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Abstract: This paper considers the networked control systems (NCSs) with the varying sampling period and actuator failure. 

When the NCSs are modeled, the varying sampling period was described by a constant sampling period and a network delay. 

Base on this and the actuator failed, using the Lyapunov stability theory and linear matrix inequalities to prove the existence of 

the cost guaranteed performance, and obtain the optimal cost guaranteed performance controller. 
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1. Introduction 

Network control system (NCS) is a distributed closed-loop 

feedback control system which is composed of sensors, 

controllers and actuators [1]. The controller exchanges the 

information with sensor and actuator according to the internet 

[2]. Compare to the traditional control system, the NCS not 

only can share the information but also can use the remote 

operate and control. So the NCS become more and more 

popular. But also because of the use of the internet in the NCS, 

the NCS has some problems, such as delay, data packet 

dropout. 

In the NCS commonly use continuous controlled objects 

and discrete controllers. So we can regard it as a sampling 

system to study [3]. The sensor reads information for a period 

of time. The time interval is called the sampling period. The 

selection of the sampling period can impact system 

performance [4]. So the study of the variable sampling 

network control system has become meaningful. And if the 

actor broke down the NCS will can’t work properly. And it 

will lead to a huge lose [5]. So we can see the importance of 

the fault-tolerant of NCS [6-8]. 

In recent years, in order to deal with the sampling period 

problem most study assuming that the sampling period is a 

constant [9]. Actually the sampling period is unstable. Yi 

Jianqiang used the delay to represent the sampling period [10]. 

Xie Guangming translated the variable sampling period into 

the uncertainty of system parameters [11]. Yu-Long Wang 

assumed that the sampling period can chose a random value in 

a finite set [12]. For the fault tolerant problem, Li Wei used the 

switch matrix presents the actuator’s state [13]. But it just can 

present the actuator in the normal working state or the actuator 

complete failure. It can’t describe the actuator partial failure. 

Some people also discard the wrong data and still use the last 

period’s data. But it can’t effectively improve the performance 

of the system. 

Fan Jinrong provided a function to deal with the sampling 

period. Sampling period described by the delay and a number 

what is continuous changed in a limited range [9]. And this 

paper will base on that to do the further study. And in order to 

deal with the actuator failure problem we refer to Li Yu’s 

method. In that function not only can describe the normal case 

and outage case but also can describe the actuator partial 

degradation [14]. First we will introduce Fan Jinrong’s 

function to deal with the variable sampling period. It is 

described as follows 

Symbol description: The symbol * indicates the block matrix 

in a symmetric matrix, TA  is the transpose matrix of A . 
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2. Problem Description and Preparation 

Consider the network control system describes by the 

Figure 1, controlled object is a linear time invariant system, 

and it is described by the following state equation: 

( ) ( ) ( )
:   

( ) ( )

c c

c

x t A x t B u t
P

y t C x t

= +
 =

ɺ

            (1) 

where ( ), ( )x t tu  and ( )y t  represent the input state, control 

input and output state respectively. 

 

Figure 1. A simplified network control system. 

This article uses the static memory-less state feedback 

controller, so controller can be moved to the actuator side 

without affecting the performance of the system. Therefore the 

time delay from the sensor to the controller k
scτ , the time 

delay from controller to the actuator k
scτ  and the time delay 

for the controller to the calculate k
cτ  can be combined 

together, we can regard k k k
k sc ca cτ τ τ τ τ= + + =  as a constant. 

In order to facilitate analysis, highlight the characteristics of 

variable sampling period network control system, the system 

to do the following assumptions: 

(1) Just think about short time delay, where minhτ < . 

(2) Time-varying sampling period k kT h τ= + , kh  is 

time-varying and bounded, so the sampling period is 

time-varying and bounded min max,kT T T∈   . 

(3) The nominal value of kh  is 0h , so 0kh h k= + ∆ , 

where k∆  represents the uncertain part of variable 

sampling period. 

(4) The sensor in this system is time-driven, sampling 

instant is kt  
and sampling period is 1k k kT t t+= − . The 

controller and the actuator are event-driven. 

(5) The input state ( )ku t τ−
 
remains unchanged during the 

time [ , ]k kt t t τ∈ +
 
and 1[ , ]k kt t tτ +∈ + , and does not 

synchronously change with sensors in the sampling time 

kt  
owning to the actuator with zero-order holder. So 

1

1

( ),
( )   

( ),

k k k

k k k

u t t t t
u t

u t t t t

τ
τ

−

+

≤ < +
=  + ≤ <

        (2) 

According to the sampling period kh  to discretize the 

controlled object, we can get the discrete state equation of 

controlled object: 

( ) ( )

( ) ( )

0 0

( 1) ( ) ( 1)

            ( ) ( )

            ( 1) ( )  

ττ

τ
τ

τ

++ + −

+ + − +

+

+ = + −

+ =

+ − +

∫

∫

∫ ∫

k
k c k

k

k k
c k k

k

k
c k c c

kT
A h A kT T s

c
kT

kT T
A kT T s A h

c
kT

h
A h A s A s

c c

x k e x k e dsB u k

e dsB u k e x k

e e dsB u k e dsB u k

   (3) 

According to 
0 0

c cA B
H

 
=  
 

 where cA  and cB  are 

constant matrices of appropriate dimensions, there is 

0
exp( ) exp( )

( ) exp( )  

0

T

c c cA T A s B ds
F T HT

I

 
 ∆ =
 
 

∫   (4) 

Introducing augmented variables T T T( ) [ ( ) u (k-1)]z k x k= , 

(3) can be written as 

( 1) ( ) ( ) ( ) ( ) k kz k h z k h u k+ = Φ + Γ          (5) 

where 

( )

0

0 0
0

1
0 0

0

0 1

( )

0 0

         
0

         
0

         

ττ

β β

+

∆∆

∆−

 
 Φ =
 
 

   = + −   
  

 
= +     

 

= +

∫

∫

∫

c k c k c

c c

c

A h A h A s
c

k

k
A k A s

c

k
A s

T T c c

K

e e e dsB
h

I
A e I e B ds A

I
A e ds A B A

A DF E

   (6) 

0

0 0
0

0 2

( ) ( )

        
0

        

∆∆

Γ =

   = + −   
  

= +

∫

∫

k
c

c c

h
A s

k c

k
A k A s

c

k

h e dsB u k

I
B e I e B ds B

B DF E

  (7) 
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0 0( )

00 0

0
( ) ( )

0 0
0 0

c c cA h A h A s
c

Ie e e dsB
A F h F

ττ
τ

+ 
  = =     

 

∫ , 

0

00 0( )
0

c

h
A s

c
Ie dsB

B F h

I

 
  = =     

 

∫ , 
1

0
T

I
D β −  

=  
 

,

0

c

k
A s

k TF e dsβ
∆

= ∫ , 1 0c cE A B A=    , 2 0c cE A B B=    , 

Tβ  is a required value. 

The system (1) can be described by the following state 

equation: 

0 1 0 2( 1) ( ) ( ) ( ) ( )
 

( ) ( )

+ = + + +
 =

k kz k A DF E z k B DF E u k

y k Cz k
   (8) 

where 

[ ,0]cC C= , T
k KF F I≤              (9) 

In order to deal the actuator failure, we refer the function 

that is producted by Li Yu [14]. And it is described as the 

follows. 

For control input , 1, 2iu i m= ⋯ , let F
iu

 
denotes the signal 

from the actuator that has failed. The following failure model 

is adopted in this paper 

F , 1,2i i iu u i mα= = ⋯              (10) 

where 0 ,  1,2i i i i mα α α≤ ≤ ≤ =⌢ ⌣
⋯  with 1,  1i iα α≤ ≥⌢ ⌣

 

Define the α , that is described as follows:  

In the above model of actuator failure, if i iα α=⌣ ⌢
, then it 

corresponds to the normal case F
i iu u= ; When 0iα =⌣ , it 

covers the outage case. If 0iα >⌢ , it corresponds to the partial 

failure case, i.e., partial degradation of the actuator. 

Denote:  

{ }
{ }
{ }

T
F F F F

1 2

1 2

1 2

1 2

, ,

, ,  

, ,

, ,

m

m

m

m

u u u u

diag

diag

diag

α α α α

α α α α

α α α α

 =  

=

=

=

⋯

⌣ ⌣ ⌣ ⌣
⋯

⌢ ⌢ ⌢ ⌢
⋯

⋯

           (11) 

α  is said to be admissible if α  satisfies α α α≤ ≤⌢ ⌣
. 

So (8) can be represented by 

z( 1) ( ) ( )k Az k B u kα+ = +           (12) 

where 

0 1 0 2,k kA A DF E B B DF E= + = +        (13) 

For system (12) denote a cost function 

0

( ) ( ) ( ) ( )  T T T

k

J z k Qz k u k R u kα α
∞

=

 = + ∑       (14) 

where 0Q >
 
and 0R >  are given weighting matrices. 

Definition 1: For the uncertain system (12) and cost 

function (14), if there exist a matrix K  and a positive number 
*J  such that the close-loop NCS is stable and cost function 

satisfies *J J≤ , then ( ) ( )u k Kz k=
 
is said to be a 

guaranteed cost control law and *J  is the upper bound of 

quadratic performance. 

Lemma 1 [15]: Set φ  is any square, if exist matrix 

1P X −=  such that T 0P P Tφ φ − + <  if and only if there 

exist a matrix 0X >  is satisfies 0
*

X X

X XTX

φ− 
< − + 

. 

Lemma 2 [15]: If R, S and F are real matrices of appropriate 

dimensions, and T
k KF F I≤ , then for any positive number  

0ε > , the following linear matrix inequality(LMI) satisfies
T T T T 1 T

k kRF S S F R RR S Sε ε −+ ≤ + . 

Lemma 3 [16]: For a constant matrix CA , if t 0≥ , so 

e cA t teη≤ . 

Lemma 4 [3]: The system contains an uncertainty sampling 

period kF . And it is norm-bounded, k 0, mak∆ ∈ ∆   , if the 

real number 0β ≠  and satisfy the following condition: 

( )max

max

/ 1 , 0

1/ ,          0

e
ηη η

β
η

∆ − ≠≤ 
∆ =

, so k
T

kF F I≤ ,  

where 
*

max

1
= ( )

2
C CA Aη σ + , σ •（ ） represents the maximum 

singular value, and *
cA  is the conjugate transpose matrix of 

cA . 

3. Main Results 

Theorem 1: If any feasible α  and symmetric positive 

definite matrix ,  P Q  satisfy the following LMI 

T T( ) ( ) ( ) 0 A B K P A B K P Q K R Kα α α α+ + − + + <   (15) 

then ( ) ( )u k Kz k=  is the guaranteed cost control of system 

(12) and the upper bound of quadratic performance is 

* T (0) (0)  J z Pz=                (16) 

Proof: Take ( ) ( )u k Kz k=
 
in the system (12) and the cost 

function (14). Suppose now there exist symmetric positive 

definite matrices P , Q  such that matrix inequality (15) 

holds for all admissible uncertainties, then the Lyapunov 

function candidate T( )V z z Pz=
 
is positive definite. The 

corresponding Lyapunov difference along any trajectory of the 

close-loop system (12) is given by 
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T T

T T

T T

T T

( ) ( ( 1)) ( ( )) ( 1) ( 1) ( ) ( )

          [ ( ) ( )] [ ( ) ( )] ( ) ( )

           =[Az(k)+B ( )] P[Az(k)+B Kz(k)] ( ) ( )

          ( )[( ) ( ) ] ( )    

α α

α α
α α

∆ = + − = + + −

= + + −

−

= + + −

V z V z k V z k z k Pz k z k Pz k

Az k B u k P Az k B u k z k Pz k

Kz k z k Pz k

z k A B K P A B K P z k                        

               (17) 

From condition (15), we have 
T T( )[ ( ) ] ( )V z k Q K R K z kα α∆ < − + . It follows from 

Lyapunov stability theory that the system (12) is 

asymptotically stable. 

Summing both sides of the above inequality from 0 to ∞, we 

can get that 

T T

0

( ( )) ( (0)) ( )[ ( ) ] ( )

k

V z V z z k Q K R K z kα α
∞

=

∞ − < − +∑   (18) 

Use the system asymptotically stability and 

T T

0

( )[ ( ) ] ( )

k

J z k Q K R K z kα α
∞

=

= +∑  yield T (0) (0)z Pz J− < − . It’s 

equal to 

T (0) (0)J z Pz<                  (19) 

The upper bound of the system performance index what 

conclude from theorem 1 depends on the initial state 0z , if 

0z  is a zero-mean random variable and satisfies T
0 0( )E z z I= , 

then system performance index satisfies: 

{ } { }T
0 0 ( )E J E z Pz Trace P≤ =            (20) 

Define 

{ }1 2,  mdiagβ β β β= ⋯  and { }0 10 20 0,  mdiagβ β β β= ⋯
 

(21) 

where 

+ i

2

i
i

α αβ =
⌢ ⌣

 i
0

i

   i=1,2 m
+

i
i

i

α αβ
α α

−
=
⌣ ⌢

⋯⌣ ⌢        (22) 

0( )  Iα α β= +  and 0 0  Iα β≤ ≤         (23) 

where 

{ } { }0 01 02 0 0 01 02 0=diag , , ,  | |=diag | |,| |, | |m mα α α α α α α α⋯ ⋯  

Theorem 2: Consider system (12) with cost function (14), if 

the following optimization problem 

ST:
0, , , ,

min ( )
X S Y R

Trace S
γ

              (24) 

(I) 

T T
0 0 0 0 0 0 0

2 T T
0 0 1 2

1

1
0

0 0 0

* ( ) ( )

* * 0 0 0
0

* * * 0 0

* * * * 0

* * * * *

DD X B R B A X B Y B R

R Y E X E Y X Y

X

I

Q

R R

γ β

β β β

γ

−

−

−

 − + +
 

− + 
 −  <
 −
 

− 
 

− +  

               (25)

(II) 

0
X I

I S

 
< 

 
                 (26) 

has a solution ( )0, , , ,S X Y Rγ ɶ ɶ ɶ ɶɶ , then 1( ) ( ) ( )u k Kz k YX z k−= = ɶ ɶ
 

is the optimal quadratic guaranteed cost control law for system 

(12) and the corresponding upper bound of the system 

performance index is
 

* 1( )J Trace X −= ɶ                 (27) 

Proof: In light of theorem 1, the uncertain system (12) 

exists an optimal guaranteed cost control law if and only if 

there exist matrix K , symmetric matrix 0P >  and any 

feasible α  satisfy that 

T T( ) ( ) ( ) 0A B K P A B K P Q K R Kα α α α+ + − + + <   (28) 

In light of Lemma 1, the inequality exists a matrix 0X >  
satisfies that 

T

( )
0  

* [ ( ) ]

X A B K X

X X Q K R K X

α
α α

− + 
< 

− + +  
   (29) 

where 

0 1 0 2,k kA A DF E B B DF E= + = +        (30) 

Define a matrix 

0 0

T

( )
 

* [ ( ) ]

X A B K X
M

X X Q K R K X

α
α α

− + 
∆  

− + +  
    (31) 
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The inequality (29) can be written as 

[ ] [ ]
T

T T
1 2 1 20 ( ) 0 ( ) 0   

0 0
α α   

+ + + + <   
   

k k

D D
M F E E K X E E K X F                  (32) 

In light of Lemma 2: If the inequality (32) exists, if and only if there exists a constant 0γ > , such that 

[ ]T 1
1 2T

1 2

0
0 0 ( ) 0    

0 ( )

D
M D E E K X

X E E K
γ γ α

α
−     + + + <     +    

                 (33) 

take M  in the inequality, then 

T
0 0

T 1 T
1 2 1 2

( )
0

* [ ( ) ] ( ) ( )

DD X A B K X

X X Q K R K X X E E K E E K X

γ α
α α γ α α−

 − +
< 

− + + + + +  
             (34) 

It follows from the Schur complement that the above inequality is equivalent to 

T
0 0

T T
1 2

( ) 0

* [ ( ) ] ( ) 0

* *

DD X A B K X

X X Q K R K X X E E K

I

γ α
α α α

γ

 − +
 

− + + + < 
 −  

                   (35) 

It follows from the Schur complement that the above inequality is equivalent to 

T
0 0

T T
1 2

1

1

( ) 0 0 0

* ( ) ( )

0* * 0 0

* * * 0

* * * *

DD X A B K X

X X E E K X KX

I

Q

R

γ α
α

γ
−

−

 − +
 

− + 
  <− 
 −
 
 − 

                   (36) 

Define Y KX= , we can get that 

T
0 0

T T
1 2

1

1

0 0 0

* ( ) ( )

0* * 0 0

* * * 0

* * * *

DD X A X B Y

X E X E Y X Y

I

Q

R

γ α
α

γ
−

−

 − +
 

− + 
  <− 
 −
 
 − 

                      (37) 

Take (23) in the inequality 

T
0 0 0

T T
1 2 0

1

1

) 0 0 0

* ( ) [( ) ]

0* * 0 0

* * * 0

* * * *

DD X A X B I Y

X E X E Y X I Y

I

Q

R

γ α β

α β
γ

−

−

 − + +
 

− + + 
  <− 
 −
 
 − 

（

               (38) 

T
0 0 0 0

T T T
1 2 0

1

1

0 0 0 0 0 0 0

* ( ) ( ) * 0 0 0 ( )

0* * 0 0 0 0 0 0 0

0 0 0 0 0* * * 0

0 * 0 0 0* * * *

DD X A X B Y B Y

X E X E Y X Y Y

I

Q

R

γ β α β
β α β

γ
−

−

 − +  
   − +   
   = + <−   
   −
   
   − 

       (39) 
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[ ] [ ]

TT
0 0 0 0

T T
1 2

0 0

1

1

0 0 0

* ( ) ( ) 0 0

0 0 0 0 0 0 0 0 0* * 0 0 0 0

0 0* * * 0

* * * *

γ β
β

α β α βγ
−

−

 − +           − +            = + + <−      
   −    
            − 

DD X A X B Y B B

X E X E Y X Y

Y YI

Q

I IR

 (40) 

[ ] [ ]

TT
0 0 0 0

T T
1 2

0 0

1

1

0 0 0

* ( ) ( ) 0 0

0 0 0 0 0 0 0 0 0* * 0 0 0 0

0 0* * * 0

* * * *

γ β
β

α β α βγ
−

−

 − +           − +            = + + <−      
   −    
            − 

DD X A X B Y B B

X E X E Y X Y

Y YI

Q

I IR

 (41) 

Using the inequality T T T2a b a a b b≤ +  for any diagonal matrix 0 0R > , it follows that  

TT T
0 0 0 0

T T
1 2

1 2
0 0 0

1

1

0 0 0 0 0

* ( ) ( ) 0 0

0* * 0 0 0 0 0 0

0 0 0 0* * * 0

0 0* * * *

T T

DD X A X B Y B B

X E X E Y X Y Y Y

R RI

Q

I IR

γ β
β β β

βγ −

−

−

 − +               − +                + + <−             −                    − 

    (42) 

It equals to 

T T
0 0 0 0 0 0 0

T 1 2 T T
0 0 1 2

1

1
0

0 0

* ( ) ( )

* * 0 0 0

* * * 0

* * * *

DD X B R B A X B Y B R

X Y R Y E X E Y X Y

I

Q

R R

γ β
β β β β

γ

−

−

−

 − + +
 

− + + 
 − < 
 −
 
 − + 

           (43) 

It follows from the Schur complement that the above inequality is equivalent to 

T T
0 0 0 0 0 0 0

2 T T
0 0 1 2

1

1
0

0 0 0

* ( ) ( )

* * 0 0 0
0

* * * 0 0

* * * * 0

* * * * *

DD X B R B A X B Y B R

R Y E X E Y X Y

X

I

Q

R R

γ β

β β β

γ

−

−

−

 − + +
 

− + 
 −  <
 −
 

− 
 

− +  

            (44) 

We obtain the first condition of the optimization problem. 

Following from the Schur complement, the second 

condition of the optimization is equivalent to 1 0S X −> > , 

minimizing the ( )Trace S  will make 1( )Trace X −  to be 

minimized, then the upper bound of the system performance 

index will be minimized. 

4. Conclusion 

In this paper, we have derived the existence condition for 

guaranteed cost control for a class of variable sampling period 

network control system with actuator failure. The optimal cost 

controller was obtained through LMI and Lyapunov stability 

theory. 
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