 

the observer error-dynamics system 

( )  {0.0021  0.0012 ,  0.0054  0.0015 ,  G LC i iσ − = ±  ±   

7 8 9
0.0048  0.0004 ,  0.0043,  0.3144 10 ,  0.2794 10 , 0.2084 10 }.i

− − −±   − × ×  ×
 All above-mentioned open-loop eigenvalues are optimally 

assigned inside a circle with a pre-specified radius 0.07α = . 

The performance of the proposed discrete-time current 

output-based estimator is depicted in Figure 8. It shows that 

the system state ( ) x k and unknown external disturbance

 ( )d k  are well estimated, which implies ˆ( ) ( )y t y t→  and 

ˆ( ) ( )d t d t→  also. 
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(b) 

 

(c) 

 

(d) 

Figure 8. The closed-loop responses of the PI observer for 1~ 3=i : (a) 

ˆ( ) vs. ( )i iy k y k , (b) estimation errors of the system state; ɶx , (c) 
ˆ( ) vs. ( )i id k d k  in global scope; (d) ˆ( ) vs. ( )i id k d k  in local scope: up to 2 

s.  

Step 2: Construct the command reference model and 

solutions of undetermined parameter matrices. 

The reference model is given in Example 2, where 

05    

( )  690 32 ( )

        025

  

            

m mu k x k

0.0 0  − 0.0000   − 0.0000    0.0000 
 = − 0.0000    0.0    − 0.0 0    − 0.0000 
 0.0000   0.0000   0.0000    0. 0 

  0.3611    0.0000   − 0.0000
+ −0.0000   − 0.7408   ( 1),

  

mr k

 
     0.0000 + 
 −0.0000   − 0.0000    0.3295   

for weighting matrices 5
310mQ I=  and 3.mR I=  Then, by 

given the known matrices ,mG  mC , 11,Ω  and 12 Ω  in (17), 

we calculate the matrices , , ,F V   W   and Z . 

Step 3: Realize the PICO-based optimal LQDT design. 

Realize the optimal control law  

1 2
ˆˆ( ) ( ) ( ) ( ) ( ) ( )x m mu k K e k K k d k x k u kη= − − − + +W Z  in 

(44) for the appropriate weighting matrix pair 
6

7 3{ ,   } { 10 ,   }z zQ R I I=  and the selected radius 

0.15.β =  The eigenvalues of the closed-loop error-dynamics 

system matrix 
1[ 0 ]

0

z z z zG H K H K H

G LC

−

−
 
 
 

 are  

7
0.1719 0.1265  0.5233 ,  0.0171,  {   ,    ,   − −8 −8× 10 × 10 × 10

 

0.0212 0.0094 ,  0.0169,  0.0021  0.0012 , 0.0054 0.0015 ,     i i i± ± ±
8 7 9

10 10 100.0048 0.0004 ,  0.0043,  0.2794 ,  0.3144 ,  0.2084 }.i
− − −× ×± − ×

Since  7
( ) 0.1719 0.1265 0.5233 ,  { , ,  z zG H Kσ − −8 −8− = ×10 ×10 ×10  

0.0171,  0.0212 0.0094 ,  0.0169}i±  and ( )G LCσ − =  

0.0021 0.0012 ,  0.0054 0.0015 ,  0.0048 0.0004 ,  0.0043,{ i i i± ± ±
8 7 9

10 100.2794 ,  0.3144 ,  0.2084 10 }− − −× ×− × , it follows that 

the separation principle is valid and the stability is guaranteed. 

The tracking response and control input of the closed-loop 

system are shown in Figure 9, which demonstrate that 

although the system is in the presence of disturbance and has 

an unstable zero, the system output ( )y k  well tracks the 

reference trajectory ( )my k .  
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(b) 

Figure 9. The closed-loop responses of the system with unknown matched 

disturbances for 1~ 3=i : a. tracking response ( ) vs. ( ) iy k y km i , (b) 

control input ( )iu k . 

We compare the estimation performances between the 

proposed approach and that in Chang et al. method [14], 

where the closed-loop eigenvalues of the observer 

error-dynamics system in [14] are 

,( ) {0.3780 0.1877 ,  0.6126 0.1876ChG L C i iσ − = ± ±
 

4 5 60.3780 0.1877 ,  0.6107,  0.2351 10 ,0.18041 10 ,  0.8688 10 }i − − −± × × ×
 for the appropriate weighting matrix pair 

5
10 3{ ,   } { 10 ,   }o oQ R I I= . Comparison on the estimation 

performances and tracking responses of these two observers 

depicted in Figure 10 reveals that our proposed method 

obviously outperforms that in [14]. This is because of the fact 

that the proposed approach ensures the relative stability in 

both the unknown input estimation and the tracking 

performance. The newly developed current-output observer 

integrated with the UID estimator-based servo design 

methodology can be applied to improve the performance of 

the discrete-time system with an unknown disturbance. 
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(e) 

Figure 10. Comparison between [14] and the proposed method with matched 

disturbances for 1~ 3=i : (a) .  vs. ɶChangetalx  ,ɶProposedx  (b) 

2 2 .ˆ( ) vs. ( )Chngetaly k y k and 2 ˆ ( )Proposedy k  (shown by parts: up to 1.5 s), 

(c)  .
ˆ( ) vs. ( )i i Chngetald k d k  and  

ˆ ( )i Proposedd k  (shown by parts), (d) 

 .  
ˆ ˆ vs. ,− −i i Changetal i i Proposedd d d d  (e) tracking responses

 2 ( ) vs.my k  2 . ( )Chngetaly k  and 2 ( )Proposedy k  (shown by parts). 

4. Conclusion 

In this paper, an efficient PICO-based LQDT for 

non-minimum phase discrete-time system with equal input 

and output number, no direct-feedthrough –input matrix and 

unknown external disturbances has been developed. 

Comparing with the traditional robust optimal control, the 

proposed methods significantly improve the unknown input 

estimation and servo performance for the systems subject to 

the unknown disturbances. The above-mentioned objectives 

are achievable due to the fact that the proposed approaches 

ensure the relative stability in both the unknown input 

estimation and the servo performance from the theoretical 

point of view. The newly developed current-output observer 

integrated with the UID estimator-based servo design 

methodology is able to improve the discrete-time system with 

unknown disturbances. In addition, based on the equivalent 

input disturbance (EID) principle, the proposed approach is 

applicable to the class of systems with mismatched input 

disturbances. Then, numerical examples are given to show 

that PICO-based LQDT could rapidly track a given arbitrary 

reference trajectory with drastic variation. Besides, further 

research will be conducted to extend the proposed method in 

this paper to include the system with high-frequency matched 

and/or mismatched disturbances as well as the output 

disturbances. 
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