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Abstract: This paper presents a method based on neural network (NN) for estimating the properties of semiconductor thin film. 

Through the effective learning process, NN is able to catch the relationship between input and output pairs bypassing the 

complicated statistical steps such as model hypothesis, identification, estimation of model parameters, and verification. Such an 

estimator then can be developed to be a smart mechanism which can help the technician to set the relevant control parameters in 

the manufacturing process of thin film. In this research, the thickness and refractive index (RI) of thin film were estimated by the 

well learned NN model. From the studied results shown, the properties of thin film indeed could be estimated in advance 

according to the relevant control parameters in the manufacturing process. That also means the estimator we developed could be 

built and fulfilled its function. 
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1. Introduction 

In recent twenty years, the high-tech skills have been 

developed widely and vitally in various electronic appliances, 

such as photoelectric, semiconductor and biomedical chips. 

The electronic industry has become the focus of economic 

development for many countries. Besides, due to the fast 

improvement of manufacturing technique, more and more 

electronic products are requested to be small and exquisite. 

Their function is requested to be more powerful either. 

It is well-known that thin film is an important and 

indispensable part for many electronic products. Taking the 

wafer manufacturing as an example, the filming process plays 

an important and key role in the wafer front-end 

manufacturing step. Figure 1 shows the flowchart of wafer 

manufacturing process [1]. Thus, if the relevant 

manufacturing parameters of filming process could be set 

quickly and accurately, not only the efficiency of working 

machine can be greatly improved, but also the time and 

frequency of machine test can be reduced effectively. 
 

Figure 1. The manufacturing process of wafer. 
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Generally, Chemical Vapor Deposition (CVD) is the 

popular method used in the field of thin film manufacturing 

process. In CVD process, many complicated and nonlinear 

chemical and physical reactions are hardly analyzed. The 

phenomena of particle drift and variation are happened very 

often in the filming process either. Undoubtedly, these 

uncontrolled factors will affect the quality of filming process 

very seriously. Thus, how to set the adequate manufacturing 

parameters for improving the yield rate and reducing the times 

of machine test has become the most important work in the 

thin film manufacturing process. Unfortunately, 

trial-and-error is still the common method taken by the 

technicians in many companies. As we know, the number of 

failed manufacturing process and the defective product could 

be possibly raised, if the manufacturing parameters were 

determined by the technician based on personal experience 

only. Thus, several studies about the optimal thin film 

manufacturing have been proposed [2-5]. 

Recently, due to the fast development of artificial intelligent 

techniques, some studies about the optimal control of film 

manufacturing process were reported. For instance, the 

genetic algorithm (GA) had been used for searching the 

optimal parameters of physical vapor deposition 

manufacturing control process [4]. Hsieh, Tong, Cui and 

Hwang et al. proposed the film’s control and estimation by 

using NN techniques [5-14]. 

Since the powerful learning and modeling capabilities, NN 

has been widely used in different applications, such as the 

signal processing and control [15-19]. Basically, through the 

well learning, NN could generate an efficient mapping 

between input and output pairs bypassing the complicated 

statistical steps. The well-trained NN model then can be used 

for the specific work. 

In this research, an artificial intelligent (AI) system based 

on NN model for the estimation of film properties is studied. 

Its aim is that according to the estimation information 

provided, the junior technician with no full experience is able 

to make a good setting work for the manufacturing parameters 

in the filming process. Thus, such an AI system can not only 

help the technician to do the work of film manufacturing very 

efficiently and easily, but also reduce the rate of defective 

products and then save the production cost. 

2. Neural Network 

NN technique is the main tool used for constructing the 

estimator of film properties. As previous descriptions, the 

relationship between input and output pairs is expected to be 

obtained through the well learning of NN. 

The NN structure commonly known as multi-layered 

feed-forward network is used in this study. The supervised 

NN with error back-propagation (BP) learning algorithm is 

taken for NN’s training [15-17]. An example of a 

three-layered feed-forward NN architecture as shown in 

Figure 2 is the model of selected topology. Each layer is 

connected to a layer above it in a feed-forward manner, 

which means no feed-back from the same layer or a layer 

above. All connections have a multiplying weight associated 

with them. Training is equivalent to find the proper weights 

for all connections such that a desired output is generated for 

a given input set. Once the neural network is well trained, the 

proper input information could be inferred in accordance 

with an expected output. In other words, the useful 

information can be found for helping the technician to do the 

well control in the manufacturing process. 

 

Figure 2. A three-layered feed-forward NN architecture. 

In this study, the error back-propagation (BP) learning 

algorithm is used for NN’s training. The major steps of BP 

learning rule algorithm is briefly summarized as follows 

[15-17].  

1
st
 step: Initialize all weights (ωij) to the small random 

values firstly. 

2
nd

 step: Present an input pattern with the corresponding 

desired outputs and then calculate the outputs. 

3
rd

 step: Find the error term for all nodes. 

4
th

 step: Adjust weights by 

1))-n(-n)((Xn)(1)n( ijijijijij ωωζαδωω ++=+       (1) 

where n+1, n and n-1 are the next, present, and previous 

iteration numbers, respectively. 
jδ  is the error of node j and 

Xi is the i
th

 input of node j. α is the learning rate, the step size 

in the gradient search algorithm. ζ is the momentum and its 

value is between 0 and 1. 

5
th

 step: Present another input pattern and go back to 2
nd

 

step. 

3. Experiments 

In our study, the thin film data manufactured by using two 

recipes, LDRXX and TEOSXX, were collected and 

simulated. Table 1 and Table 2 present the examples of two 

collected data sets. The numbers of LDRXX and TEOSXX 

data sets are 102 and 89, respectively. 
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Table 1. The examples of data manufactured by using recipe LDRXX. 

Manufacturing Parameters 

DT cSHDist 
TEOS 

factor 

TEOS 

(mgm) 

HE 

(sccm) 

O2 

(sccm) 

HFRF 

(pre) 

LFRF 

(pre) 

25.5 420 0.9736 800 9000 8000 196 50.4 

25.5 420 0.9736 800 9000 8000 196 51.4 

26.5 420 0.9736 800 9000 8000 196 50.4 

26.5 420 0.9736 800 9000 8000 196 51.4 

26.5 420 1.0453 800 9000 8000 194 51.2 

26.5 420 1.0453 800 9000 8000 193 50.4 

25.5 420 1.0253 800 9000 8000 194 31.2 

25.5 420 1.0253 800 9000 8000 164 51.2 

27.5 420 0.9936 800 9000 8000 196 50.4 

27.5 420 0.9936 800 9000 8000 216 50.4 

Thin Film Properties 

Thickness RI 

443 1.4590 

433 1.4590 

455 1.4619 

443 1.4627 

457 1.4609 

429 1.4624 

419 1.4816 

416 1.4821 

436 1.4820 

443 1.4804 

Table 2. The examples of data manufactured by using recipe TEOSXX. 

Manufacturing Parameters 

DT cSHDist 
TEOS 

factor 

TEOS 

(mgm) 

HE 

(sccm) 

O2 

(sccm) 

HFRF 

(pre) 

LFRF 

(pre) 

38.0 310 1.0386 5250 4000 4200 797 209 

38.0 310 1.0386 5250 4000 4200 798 209 

38.0 310 1.0236 5250 4000 4200 793 209 

38.0 310 1.0236 5250 4000 4200 795 210 

38.0 310 1.0036 5250 4000 4200 763 199 

38.0 310 1.0036 5250 4000 4200 765 200 

38.0 310 1.0236 5250 4000 4200 765 200 

38.0 310 1.0236 5250 4000 4200 795 200 

38.0 310 1.0236 5250 4000 4200 780 200 

38.0 310 1.0236 5250 4000 4200 765 200 

Thin Film Properties 

Thickness RI 

4983 1.4584 

4988 1.4587 

4814 1.4628 

4830 1.4628 

4885 1.4634 

4903 1.4633 

4832 1.4636 

4836 1.4629 

4839 1.4632 

4682 1.4629 

The values of thickness and RI of thin film are expected to 

be estimated by the well-trained NN model. In order to fairly 

demonstrate the effectiveness of NN model in the estimation 

of thin film properties, three same size data sets, i.e. LDR-1a, 

LDR-1b, and LDR-1c, are randomly reorganized from data 

LDRXX. Similarly, three same size data sets, TEOS-1a, 

TEOS-1b and TEOS-1c, are randomly reorganized from data 

TEOSXX. In the simulations of data LDR-1a, LDR-1b and 

LDR-1c, 70 sets were used for NN’s training and 32 sets 

were used for testing. For data TEOS-1a, TEOS-1b and 

TEOS-1c, 59 sets were used for NN’s training and 30 sets 

were used for testing. 

For all data sets, the size of NN in thickness estimation is 

4-10-1. The inputs are DT, TEOS factor, HFRF, LFRF. In RI 

estimation, the size of NN is 5-10-1. The inputs are DT, 

TEOS factor, HFRF, LFRF and thickness. The mean absolute 

error (MAE) and mean absolute percentage error (MAPE) are 

used as the estimated measurements. 

N
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       (3) 

Where, yi and 
iŷ  are actual and estimated values. N is the 

total number of estimation data. 

In order to observe the distribution behaviors of all training 

and test data sets, the simple statistical analysis was done. 

For example, Table 3 lists the information of mean value, 

variance and standard deviation for the whole LDR-1a data, 

LDR-1a 70 training data and 32 LDR-1a test data. Similarly, 

Table 4 and Table 5 list the statistics of data LDR-1b and 

LDR-1c, respectively. Table 6 lists the estimation errors of 

LDRXX data series performed by NN. For TEOSXX data, 

Table 7, Table 8 and Table 9 list the statistics of data 

TEOS-1a, TEOS-1b and TEOS-1c, respectively. Table 10 

presents the estimation errors of TEOSXX data series 

performed by NN. 

Table 3. The distribution behaviors of data LDR-1a. 

Total Data (LDR-1a) 

Statistics Thickness RI 

Mean 483.39215 1.47009 

Var. 862.65673 0.000068761 

Std. 29.37102 0.00829221 

Training Data (LDR-1a) 

Statistics Thickness RI 

Mean 477.87142 1.47021 

Var. 1090.7511 0.000073625 

Std. 33.02652 0.00858049 

Test Data (LDR-1a) 

Statistics Thickness RI 

Mean 495.46875 1.4698187 

Var. 163.41835 0.000060046 

Std. 12.78352 0.0077489 

(Var.: Variance, Std.: Standard Deviation) 
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Table 4. The distribution behaviors of data LDR-1b. 

Total Data (LDR-1b) 

Statistics Thickness RI 

Mean 483.39215 1.47009 

Var. 862.65673 0.000068761 

Std. 29.37102 0.00829221 

Training Data (LDR-1b) 

Statistics Thickness RI 

Mean 479.58572 1.4696674 

Var. 1126.9996 0.000074579 

Std. 33.570816 0.00863592 

Test Data (LDR-1b) 

Statistics Thickness RI 

Mean 491.71875 1.4710001 

Var. 197.82158 0.000056770 

Std. 14.064906 0.00753455 

(Var.: Variance, Std.: Standard Deviation) 

Table 5. The distribution behaviors of data LDR-1c. 

Total Data (LDR-1c) 

Statistics Thickness RI 

Mean 483.39215 1.47009 

Var. 862.65673 0.000068761 

Std. 29.37102 0.00829221 

Training Data (LDR-1c) 

Statistics Thickness RI 

Mean 481.62857 1.4718357 

Var. 800.9036 0.0000731506 

Std. 28.300241 0.00855281 

Test Data (LDR-1c) 

Statistics Thickness RI 

Mean 487.25 1.4662563 

Var. 1005.5484 0.0000391548 

Std. 31.710382 0.00625738 

(Var.: Variance, Std.: Standard Deviation) 

Table 6. The statistics of estimations for data LDRXX. 

Statistics 

LDR-1a 

Thickness RI 

Training Test Training Test 

MAE 6.3079 7.3324 0.001173 0.003112 

MAPE 1.3182% 1.4888% 0.0799% 0.2112% 

Statistics 

LDR-1b 

Thickness RI 

Training Test Training Test 

MAE 6.2145 6.8923 0.001089 0.003557 

MAPE 1.3011% 1.4027% 0.0751% 0.2328% 

Statistics 

LDR-1c 

Thickness RI 

Training Test Training Test 

MAE 6.8258 7.8785 0.001208 0.003345 

MAPE 1.4255% 1.5989% 0.0832% 0.2275% 

Table 7. The distribution behaviors of data TEOS-1a. 

Total Data (TEOS-1a) 

Statistics Thickness RI 

Mean 4967.382 1.4596821 

Var. 6752.8295 0.00000177311 

Std 82.175605 0.00133158 

Training Data (TEOS-1a) 

Statistics Thickness RI 

Mean 4942.0 1.4597865 

Var. 8020.3105 0.00000241364 

Std 89.55618 0.00155359 

Test Data (TEOS-1a) 

Statistics Thickness RI 

Mean 5017.3 1.4594768 

Var. 562.2862 0.00000048738 

Std 23.71257 0.000698123 

(Var.: Variance, Std.: Standard Deviation) 

Table 8. The distribution behaviors of data TEOS-1b. 

Total Data (TEOS-1b) 

Statistics Thickness RI 

Mean 4967.382 1.4596821 

Var. 6752.8295 0.00000177311 

Std 82.175605 0.00133158 

Training Data (TEOS-1b) 

Statistics Thickness RI 

Mean 4945.085 1.45999 

Var. 7853.424 0.00000210681 

Std 88.619544 0.00145149 

Test Data (TEOS-1b) 

Statistics Thickness RI 

Mean 5011.2333 1.4590766 

Var. 1783.7709 0.000000594971 

Std 42.23471 0.00077134 

(Var.: Variance, Std.: Standard Deviation) 

Table 9. The distribution behaviors of data TEOS-1c. 

Total Data (TEOS-1c) 

Statistics Thickness RI 

Mean 4967.382 1.4596821 

Var. 6752.8295 0.00000177311 

Std 82.175605 0.00133158 

Training Data (TEOS-1c) 

Statistics Thickness RI 

Mean 4983.356 1.4593307 

Var. 4049.8537 0.00000110908 

Std 63.638462 0.00105313 

Test Data (TEOS-1c) 

Statistics Thickness RI 

Mean 4935.967 1.4603734 

Var. 10851.551 0.00000241653 

Std 104.17078 0.00155452 

(Var.: Variance, Std.: Standard Deviation) 
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Table 10. The statistics of estimations for data TEOS-xx. 

Statistics 

TEOS-1a 

Thickness RI 

Training Test Training Test 

MAE 39.8665 16.2448 0.00059 0.00032 

MAPE 0.812% 0.3243% 0.040% 0.022% 

Statistics 

TEOS-1b 

Thickness RI 

Training Test Training Test 

MAE 41.2543 17.5334 0.00052 0.00027 

MAPE 0.852% 0.3394% 0.0387% 0.0251% 

Statistics 

TEOS-1c 

Thickness RI 

Training Test Training Test 

MAE 32.5743 19.225 0.00064 0.00032 

MAPE 0.823% 0.0351% 0.0414% 0.0257% 

The examples of superposition plot for thickness 

estimation are shown in Figure 3 and Figure 4. Figure 3 

shows the example of NN’s training result and Figure 4 

shows the example of NN’s testing results. In figures, the 

solid line stands the actual thickness values and the dotted 

line stands NN’s estimated values.  

 

Figure 3. The superposition plot of thickness for NN’s training. 

 

Figure 4. The superposition plot of thickness for NN’s test. 

Similarly, the examples of superposition plot for RI 

estimation are shown in Figure 5 and Figure 6. Figure 5 

shows the example of NN’s training result and Figure 6 

shows the example of NN’s testing result. Same as above 

figures, the solid line stands the actual thickness values and 

the dotted line stands NN’s estimated values. 

 

Figure 5. The superposition plot of RI for NN’s training. 

 

Figure 6. The superposition plot of RI for NN’s test. 

4. Results & Discussion 

It is known that many unknown factors will affect the 

properties of thin film in its real manufacturing process. 

These unknown factors are usually uncontrolled and can be 

treated as the disturbances. Besides, different manufacturing 

machines have different physical characteristics. All these 

conditions might make the films have different properties 

even they are filmed under the same manufacturing 

parameters. In our study, we tried to use NN technique to 

catch the relationships among the film’s properties and the 

relevant manufacturing parameters so that the film’s 

properties could be estimated in advance. From the 

simulation results shown, the relationships between the film’s 

properties and the manufacturing parameters indeed can be 

obtained by a well-trained NN model. For both thickness and 

RI estimations, the plots show that the trends of film’s 

properties still can be estimated by NN. 

5. Conclusion 

In this research, the estimation for the properties of 

semiconductor’s thin film based on NN technique was 

studied. From the study results shown, we conclude that NN 

model indeed has the ability to estimate the properties of thin 

film if NN was well-trained. In other words, these 

well-trained NN estimators could provide the important 

information to the technician for setting the proper 

manufacturing parameters in the filming process. The 
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technician is able to make the whole filming process more 

effective and successful. However, in this research, only a 

few manufacturing parameters were collected. We do believe 

that the estimation accuracy for the film’s property could be 

improved greatly if more relevant manufacturing parameters 

can be considered and collected. 
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