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Abstract: We have previously proposed a multiplex communication system in a neural network. However, this system is 

designed to force the network to communicate in a multiplexed manner, in which “codes” or “temporal sequences” are inevi

induced. This means that the network has a main loop and coding/decoding circuits, which are somewhat artificial. In this pap

we show that it is also possible to communicate without these artificial guidance aids by multiplexing in a 2D mesh

network, where learning procedures are used to find paths from an originating neuron to a destination neuron. We also provide

statistics from these neural networks to show that random sequences occur more frequently than non
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1. Introduction 

Investigation of the manner in which information is 

communicated in the brain is an important theme in brain 

science. We have previously developed a time

analysis of the transmission of electroencephalogram (EEG) 

or magnetoencephalogram (MEG) signals in the brain [1], and 

have shown that it is effective for diagnosis of transient global 

amnesia (TGA) [2]. The time-shift map is a graphical 

representation that shows the time difference at which the 

cross-correlation between a brain wave on a poi

another point becomes a maximum. An example of a 

time-shift map is shown in Fig. 1. The advantageous feature of 

this method when compared with the magnetic resonance 

imaging (MRI) dipole diagram [3] is that this method can 

follow even small signal flows. We can see that sub

processed in each hemisphere within 5 ms, and after 10 ms, 

the results are exchanged between the hemispheres. The 

question that arises here is how the neuron cells locate the 

target cells to send the required signal or, alternatively, how 

the responsible cells can obtain the necessary signals from the 

due cells, even when they are at remote locations. This is a 

problem of finding communication links in a neuronal 
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Investigation of the manner in which information is 

communicated in the brain is an important theme in brain 

science. We have previously developed a time-shift map for 

analysis of the transmission of electroencephalogram (EEG) 

signals in the brain [1], and 

have shown that it is effective for diagnosis of transient global 

shift map is a graphical 

representation that shows the time difference at which the 

correlation between a brain wave on a point and that at 

another point becomes a maximum. An example of a 

shift map is shown in Fig. 1. The advantageous feature of 

this method when compared with the magnetic resonance 

is that this method can 

signal flows. We can see that sub-tasks are 

processed in each hemisphere within 5 ms, and after 10 ms, 

the results are exchanged between the hemispheres. The 

question that arises here is how the neuron cells locate the 

nal or, alternatively, how 

the responsible cells can obtain the necessary signals from the 

due cells, even when they are at remote locations. This is a 

problem of finding communication links in a neuronal 

network. This paper will contribute to a solution t

question, and provide a basic idea of how events are stored in 

the brain and how the brain can associate/recall matters related 

to these events. 

Fig. 1. Time-shift map of 10.2 Hz wave from MEG. Red < 5 ms < Green < 10 

ms < Blue. 

Figure 2 shows the simplest possible code multiplex 

communication of 2×2 communication on a 2D synchronous 

shift neural network, i.e., the number of input neurons is two 

and the number of output neurons is also two. Expanding upon 

this, we have previously proposed a multipl
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We have previously proposed a multiplex communication system in a neural network. However, this system is 

designed to force the network to communicate in a multiplexed manner, in which “codes” or “temporal sequences” are inevitably 

induced. This means that the network has a main loop and coding/decoding circuits, which are somewhat artificial. In this paper, 

we show that it is also possible to communicate without these artificial guidance aids by multiplexing in a 2D mesh-type neural 

network, where learning procedures are used to find paths from an originating neuron to a destination neuron. We also provide 
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question, and provide a basic idea of how events are stored in 

the brain and how the brain can associate/recall matters related 
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and the number of output neurons is also two. Expanding upon 

e have previously proposed a multiplexed 
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communication model on a 2D synchronous shift neural 

network that is composed of a main loop circuit and some 

coding/decoding neural networks [4], as shown in Fig. 3. The 

network is forced to communicate in a multiplexed manner, 

because there are only two lines between the three 

transmitting neurons and the three receiving neurons of the 

three communication channels. It was then observed that the 

network frequently generates and uses pseudo

sequences, including M-sequences [5]. It is well known 

many real-world artificial communication systems, such as 

mobile phones, pseudo-random sequences

M-sequences—are used as almost orthogonal codes that are 

easy to discriminate from each other. Additionally, we have 

observed the M-sequence family occurring in spike trains 

from cultured neural networks significantly more frequently 

than would occur by chance [6, 7]. 

Fig. 2. Simplest example of a 2×2 multiplex communication channel by a 

neural network. Each neuron expressed by a small circle outputs a “1” if the 

weighted sum of inputs exceeds the required threshold, and outputs a “0” 

otherwise. If “1” is input to n1, then it is converted into a sequence “10” by 

the local loop A1 and is transferred to A2 and A3. Finally, “1” is output f

Similarly, an input “1” to n2 is transferred to A4, and a “1” is output from n

This means that there are two independent communication channels working 

by temporal code multiplexing on the loop line. 

Fig. 3. A 3×3 communication model. The pulse “1” sent from neuron n

supposed to be received by n18 only, while that sent from n

received by n23 only, and that sent by n13 is supposed to be received by n
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Simplest example of a 2×2 multiplex communication channel by a 

circle outputs a “1” if the 

weighted sum of inputs exceeds the required threshold, and outputs a “0” 

, then it is converted into a sequence “10” by 

. Finally, “1” is output from n3. 

, and a “1” is output from n4. 

This means that there are two independent communication channels working 

 

“1” sent from neuron n3 is 

only, while that sent from n8 is supposed to be 

is supposed to be received by n28 only. 

However, it remains to be seen whether it is possible to 

communicate in a multiplexing manner in more natural neural 

networks without using an artificial shape to force 

multiplexing. Therefore, in this paper, we treat a more 

naturally homogeneous grid-shaped neural network. While 

our previous network was tested 

random networks without a learning function, here we provide 

a learning function for the networks to enhance the 

communication links. 

2. Path Search Model

It is well known that a neuronal cell has more than 1000 

synapses [8], and that large numbers of connection paths and 

loops thus exist in a neural network [9

transmitted from one neuronal cell to another through the 

synapses, and the membrane electrical potential is thus 

increased. If the electrical potential exc

threshold, then the neuronal cell is fired, and if the potential is 

beneath the threshold, then the cell is not fired. The firing 

model [12] of a neuronal cell is as shown in Eq. (1).
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Here, E(t) represents the state of cell 

(where t=0, 1, 2, …), 1 represents the firing state, and 0 

represents the static state. N is the number of other cells that 

are connected to the cell, and W

between E and En. The state of a cell is thus determined on the 

basis of whether the total sum of the products of the 

connection weight and the state of the other connected cell at 

the previous clock cycle time exceeds a threshold or not. In 

each neuron cell, the state will change with progress of 

regard the communication as successful if an output cell is 

fired when external stimulation is provided to an input neuron 

cell and the stimulation is thus transmitted to the output cell 

through the neuron cells in the neural network.

Fig. 4. Path search model with 9×9 grid.
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However, it remains to be seen whether it is possible to 

communicate in a multiplexing manner in more natural neural 

networks without using an artificial shape to force 

multiplexing. Therefore, in this paper, we treat a more 

shaped neural network. While 

our previous network was tested by generating numerous 

random networks without a learning function, here we provide 

a learning function for the networks to enhance the 

Path Search Model 

It is well known that a neuronal cell has more than 1000 

t large numbers of connection paths and 

loops thus exist in a neural network [9–11]. Stimulation is 

transmitted from one neuronal cell to another through the 

synapses, and the membrane electrical potential is thus 

increased. If the electrical potential exceeds a specific 

threshold, then the neuronal cell is fired, and if the potential is 

beneath the threshold, then the cell is not fired. The firing 

model [12] of a neuronal cell is as shown in Eq. (1). 
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represents the state of cell E at a discrete time t 

=0, 1, 2, …), 1 represents the firing state, and 0 

is the number of other cells that 

WE,En is the connection weight 

. The state of a cell is thus determined on the 

basis of whether the total sum of the products of the 

connection weight and the state of the other connected cell at 

the previous clock cycle time exceeds a threshold or not. In 

neuron cell, the state will change with progress of t. We 

regard the communication as successful if an output cell is 

fired when external stimulation is provided to an input neuron 

cell and the stimulation is thus transmitted to the output cell 

e neuron cells in the neural network. 

 

Path search model with 9×9 grid. 
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Fig. 5. Bidirectional connection weights. Solid lines are positive weight 

connections, and dotted lines are negative weight connections. 

We formed a 2×2 multiplexing communication model with 

two input neuron cells to transmit the information and two 

corresponding receiving neuron cells on a 9×9 grid-shaped 

neural network. We call this the “path search model” [13]; the 

model is as shown in Fig. 5. Here, α and β are the input cells 

for information transmission, and α’ and β’ are the cells that 

receive information from α and β, respectively. Between a 

specific cell and its eight neighbouring cells, the connection 

weights are set randomly at time 0 within the range [−1, 1]. An 

example of the initial weights is shown in Fig. 5. Here, a solid 

line represents a positive weight connection, and a broken line 

represents a negative weight connection. Firing information 

input to input cells α and β is transmitted in the network, with 

the transitions of the cell states occurring according to the 

connection weights that are set between the cells and Eq. (1) 

with the progress of the time steps. 

In addition, cells are sometimes fired voluntarily and 

randomly, irrespective of the firing transition. We call this 

phenomenon “random firing.” With the combination of firing 

by the state transition and random firing, the firing cells thus 

move. 

An example of a state transition is shown in Fig. 6. We can 

see that firing in Fig. 6(a) of α at time t=0 leads to the change 

into Fig. 6(b) at time t=1. 

 

Fig. 6. Example of a state transition. 

2.1. Updating Weights 

The weight set between cells expresses the transmission 

efficiency of the relevant synapse. Synapse transmission 

efficiency in a natural neuronal network is reinforced if a 

post-synaptic neuron is fired by the firing of a presynaptic 

neuron or even by chance. This is called the Hebb rule [14]. In 

the path search model, the connection weights are also 

updated based on the Hebb rule. In this case, there are two 

cases of the weight updating rule of reinforcement by 

simultaneous firing and that based on the state one clock cycle 

before firing. These cases are expressed using Eq. (2) and Eq. 

(3), respectively. 

∆� � !� ���� "
��� + $
� %
 + $&� "
     (2) 

∆� � !� ���� "
�� 
 1� + $
� %
 + $&� "
    (3) 

Here, wi is the attention paid weight, si (t) is the state of cell 

i at time t, and i+1 represents the cell that is connected to cell i 

with weight wi. Weights wi−1 and wi+1 represent those weights 

ahead of the extending weight along the connected direction, 

and have the role of an inertia term to ensure that the weight 

updates smoothly. In addition, α, β1, and β2 are coefficient 

parameters. Figure 7 shows a schematic diagram of these 

weights. 

 

Fig. 7. Schematic diagram of weights. 
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In the case of simultaneous firing reinforcement, as shown 

in Eq. (2), the weights are updated by referring to the states of 

cell i and cell i+1 at time t, and in the case of firing 

reinforcement one clock cycle before firing, the weights are 

updated by referring to the state of cell i at time t and the state 

of cell i+1 at time t−1, respectively. The increment of ∆wi by a 

weight update is divided equally among the remaining 

neighbours, and the same amount is deducted from each of the 

weights in the neighbours. Therefore, the total sum of weights 

of the whole model does not change, even after the weights are 

updated. While we proposed two updating rules, there were no 

differences in the results produced by these rules, and thus we 

simply applied Eq. (2) in the following experiments. 

2.2. Success or Failure of Communication 

In a succession of state transitions, a case occurs where the 

firing information of the transmitting side (α, β) is transmitted 

to the receiving side (α’, β’) and the neurons are fired. In this 

case, we can regard the information as being transmitted and 

we can also regard the communication as being successful. 

In case of a 2×2 multiplex communication, the information 

from α should be transferred to α’, while that of β should be 

transferred to β’. Therefore, when the information is input to α 

at t=0, the number of firings in the range from t=6 to t=63 

should be N(α’) > N(β’), and when the information is input to 

β at t=0, then the number of firings of β’ should be N(α’) < 

N(β’), and only in a case such as this can we regard the 

communication as having succeeded fully. Here, N(α’) 

represents the number of firings of α’ within the corresponding 

period (i.e., from t=6 to t=63, or from t=6 to t=31). 

2.3. Sequence That Appeared at the Cell 

When we observe all 81 cells of the path search model and 

pay attention to each cell, we can obtain a sequence in which 0 

and 1 appear with the progress of the time step t. Then, we can 

obtain knowledge of what contributes to the 2×2 

communication process by observing and analysing these 

sequences. 

3. Experimental and Discussion 

We performed a simulation experiment for 2×2 

communication using the path search model. 

3.1. Experiment 1 

We performed the experiment in three steps (①–③), 

composed of the weight learning term, an α test, and a β test, 

as shown in Fig. 8. 

①  Weight learning term: We perform up to t=63 path 

searches when setting the state of α in Fig. 8 as 1 at t=0. In 

other words, we update the connection weights based on the 

learning rule. 

② α test: Using a model after the weight learning process, 

we set the state of α in Fig. 8 to be 1 at time t=0 and watch the 

state transition up to t=63. During this process, we do not 

update the weights. Here, if N(α’) > N(β’), then the α test is 

successful, while if N(β’) < N(α’), we regard the α test as a 

failure. 

③ β test: Using a model after the weight learning process, 

we set the state of β in Fig. 5 to be 1 at the time t=0 and watch 

the state transition to t=63. During this process, we again do 

not update the weights. Here, if N(β’) > N(α’), then the β test is 

successful, and if N(α’) < N(β’), then we regard the β test as a 

failure. 

 

Fig. 8. Experiment 1: The firing state shown is that at t=0 of learning phase 

①, where α is stimulated. We tried 106 times of a series of phase ①-③ tests. 

 

Fig. 9. Experiment 2: Bidirectional learning. The firing state shown is that at 

t=0 of learning phase ①, where α and α’ are both stimulated. We tried 106 

times of a series of phase ①-③ tests. 

3.2. Experiment 2 

In each weight learning term, weight updates were only 

performed based on the transition from α in Experiment 1, as 

shown in Fig. 8. Therefore, we performed weight updates 

based on the information from the transmission side only, and 

did not have the information from the cell on the reception 

side that was the goal for the information. In Experiment 2, as 

an improvement to the learning process, we formulated a 

bidirectional learning process, where the states of both α and α’ 

were set as “1” at time t=0, and we then performed a path 

search up to t=63, as shown in Fig. 9. 
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3.3. Experiment 3 

In the weight learning processes of Experiments 1 and 2, the 

learning was based solely on the information of the α side and 

did not have access to the information of the β side, as shown 

in Figs. 8 and 9. Therefore, in Experiment 3, we used 

both-channel learning, as shown in Fig. 10. In this case, both 

states α and α’ are set to be “1” at time t=0 and the path search 

is then performed up to t=31. After that, we cleared all the 

states and set the states of β and β’ to be “1” at time t=0 and 

again performed the path search up to t=31. 

 

Fig. 10. Experiment 3: Both-channel learning. The firing state shown is that 

at t=0 of learning phase ①, where α and α’ are both stimulated. We tried 106 

times of a series of phase ①-③ tests. 

 

Fig. 11. Average numbers of full successes among 106 trials. Each experiment 

is repeated five times and the standard deviations are also shown as error 

bars. 

The results of Experiments 1, 2, and 3 are shown in Fig. 11. 

Here, full success means the case where both the α test and the 

β test succeeded. From each experiment, we can see that 2×2 

communication can be realized in the path search model based 

on randomly assigned initial weights. 

In addition, learning becomes easier to advance by using 

not only the information from the transmission side but also 

the information from the reception side, and we see that the 

number of successes increases from a comparison of 

Experiments 1 and 2, although it is not significant in the 5% 

level but is significant in the 10% level. We can also see from 

Experiment 3 that the number of 2×2 communication 

successes definitely increases by learning in both the α and β 

channels sequentially when compared with single channel 

learning in only α or β. 

3.4. Experiment 4 

In Experiment 3, by varying the parameters of the random 

firing rate or the firing threshold of the cell, and by performing 

reinforcement by simultaneous firing or reinforcement by a 

single clock period before firing, we observed the types of 

sequences that appeared most often when the 2×2 

communication was successful or when it failed. The 

parameters that we varied were two kinds of random firing 

rates of 0.1 and 0.05, four kinds of firing thresholds of 0, 0.25, 

0.5, and 0.6, and two kinds of reinforcement by simultaneous 

firing or by a single clock period before firing. 

The target sequences to be checked are the sequences with 

“1” at both ends and with lengths ranging 3 to 8 digits. This 

gives a total of 120 kinds of target sequence, as follows: 

Length 3: [1 1 1] of one kind; 

Length 4: [1 0 1 1], [1 1 0 1], [1 1 1 1] of three kinds; 

Length 5: [1 0 0 1 1], [1 0 1 0 1], …[1 1 1 1 1] of seven 

kinds; 

Length 6: [1 0 0 0 1 1], [1 0 0 1 0 1], …[1 1 1 1 1 1] of 15 

kinds; 

Length 7: [1 0 0 0 0 1 1], [1 0 0 0 1 0 1], …[1 1 1 1 1 1 1] of 

31 kinds; 

Length 8: [1 0 0 0 0 0 1 1], [1 0 0 0 0 1 0 1], …[1 1 1 1 1 1 1 

1] of 63 kinds. 

We classify these 120 kinds of sequences into two kinds of 

sequences: one where the arrangement of “0s” and “1s” is a 

random-type arrangement and another where the arrangement 

is not random, as follows. 

Case 1: Six output sequences composed of all “1s”, i.e., [1 1 

1], [1 1 1 1], …, [1 1 1 1 1 1 1 1] are regarded as non-random 

sequences. All others are regarded as random sequences. 

Case 2: In addition to the six kinds of non-random 

sequences composed of all “1s”, the three sequences of [1 0 1 

0 1], [1 0 0 1 0 0 1], [1 0 1 0 1 0 1] are also regarded as 

non-random sequences. That is, totally nine sequences are 

regarded as non-random sequences. The three sequences of [1 

0 1 0 1], [1 0 0 1 0 0 1], [1 0 1 0 1 0 1] may be called 

“semi-random” sequences. 

For these output sequences, we compare the numbers of 

their appearances when the communications succeeded and 

failed. We divide the number of appearances when successful 
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by the number of the appearances when the communication 

failed. Therefore, if these values exceed 1, then the sequence 

is relatively frequent when the communication is successful, 

and if the value is less than 1, the sequence is relatively 

frequent when the communication failed. We show the 

average rates of the detected sequences in the results for all 

parameters in Fig. 12 on the upper side, with an enlarged 

section on the lower side. 

From Fig. 12, we can see that the perfectly non

Fig. 12. Ratio of number of sequences in the cases of success/failure that appeared in the output trains for 120 kinds of sequences.

Fig. 13. Comparison of the ratios of numbers of sequences in the cases of 

success/failure that appeared in the output trains when varying the threshold 

(Th.). Av. means average. The semi-random sequences are regarded as 

random sequences in this case. 
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by the number of the appearances when the communication 

failed. Therefore, if these values exceed 1, then the sequence 

ation is successful, 

and if the value is less than 1, the sequence is relatively 

frequent when the communication failed. We show the 

average rates of the detected sequences in the results for all 

parameters in Fig. 12 on the upper side, with an enlarged 

From Fig. 12, we can see that the perfectly non-random 

sequences of [1 1 1], [1 1 1 1], and [1 1 1 1 1] with all “1” 

outputs had values of less than 1, while the other sequences 

tended to exceed 1. This result shows that when the 

communication succeeded, random

relatively frequently, and when the communication failed, the 

non-random sequences appeared relatively frequently. 

Therefore, this indicates that the random

contribute to the success of the communication.

Ratio of number of sequences in the cases of success/failure that appeared in the output trains for 120 kinds of sequences.

 

ratios of numbers of sequences in the cases of 

success/failure that appeared in the output trains when varying the threshold 

random sequences are regarded as 

Fig. 14. Comparison of the ratios of numbers of sequences in the cases of 

success/failure that appeared in the output trains when varying the threshold. 

The semi-random sequences are regarded as non

case. 
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sequences of [1 1 1], [1 1 1 1], and [1 1 1 1 1] with all “1” 

outputs had values of less than 1, while the other sequences 

tended to exceed 1. This result shows that when the 2×2 

communication succeeded, random-like sequences appeared 

relatively frequently, and when the communication failed, the 

random sequences appeared relatively frequently. 

Therefore, this indicates that the random-like sequences 

s of the communication. 

 

Ratio of number of sequences in the cases of success/failure that appeared in the output trains for 120 kinds of sequences. 

 

ios of numbers of sequences in the cases of 

success/failure that appeared in the output trains when varying the threshold. 

random sequences are regarded as non-random sequences in this 
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In Fig. 13, the output ratios of complete sequences, random 

sequences, and non-random sequences for various values of 

the threshold are shown. In this figure, the non-random 

sequences are again those composed of all “1s” (Case 1). We 

can see from Fig. 13 that, irrespective of the firing threshold, 

the random sequences appear more often when the 

communication succeeded than when communication failed. 

In Fig. 14, the results with regard to the nine kinds of 

non-random sequence, including the three kinds of 

semi-random sequence of [1 0 1 0 1], [1 0 0 1 0 0 1], [1 0 1 0 1 

0 1], are shown (Case 2). 

In addition, we know from the results shown in Fig. 14 that 

a difference in the ratio of the number of output random 

sequences and non-random sequences observed in the cases of 

communication success and failure increases when we 

increase the threshold. This indicates that when the firing 

threshold of the cell rises, the quantity of firing decreases, and 

the degree of difficulty of the information transmission and 

communication processes increases. In such situation, the 

random characteristics of the sequences became more 

important. 

As a result of the experiments, the factor that is most 

important to the success or failure of the communication is 

known to be the random characteristics of a sequence output 

by a cell in a path search model. 

3.5. Synchronous Lateral Inhibition-Type Reception 

We have confirmed in a previous loop-type multiplex 

communication neural network that when we know the time at 

which the signal is due to arrive at the receiving neuron, the 

lateral inhibition (LI)-type receptive field characteristic [15] 

was effective and its recognition rate was improved 

considerably [4]. This was a case where the network shape 

was fixed and the process was performed without learning. We 

also performed an experiment in the present neural network to 

receive a pulse train with LI-type receptive field under the 

assumption that the pulse train will arrive with the lowest 

possible delay. Because the pulse takes at least six clock 

cycles to arrive and never arrives at time 5 or earlier, the shape 

of the LI-type receptive field is set to be asymmetric, unlike 

the ordinary symmetric field, as shown in Fig. 15. We can see 

from Fig. 16 that the correct recognition rate is improved by 

about six times when compared with the results of 

Experiments 1, 2 and 3. The LI-type receptive field has 

characteristics in common with the living body neural network 

and this is also shown in this experiment, although it is 

assumed that the arrival time can be anticipated beforehand by 

the receptive neuron. This temporal anticipation ability 

contributes to the improved correct reception rate. Then, LI 

reception is classified as synchronous reception, while the 

previous simple counting reception methods of Experiments 1, 

2, and 3 can capture the signals irrespective of the time, and 

are thus called asynchronous reception methods. 

 

Fig. 15. Weight of LI-type temporal receptive field. 

 

Fig. 16. Numbers of full successes by LI-type temporal receptive field (LI: 

synchronous reception) among 106 trials shown for comparison with the 

results (Experiments 1, 2, 3; asynchronous reception) of Fig. 11. 

 

Fig. 17. Comparison of the ratios for success and failure of the number of 

sequences in pulse trains on average by asynchronous reception from Fig. 11 

vs. that by LI synchronous reception. 

We can see from Fig. 17 that in the LI reception case, while 

the ratios of the random and non-random sequences for 

success and failure were both close to 1, the difference 

between the cases of success and failure became small. 

However, the relative significance of the random sequences in 

LI reception seems to have increased. In this case, the three 

kinds of semi-random sequences are included in the 

non-random sequence (Case 2). 

4. Discussion and Conclusions 

In a previous paper, we proposed multiplex communication 

systems in neural networks. However, these systems are 

composed and designed such that they force the network to 

communicate in a multiplexed manner where “codes” or 

“temporal sequences” are inevitably induced. In this case, the 

network has a main loop and some coding/decoding circuits, 

and these aspects are somewhat artificial. In this paper, we 

have shown that without these artificial guidance aspects, it is 
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also possible to communicate via multiplexing on a 2D 

mesh-type neural network, where some learning procedures 

are used to find the paths from an originating neuron to a 

destination neuron. 

In this study, we built a path search model on a homogeneous 

mesh-type 2D neural network with a synchronous state 

transition; it was shown in the model that 2×2 multiplex 

communication was possible. In addition, given the possibility 

of multiplex communication, we knew that the random nature 

of the sequence of pulses output by a cell had an important 

meaning. Specifically, we found that multiplexing 

communication often failed when the network was observed to 

have many cells that produced less random firing phenomena 

(e.g., sequences such as “1111”), and, in contrast, we often 

succeeded in multiplex communication when the network was 

observed to have many cells that produced richly random firing 

phenomena (e.g., sequences such as “1101”). 

From these results, we knew that random sequences or 

strongly random sequences greatly enhanced the possibility of 

communication using methods such as time and space 

multiplexed communication, as well as artificial 

communication systems. We also found that when we can 

anticipate the signal arrival by LI-type synchronous reception, 

the communication success rate is greatly improved. 

While we could confirm the possibility of multiplexed 

communication on even homogeneous neural networks as a 

more difficult scheme, our scheme is still limited in that there 

are only two communication channels and the absolute values 

of the correct recognition rate are less than 0.5%, despite the 

addition of the learning ability to the proposed scheme. These 

aspects should be improved as the next stage of our work. 

Additionally, although the state transitions of cells in the 

present paper are synchronous throughout the network, the 

work should be extended to the asynchronous actions of the 

cells to investigate the intelligent functions of a natural 

neuronal network. These aspects will be addressed hereafter in 

our series of papers. 
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