
 

Automation, Control and Intelligent Systems 
2015; 3(4): 56-62 

Published online July 29, 2015 (http://www.sciencepublishinggroup.com/j/acis) 

doi: 10.11648/j.acis.20150304.12 

ISSN: 2328-5583 (Print); ISSN: 2328-5591 (Online) 

 

Evolutionary Model for Virus Propagation on Networks 

Arnold Adimabua Ojugo
1
, Fidelis Obukowho Aghware

2
, Rume Elizabeth Yoro

3
,  

Mary Oluwatoyin Yerokun
4
, Andrew Okonji Eboka

4
, Christiana Nneamaka Anujeonye

4
,  

Fidelia Ngozi Efozia
5 

1Dept. of Math/Computer, Federal University of Petroleum Resources Effurun, Delta State, Nigeria 
2Dept. of Computer Science Education, College of Education, Agbor, Delta State, Nigeria 
3Dept. of Computer Sci., Delta State Polytechnic, Ogwashi-Uku, Delta State, Nigeria 
4Dept. of Computer Sci. Education, Federal College of Education (Technical), Asaba, Delta State, Nigeria 
5Prototype Engineering Development Institute, Fed. Ministry of Science Technology, Osun State, Nigeria 

Email address: 
arnoldojugo@yahoo.com (A. A. Ojugo), ojugo_arnold@yahoo.com (A. A. Ojugo), aghwarefo@yahoo.com (F. O. Aghware), 

rumerisky@yahoo.com (R. E. Yoro), an_drey2k@yahoo.com (A. O. Eboka), agapenexus@hotmail.co.uk (M. O. Yerokun), 

anujeonyechristy@gmail.com (C. N. Anujeonye), fenngo31@yahoo.com (F. N. Efozia) 

To cite this article: 
Arnold Adimabua Ojugo, Fidelis Obukowho Aghware, Rume Elizabeth Yoro, Mary Oluwatoyin Yerokun, Andrew Okonji Eboka, Christiana 

Nneamaka Anujeonye, Fidelia Ngozi Efozia. Evolutionary Model for Virus Propagation on Networks. Automation, Control and Intelligent 

Systems. Vol. 3, No. 4, 2015, pp. 56-62. doi: 10.11648/j.acis.20150304.12 

 

Abstract: The significant research activity into the logarithmic analysis of complex networks will yield engines that will 

minimize virus propagation over networks. This task of virus propagation is a recurring subject and design of complex models 

will yield solutions used in a number of events not limited to and include its propagation, network immunization, resource 

management, capacity service distribution, dataflow, adoption of viral marketing amongst others. Machine learning, stochastic 

models are successfully employed to predict virus propagation and its effects on networks. This study employs SI-models for 

independent cascade and the dynamic models with Enron dataset (of e-mail addresses) and presents comparative result using 

varied machine models. It samples 25,000 e-mails of Enron dataset with Entropy and Information Gain computed to address 

issues of blocking, targeting and extent of virus spread on graphs. Study addressed the problem of the expected spread 

immunization and the expected epidemic spread minimization; but not the epidemic threshold (for space constraint). 

Keywords: Stochastic, Immunize, Network, Vertices, SIS, SIR, Search Space, Solution, Models 

 

1. Introduction 

Networks are dynamic and their normal operation is 

continually threatened by unethical users referred to as 

hackers. They employ use of harmful and malicious 

programs called malware to wreak havoc to users of 

networks. Today, Internet has become a high target for the 

spread of such malwares – as hackers do damage globally, 

much more easily and faster. Thus, its early detection is 

imperative to minimize damage caused by it (Desai, 2008). 

Malwares are known to attach copies of itself, alters the 

behaviour as well as modifies attributes of its host machine’s 

files without user’s knowledge (Szor, 2005). Malwares also 

can sometimes, modify their codes as they infect, to include 

an evolved copy (Dawkins, 1989). Malwares are grouped 

into simple, encrypted, polymorphics and metamorphic 

viruses. Malware are considered malicious software if they 

consist of codes, scripts, active contents and other software – 

designed to disrupt or deny operations, gather information 

that tends to loss of privacy or exploitation, gain 

unauthorized access to system resources, and other abusive 

behaviour (Singhal and Raul, 2012). Thus, software codes 

are considered a malware based on the perceived intentions 

of its creator rather than any particular feats. 

Antivirus (AVs) is designed to detect, prevent and remove 

malwares such as viruses, worms, Trojans, spyware and 

adware. AVs detection mechanism are broadly grouped into: 

(a) signature-based scans for signature, and to evade it – 

virus makers create new virus strings that can alter their 

structure while keeping its functionality via code obfuscation, 

and (b) code emulation creates sandbox so that files are 

executed within it while scanning for virus. If virus is 

detected, it is no threat as it is running in controlled 

environment that limit damage to host machine (Singhal and 
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Raul, 2012). 

AVs can often impair system performance as any incorrect 

decision may lead to security breach since it runs at the 

operating system’s kernel. If an AV uses heuristics, its 

success depends on a right balance between positives and 

negatives. Today, virus may no longer be executables but 

macros, which present security risk and antivirus heavily 

relies on signature-detection. Some viruses evade detection 

effective (Filiolel, 2005) via code obfuscation and encryption 

methods. Studies show the best AVs can never yield a perfect 

detection since all scanners can yield a false positive result 

and identify benign files as malware (Bishop, 2005). 

The idea is to model a network using graph theory with 

emails as nodes. It implements SI (susceptible-infect) design 

for virus propagation on graph with a view of immunization 

problem that helps to deal with extent, targeting and blocking 

of virus propagation on a network. SIR model with 

independent cascade is used as it aid inoculated nodes stay 

completely invulnerable to viral attacks. 

1.1. Network Topologies 

Networks are used for spreading of data – making it easier 

for users to disseminate useful data as well as viruses. The 

problem of virus propagation has been a recurring subject and 

ongoing research notes that every harmful data spread over 

such networks are considered as malware or viruses as can be 

interchangeably used; while the process of impeding the 

spread of such harmful data (malware) over such social 

network is referred to as network immunization. This aims to 

prevent the spread of such malwares, protect such networks 

from virus attacks and control data and sensitive information 

leakages – while at same time noting that our resources such as 

vaccination, AVs and influences are quite costly and limited in 

their capability to discover such malware. With such AVs and 

vaccinations, users aim to achieve the best effect; while still 

allocating the least resources possible (Ojugo et al 2013). 

Hackers (or adversary) wreak more havoc being aware of 

the propagation model used to avert such attacks. In simplest 

form, a social network is seen as a complex graph. Thus, the 

propagation model has as input a graph G = (V,E), state vector 

��(�)for each node vertex v ∈ V at t, and an internal parameter 

vector P. Based on the states of all interacting nodes, it outputs 

a new state vector ��(���)for each node at t+1. Models are 

applied to synthetic data with graph types (Mitchell, 1997; 

Giakkoupis et al, 2010; Kermach and McKendrick, 1927; 

Pastor-Satorras and Vespignani, 2002) as: 

a. Scale-Free Networks: Probability that node x in network 

is of degree k is proportional to k
-γ
 with γ  > 1. Scale free 

graph are modeled as by Barabasi and Albert (1999). It 

inserts nodes sequentially with each node linked to an 

existing one chosen with a probability proportional to its 

current degree in a tree-fashion with 

grandparent-parent-children-grandchildren structure and 

it builds graph with exponent γ = 3 denoted with Gsf. 

Each node in the graph can be autonomous but must be 

connected to an existing one. Thus, two nodes are 

connected together on the graph via physical link 

between two corresponding autonomous systems. Such 

is referred to as Autonomous Systems. Another scale free 

graph consists of undirected edges between nodes, also 

termed Co-Author graphs. 

b. Small World Networks are those with small 

characteristics path length L (the average shortest path 

between any pair of vertices) and large clustering 

coefficient C (the average fraction of pairs of neighbours 

of a node also connected to each other). We generate 

small-world graphs using the generating model proposed 

in Watts (1999). GswL denotes small-world graphs with 

path length feat; while GswC to denote those of large 

clustering coefficient. 

Graphs GswL are influenced by α, which intuitively 

determines the probability of two nodes being connected 

given a number of their common neighbours. It controls to 

what extent the graph has small and densely connected 

components. As α nears infinity, GswL becomes a random 

graph. Conversely, graphs of GswC are influenced by q, which 

determines the probability of an edge in the lattice being 

rewired to connect to a random node in the graph. Thus, 

initialized on a ring lattice, each node is of degree k. Small 

values of q entails G has high clustering coefficient and large 

average path length; while large values q creates random 

graphs. For q-values close to 0.01, the generated graphs are 

small-world graphs. Note that GswL, GswC and Gsf are quite 

distinct graphs. 

1.2. SI-Models for Epidemic Spread 

Two major models are: Susceptible-Infect-Remove (SIR) 

and Susceptible-Infect-Susceptible (SIS). In SIR, a node may 

be in any of these states: (a) susceptible: if the node has no 

virus but will become infected if it is exposed to it, (b) infected: 

if the node has the virus and can pass it on to others, and (c) 

removed: if the node had the virus but has been recovered or 

virus dies. The node is permanently immunized and can no 

longer participate in propagation, and a particular node cannot 

be infected twice. Conversely SIS, a node can be cured but not 

immunized. Thus, it can be infected again. Such node switches 

between susceptible and immunized. 

Giakkoupis et al (2010) and Lahiri and Cebrian (2010) A 

graph holds these definitions as true: 

a. Network is directed or undirected graph for propagation 

of virus. A node is represented as v ∈ V; and edge (u,v) ∈ 

E represents interactions between two individuals or 

nodes in the system. It also assume that the graph is 

drawn from a specific family (algorithm consider all 

possible graphs). For G = (V,E) as a dynamic network, E 

is set of edges that are time-stamped, (u,v)t ∈ E are 

interactions at t ∈ Z
+
. In a typical SI setting, set of nodes 

are initialized as activated. The propagation process 

proceeds in discrete time-steps such that at each 

time-step, an activated vertex may come in contact with 

inactive vertices. This continues till a stop criterion is 

satisfied or there are no more inactive vertices. 

b. The virus propagation model that determines how the 

virus is spread on the network. 
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c. Immunization model aims to minimize viruses spread 

and an immunized node cannot transfer or receive a virus. 

It is conceptually removed from graph. Cost of 

immunization model is, number of nodes immunized. 

d. Adversary with knowledge of the propagation model, 

plants d copies of virus in G, to maximize speed of 

spread is denoted as Fd. An adaptive adversary is one 

who has knowledge of choices made by immunization 

algorithm; while a randomized adversary places copies 

of virus, uniformly at random on the network. 

1.3. Independent Cascade Model 

It is a discrete-time special case SIR model in which at t = 0, 

an adversary inserts d copies of virus to some nodes on graph. 

If node x is infected the first time at t, it has single chance to 

infect any neighbours y currently uninfected. Probability that x 

succeeds with y is Pxy. If x succeeds, y is infected at t+1; Else, x 

tries again in the future (even if y gets infected by another 

neighbour). This process continues and stops after n-steps if 

no more infections are possible. It requires a nodes stay 

infected exactly once and it is the independent cascade model 

following Kempe et al (2003). Graph of size M, has Md subset 

of nodes and d copies of virus placed on the network. With 

propagation complete, S(Md,G) is expected number of 

infected nodes. Expectation exceeds all random choices made 

by propagation model. Eq. 1 is maximum expected number of 

infected nodes and maximum exceeds all possible initial virus 

placements. 

��(	) = 	max�� 	�(�� , 	)             (1) 

�� = ���max�� 	�(�� , 	) corresponds to choices made 

by an adaptive adversary. Sd(G) is epidemic spread in G. A 

similar definition of epidemic spread of randomize adversary 

is Eq. 2, that defines expected epidemic spread as where the 

expectation takes over all possible positions of the d viruses 

placed on the network and given by: 

���(	) = 	E��[ �(�� , 	)              (2) 

1.4. Dynamic Propagation Model 

In SIS, viruses are seen as dynamic birth-death process that 

evolves overtime. It continues to either propagate or 

eventually die. An infected node x spreads virus to node y in 

time t with infection rate of 
�
� and probability β. At same time, 

an infected node may recover with probability δ. With 

adjacency matrix T, λ1(T) is largest eigen-value of T. The 

condition 
�
� < 

�
λ�( ) holds true as epidemic threshold and is 

sufficient for quick recovery, easily proven (Ganesh et al, 

2005; Wang et al, 2003. 

2. Statement of Problem 

While networks are an effective way to spread data, they 

also help with spread and propagation of malwares and viruses. 

These have significant implication on the network as it can 

destroy user data and/or become a means to retrieve useful, 

confidential data from unsuspecting users. It thus becomes 

imperative to deal with means that help user curb the spread of 

viruses on networks. 

3. Network Immunization Problem: 

Proposed Framework / Design 

Typical challenges in SI propagation model are: 

1. Extent: With specific subset of initially activated vertices 

in network and propagation model used, how many 

vertices are expected to be activated after a specific 

time/period? 

2. Targeting: Which vertices are targeted as initiators by an 

adversary to result in max extent of spread (Cohen et al, 

2003)? This is a hard NP to solve optimally, regardless of 

propagation model used (Kempe et al, 2003) 

3. Blocking: Which vertices are targeted for immunization 

to minimize the expected number of activated vertices 

(Singhal and Raul, 2012; Dezso and Barabasi, 2002)? 

The immunization problem is thus defined as thus: 

Problem 1 – Spread Immunization: Given graph G, a 

number of d initial copies of viruses and number k. We 

immunize k nodes in G such that expected spread ��(	′) in 

the immunized graph is minimized. The role of the adversary 

is played by the influence-maximization model of Kempe et al 

(2003), whose proof is omitted due to space constraint. 

Problem 2 – Expected Epidemic Spread Minimization: 

Given graph G, a number of d initial copies of viruses and a 

number k. We immunize k nodes in G such that the expected 

epidemic spread ���(	′)  in the immunized graph is 

minimized. As a hard NP-complete task that attempts to 

immunize G with random strategy for influence spread and 

closely related to the sum-of-squares partition task as studied 

in Aspnes et al (2005). 

Problem 3 – Threshold Maximization: Given G, a number 

of d copies of viruses and an infection rate of 
�
�, we immunize 

the minimum number of k nodes in G so that 
�
� < 

�
λ�( ) holds 

true. Thus, the epidemic spread ���(	′)  in the graph is 

minimal. The task attempts to immunize G with influence 

spread while seeking the minimal number of nodes that can be 

immunized. 

4. Experimental Framework 

Machine learning as a branch of artificial intelligence is a 

scientific discipline that deals with development and design of 

algorithms that allows machines (computers) to evolve its 

behaviour based on empirical data such as sensors data and 

databases. A learner takes advantage of data to capture its 

characteristics of interest of their underlying and unknown 

probability distribution. Such data may illustrate relationships 

between observed variables. Major focus on machine learning 

is to automatically learn to recognize complex patterns and 

make intelligent decisions from it (Singhal and Raul, 2012). 
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4.1. Dataset 

The Enron e-mail dataset is one of the largest, e-mail dataset 

available, representing a dynamic social network. Each node 

in network is an e-mail address with a directed time-stamped 

edge as e-mail sent between two addresses. Lahiri and Cebrain 

(2010) obtained all e-mail headers of 1,326,771 time-stamped 

e-mails from 84,716 addresses and 215,841 unique 

timestamps as non-uniformly covering a period of 

approximately 4years. 

We sampled a subset of 25000 addresses representing about 

30% for the graphs Gsf, GswL and GswC families. In all cases, we 

used p = 0.25, q = 0.009 and α = 6 to generate the graphs. 

These result in models’ graph having low average path length 

and high clustering coefficient. There exists the relationship 

between parameters (p, q and α) and the clustering coefficient 

as studied in (Watts, 1999). α starts with value 1 till it reaches 

6. The clustering coefficient drop as α increase and for small 

values of q, high clustering coefficient is observed while 

clustering coefficient drops as q tends to 1. 

4.2. Genetic Algorithm (GA) 

GA is inspired by Darwinian evolution (survival of fittest) 

and consists of a pool of solutions chosen for natural selection 

to a specific task. Each potential solution is an individual for 

which an optimal is found via four operators namely: initialize, 

select, crossover and mutation (Coello et al, 2004). Individuals 

with genes close to its solution’s optimal is said to be fit, and 

the fitness function determines how close an individual is to 

the optimal solution. 

Theorem 1: With G, adjacency matrix T and infection rate 
�
�. 

�
�  < 

�
λ�( )  is true, if expected time for virus to die is 

logarithmic. This is a function of the number of nodes in the 

graph against an adversary. Many interesting families of 

graphs holds too that 
�
�  > 

�
λ�( )	 is recovery rate – so that 

expected time at which virus dies out is exponential, known as 

Epidemic threshold. 

GA achieves its fitness function as it finds solution to the 

network. Its dynamic, non-linear model can be made linear so 

as to resolve it analytically. The dynamic nature of graph as 

social network makes them impossible to resolve analytically 

using non-linearity (if considered as a multiple copies model). 

Let v
t
 be an n-dimensional vector of states at t-steps and "�� is 

number of virus copies at node x at t-steps. Initialized at t = 0, "�#is number of d copies planted by an adversary. At t+1, the 

model evolves for (all) nodes x,y,z in the network, and for each "�� copies of virus planted at node x, virus is propagated to 

node y with probability β. Virus dies with probability 1 – δ, 

and if ∆ = βT + diag(1 – δ,…, 1 – δ) is true, "�is the expected 

state of system at time t. Then, model is completely linear if ∆"� = ∆"��� proven as in (Giakkoupis et al, 2010; Kempe et 

al, 2003; Kleinberg, 2007 and Hethcotee, 1989). 

For GA, operators are (Lahiri and Cebrian, 2010): 

a. Initialize/Select: For edge (u,v) at time t, let its 

corresponding state string be coded as �%(�) and ��(�) 
vectors respectively, which are interactions between the 

nodes. Thus, we select �%(���) = �%(�)	and ��(���) = ��(�). 
b. A crossover point C is randomly and uniformly selected 

from the interval [1,β]. Two new states strings or vectors 

are created by swapping the tails �%(�)�&'��(�) - where 

tail is defined by all positions including and after the 

index C. let these two new vector states strings be 

denoted as st1 and st2 respectively. 

c. Objective score of each new state vector is then 

evaluated according to the fitness function f(x). if any of 

them have a greater fitness value that either of their 

parent node, the corresponding parent nodes state vector 

string is replaced by its offspring for the next iteration, 

achieved via: 

�%(���) =	argmax*∈{-.(/),-.(/0�),1��,1�2} 4(5)     (1) 

��(���) =	argmax*∈{-6(/),-6(/0�),1��,1�2} 4(5)     (2) 

In the case of ties in fitness score between original and a 

new string vector, its original string vector is retained – as the 

offspring cannot outperform its parent. This model is close to 

GA with spatially distributed population GASDM (Min et al, 

2006; Payne and Eppstein, 2006) – except that the GA’s 

selection operator is replaced with real social network data 

that dictates the sequence of mating operation. The 

propagation in GASDM occurs as states vector and are 

modified using crossover. After which, they are subsequently 

adopted based on fitness value. Major missing components to 

add meaning to this mapping is the choice of its fitness 

function, f(x). 

Study proposes that the objective/fitness function be 

achieved via Information Gain. 

4.3. Decision Tree / IDA 

It uses hill-climbing to search a space for optima. Once a 

peak is found, it restarts with another randomly chosen 

starting point (as such peak may not be the only one that 

exists). Its merit is simplicity with functions with too many 

maxima. Each random trial done in isolation helps immunize 

the nodes and overall shape of the domain is transparent to an 

adversary – because, as random search progresses, it continues 

to allocate its trials evenly over the space and evaluates as 

many points in the both regions found with low- and 

high-fitness values. Its choice is in selecting feats and 

attributes in graph to test is via information gain at each step 

while it grows the graph. The algorithm as Mitchell (1997) and 

Ojugo et al, (2012) is thus: 

1. DT (Examples, Target_Attribute, Attributes) 

2. //Data Attributes are feats to be tested. 

Target_Attribute are 

3. //values predicted. Return is decision to correctly 

detect Example 

4. Create a Root node of Graph 

5. If Examples are positive, Return single_node Root 

with label = + 

6. If Examples are negative, Return single_node Root 

with label = - 
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7. If Attribute is empty, Return single_node Root, with 

label = most  

8. common value of Target_Attribute in Examples 

9. Otherwise Begin 

a. A � attribute from attributes that best* classifies 

Examples 

b. The decision attribute for Root � A 

c. For each possible value vi, of A, 

d. Add new branch to G below Root, corresponding to 

A = vi 

e. Let Examples vi be subset of Examples with value vi 

for A 

f. IF Examples vi = empty  

g.   THEN add leaf to new branch with label = most 

common  

h.      value of Target_Attribute in Examples 

i.   Else below this new branch, add the subtree 

10. IDA(Examples vi, Traget_Attributes, Attributes – 

{A}) 

11. End 

12. Return Root 

Random Forest Algorithm as a decision tree predictor in 

which each individual is trained on partially, independently 

sample set of instances selected from the complete training 

dataset. Predicted output of a classified instance is the most 

frequent class output of the individual trees (Szor, 2005; 

McGraw and Morrisett, 2002; Mitchell, 1997). 

Bayesian Belief Model describes probability distribution of 

a set of nodes on G by specifying a set of conditional 

independent assumptions along with a set of conditional 

probabilities. Thus, allows stating conditional assumptions 

that applies to a subset of nodes on the network by providing 

an intermediate and more tractable solution unlike Naïve 

Bayes that applies to each instance that assumptions of each 

graph attribute values are conditionally independent of the 

target value. Thus, the assumptions is that given target value of 

an instance, the probability of observing the interactions 

between nodes in the graph is the product of their probabilities 

from the individual attributes (Szor, 2005; Alpaydin, 2010; 

Mitchell, 1997, Harrington, 2012). 

Entropy characterizes impurity of an arbitrary collection of 

nodes on G, which contains both activated (infected) and 

inactive (uninfected) node. The Entropy is a Boolean 

classification given by: 

7&8�9:;	(7) ≡ 	−:⊕?9�@	:⊕ −	:⊖?9�@	:⊖   (3) 

Sample consists of n=25000 e-mail address from which we 

have normal/infected nodes to form G. Normal (inactive/p+) = 

20000, infected (activated/p-) nodes where adversary plants 

viruses p- = 5000. To compute Entropy, we have: 

7&8�9:;	(7) ≡	−2000025000 ?9�2	
20000
25000−	

5000
25000?9�2	

5000
25000	 

7 ≡ [−(0.8)?9�@	(0.8)G − [(0.2)?9�@	(0.2)G = 0.0775 + 0.1398= 0.22 

Information Gain is the expected reduction in entropy 

caused by partitioning the network according to its attributes 

(infected and uninfected) nodes. IG is info about target 

function value, given the value of another attribute A. IG of 

attribute (A) is given by Eq. 4. The Values(A) is set of all 

possible values of Attribute A, Ev is E subset of attributes A 

with value v. Our second is the expected entropy after 

partitioning with attribute A (sum of all entropies of each 

subset Ev weighted by fraction of 
M6
M 	of Ev). 

	�N&(7, �) ≡ 7&8�9:;(7) − ∑ |M6|
|M|�∈QRS%T1(U) 7&8�9:;(7�)    (4) 

≡ 7&8�9:; − V |7�||7|�∈{WXRY�W�T,WZZ%XW[T�}
7&8�9:;(7�) 

	�N&(7, �) ≡ 0.220 − \ 800025000 ∗ 0.811^ −	\
23000
25000 ∗ 0.921^= 	0.220 − {−	0.587} ≡ 0.220 + 0.58	= 0.807	 

Thus, we choose only top 80% of nodes that are most likely 

to be infected. IG is updated as below: 

	�N&(7, �) ≡ 	�N&(7, �) ± `∑ 	�N&(aW)XWbc & d	 
4.4. Result Findings and Discussion 

After training/testing, model results discovered that with the 

same amount of seed nodes (that is, viruses planted in the 

same number of nodes in this case, 5000nodes, on a network), 

the extent of the network that is blocked from virus attack is 

22%; while 81% of the nodes are targeted before a complete 

network immunization is performed. However: 

a. GA took 21seconds to find the solution after 98 iterations 

(best). CGANN was run 15-times and it found optima 

each time. Its convergence time that varied between 

21seconds and 4 minutes and depends on how close the 

initial population is to the solution as well as on mutation 

applied to the individuals in the pool. The model is able 

to immunized 90% of the nodes before the virus 

eventually dies out. 

b. IDA (at best) took 18seconds after 321 iterations. It was 

run 25 times and solution found each time on a range 

between 4seconds and 3minutes. In addition to the facts, 

the model is able to immunized 94% of the nodes before 

the virus eventually dies out 

c. RFA arrived at solution 2.112seconds after 401 iterations. 

In addition to the facts as stated earlier on its extent and 

targeting, the model is able to immunized 97% of the 

nodes before the virus eventually dies out. 

4.5. Rationale for Choice of Algorithms 

The comparisons are as follows: 

� Stochastic Model: are mostly inspired by evolution laws 

and biological population cum behaviors. They are 

heuristics that search a domain space for optimal solution 

to a task. They use hill-climbing method that are flexible, 

adaptive to changing states and suited for real-time 

application. GA guarantees high global convergence to 
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optimal point for multimodal tasks. It initializes with a 

random population, allocates increasing trials to regions of 

space found with high fitness and finds optimal in time. Its 

demerit is that they are not good with linear systems in that 

if the optimal is in a small region surrounded by regions of 

low fitness – the function becomes difficult to optimize. 

� Gradient/Greedy Search: A number of different methods 

for optimizing well-behaved continuous functions have 

been developed which rely on using information about 

the gradient of the function to guide the direction of 

search. If the derivative of the function cannot be 

computed, because it is discontinuous, for example, 

these methods often fail. Such methods are generally 

referred to as hill-climbing. They can perform well on 

functions with only one peak (unimodal functions). But 

on functions with many peaks, (multimodal functions), 

they suffer from the problem that the first peak found 

will be climbed, and this may not be the highest peak. 

Having reached the top of a local maximum, no further 

progress can be made. 

� Iterative Search is a combined random and gradient 

search that also employs an iterated hill-climbing search. 

Once one peak has been located, the hill-climb is started 

again, but with another, randomly chosen, starting point. 

This technique has the advantage of simplicity, and can 

perform well if the function does not have too many local 

maxima. However, since each random trial is carried out 

in isolation, no overall picture of the shape of the domain 

is obtained. As random search progresses, it continues to 

allocate its trials evenly over the search space. This 

means that it will still evaluate just as many points in 

regions found to be of low fitness as in regions found to 

be of high fitness. 

5. Conclusion 

Models have been successfully used today to determine 

epidemic spread of viruses. Many studies recently on the 

mathematical epidemiology is focusing on the analytic 

epidemic thresholds for varying propagation models and 

different families of network – seeking insight into the nature 

of such epidemic existence, its threshold and to unveil if such 

epidemic will continue to spread or eventually die out 

(Bougna et al, 2003; Barthelemy et al, 2005; Barabasi and 

Albert, 1999). Models serve as educational, predictive tools to 

compile knowledge about a task. They also serve as a new 

language to communicate hypotheses, investigate parameters 

crucial in estimation and help us gain better insight to a 

problem domain. Thus, their growth, development, sensitivity 

and failure analysis helps reflect on the theories and 

functioning of nature systems. 
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