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Abstract: The goal of this paper is to consider a co-design approach between the controller of a process control application 
and the frame scheduling for CAN-Based Networked Control Systems in order to simultaneously improve the Quality of 
Control (QoC) of the process control and the Quality of Service (QoS) of the CAN-based network. First, we present a way to 
calculate the closed-loop communication time delay and we compensate this time delay using the pole-placement design 
method. Second, we propose a hybrid priority scheme for the message scheduling which allows to improve the QoS. Finally, 
we present a co-design of the communication time delay compensation and the message scheduling, which gives a more 
efficient Networked Control System. 
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1. Introduction 

The study and design of Networked Control Systems 
(NCSs) is a very important research area today because of its 
multidisciplinary aspect (Automatic Control, Computer 
Science, and Communication Network). The current 
objective of NCS design today is to consider a co-design in 
order to have an efficient control system [1, 2]. Several 
works [2-6] have considered the co-design problems by 
combining control and scheduling messages. The works [2, 
3] have considered the pole-placement design for time delay 
compensation and Large Error First (LEF) scheduling 
algorithm for message scheduling. The value of error is 
encoded directly into the priority. The higher the error is, the 
higher the message priority is and vice versa. A limitation is 
that, we have a wide range of the error value and this is not 
bounded (for example when the system is unstable, the error 
is infinite). Mapping these error values in the definite 
number of priority bits is not an easy task. Paper [4] has 
considered a hybrid priority scheme for message scheduling 
using the control signal u. The identifier field of the message 
which represents the message priority is divided into 2 small 
fields, the first represents a static priority and the second 
represents a dynamic priority. However, the limitation of this 
work is to only use 4 bits for static priority field, so they can 
determine a maximum number of 16 data flows (or nodes) 
which is not enough to address all nodes in a NCS. The work 
[5] only compensates the time delay from the controller to 

the actuator, not the closed-loop time delay. The work [6] 
considers the issue of co-design combines scheduling 
messages (static priority scheduling) and communication 
delay compensation. 

From the above analysis, we found the same problem 
co-design of NCS design by combining control system 
(considering delay compensation issues) and communication 
networks (considering message scheduling problems) is a new 
field many investors and should be studied more. Therefore, in 
this paper will present the co-design of closed-loop time delay 
compensation and the message scheduling to improve QoC and 
QoS simultaneously and to have a more efficient NCS. 

This paper includes the following sections: the section 2 
presents the general context of the study; the section 3 
presents the proposal for computation and compensation of 
closed-loop time delay; the section 4 presents the proposal 
of a hybrid priority scheme for message scheduling; the 
section 5 presents the co-design; the conclusion is 
represented in the section 6. 

2. Context of the Study 

2.1. Inverted Pendulum Application 

Structure diagram of an inverted pendulum mounted on a 
trolley is shown on Fig. 1.  

The parameters are chosen as follows: the weight of the 
trolley M = 0.94 kg, the trolley has the weight of m = 0.23 kg 
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and the length of l = 0.3m, free fall acceleration g = 9.81m/s2, 
θ is the deviation angle of the pendulum, x is the position of 
the vehicle, u is the force putting into the trolley.  

The purpose of the control problem is to move the trolley 
from position x0 = 0 (initial position) to desired position x1 = 
0.1m while keeping the pendulum vertical θ(t) = 0.  

 

Fig 1. Structure diagram of an inverted pendulum mounted on a trolley. 

The set point x1 is a position echelon type applied at the 
time 0.5t = s. The desired control parameters include: 
damping coefficient ζ = 0.707, rise time tr = 600 ms, natural 
pulsation 1.8 3

n r
tω = = rad/s. 

State space model in continuous time [7]: 
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State-space model in discontinuous time domain with the 
sampling period h is described as follows [7]: 
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Where: 

AheΦ =                  (3) 
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h
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The discrete controller is: 

( ) ( )
d

u kh K x kh= −              (5) 

The sampling period h is defined by considering the 
following formula [7]: 

0.1 0.6
n
hω≤ ≤                (6) 

Where ωn is the natural pulsation (rad/s). We choose the 
sampling period h = 50 ms.  

The state matrix Φ and Γ are calculated by Equation (3) 
and (4). The state feedback matrix Kd is calculated by using 
Ackerman function. 

The performances of the discrete time system are as 
followed: the Overshoot of the angle O = 5.07 %, the setting 
time ts = 0.4 s, and the time responses are shown on Fig. 2. 

0 1 2 3 4
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Time (s)

x (m), θ (rad)

x

θ

 

Fig 2. Time responses. 

2.2. Implementation of a Process Control Application on a 

CAN Network 

The general model of the implementation of a process 
control application through a network is shown on Fig. 3. 

 

Fig 3. Implementation of a process control application on a CAN network. 

We have three tasks: sensor task, controller task and 
actuator task. The sensor task is Time-Triggered while the 
controller task and the actuator tasks are Event-Triggered.  

The sensor receives the sampled output yk provided by 
the Analog Digital Converter (ADC) and sends a frame 
including yk to the controller via the communication 
network. The controller receives yk from the sensor, then 
calculates the control signal uk and sends a frame 
including uk to the actuator via the communication 
network. The actuator receives uk, converts uk into analog 
signal (u(t)) using the Digital Analog Converter (DAC) 
and then directly applies u(t) to plant. The Zero Order 
Hold (ZOH) keeps the value u(t) until the reception of the 
next value.  

We have two flows of frames: the Sensor-Controller 
flow (fsc) concerning the frames going from the sensor to 
the controller (denoted “fsc frame”), and the 
Controller-Actuator flow (fca) concerning the frames 
going from the controller to the actuator (denoted “fca 

frame”).  
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2.3. Communication Time Delay 

Communication time delays in each sampling period 
consist of 2 components: 
• The time delay is due to transferring fsc frames (noted τsc) 

which is the duration between the sampling instant (tk, k 
= 0, 1, 2…) and the reception instant of this frame by the 
controller. The time delay τsc  includes the waiting time 
for medium access and the transmission time of a fsc 
frame (noted Dsc) 

• The time delay due to transferring fca frames (noted τca) 
elapsed from the ready-to-send instant of the fca frame till 
the reception instant of this frame by the actuator. The 
time delay τca  includes the waiting time for medium 
access and the transmission time of a fca frame (noted 
Dca)  

Note that Dsc and Dca can be easily calculated based on the 
frame length and the network bit rate. 

Therefore, the communication time delay of a closed-loop 
control system is: 

sc ca
τ τ τ= +                 (3) 

In this paper, we consider the following hypotheses: 
• Communication time delay τ < h. 
• Computational time in the controller, sensors is 

neglected. 
• There is no data loss. 
• Clocks of the sensor and the controller are synchronized, 

i.e. the controller recognizes the sampling instant tk. 

2.4. Model of NCSs under Communication Time Delay  

As shown in Fig. 3, a NCS has a continuous plant 
(Equation (8)) and a discrete controller (Equation (9)).  
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Where x(t) is the state vector, u(t) is the input vector and 
y(t) is the output vector, A is the system matrix, B is the input 
matrix, C is the output matrix, D is the connected matrix. 
And Kd is the state feedback gain matrix. 

State-space model in discrete time domain with the 
communication time delay τ  is described as follows: 
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Where Φ, Γ0(τ), Γ1(τ)  are the state matrix defined as 
follows: 
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State-space model in Equation (10) can be re-written as 
follows: 
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The discrete controller is: 
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Note that the parameters in Equation (10) and Equation 
(13) depend on h and τ.  

2.5. Stability Analysis 

Equation (13) can be rewritten as follows: 
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The matrix of the closed-loop control system is defined as 
follows: 
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With each different sample period, we will find Φcl. We 
call k is the number of sampling period; we have the 
following cases: 
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Thus the closed-loop matrix will be the product of the 
matrix elements, which are calculated as follows: 
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Closed-loop matrix in Equation (17) is used to analyze the 
stability of feedback control systems. 

The stability condition is that largest eigenvalue of a 
closed-loop matrix (Equation (17)) is smaller than 1 [8]: 
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2.6. Global Control System which is Considered 

We now present the system which will be analyzed in this 
work by means of the simulator TrueTime [9], a toolbox 
based on Matlab/Simulink which allows to simulate 
real-time distributed control systems. 

2.6.1. General Considerations 

We implement 8 identical process control applications 
(noted P1, P2... P8) through a CAN network (Fig. 4). So we 
have 24 different nodes connected through a CAN network 
and 16 data flows (8 fsc and 8 fca flows) sharing the network. 
We consider other parameters and conditions as followed: 
• Bit rate = 125 Kbit/s. 
• Data field length of a frame = 8 bytes. Thus, Dsc = Dca = 

150 bits [10]. 
• The sensor tasks are synchronous and have the same 

sampling period. 

 

Fig 4. Implementation of 8 process control applications on the CAN 

network. 

The scheduling of the frames is done in the MAC layer by 
means of priorities represented by the Identifier (ID) field of 
the frame.  

Generally, the priorities are static priorities, i.e. each flow 
has a unique priority (specified a priori out of line) and all 
the frames of this flow have the same priority. Concerning 
the priorities, we will consider here either static priorities 
(i.e. each flow has a unique priority specified out of line) or 
hybrid priorities (as we said in the introduction) i.e. with two 
priority levels. One level represents the flow priority which 
is a static priority. The other level represents the frame 
transmission urgency. The urgency can be the same for all 
the frames of the flow and, in this case, the transmission 
urgency is also a static priority. The urgency can vary (for 
example, if the conditions of the application, which uses the 
flow, change) and, in this case, the transmission urgency is a 
dynamic priority. This concept has a great interest during the 
transient behavior of systems [12, 13]. 

The consideration of hybrid priorities requires structuring 
the field ID in two levels (Fig. 5) where the Level 1 
represents the flow priority and the Level 2 represents the 
urgency priority [4].  

 

Fig 5. Structure of the ID field. 

In the context of the competition based on these hybrid 
priorities, the frame scheduling is executed by comparing 
first the bits of the Level 2 (urgency predominance). If the 
urgencies are identical, the Level 1 (static priorities which 
have the uniqueness properties) resolves the competition. 

2.6.2. Static Priorities Associated to the Fsc and Fca Flows 

Here we consider the conclusion shown in [11]: The 
priority of the fca flow should be higher than the priority of 
the fsc flow in order to get the best results. Considering 8 
process control applications (P1, P2… P8), each process has 
one fsc flow and one fca flow. We call Prio_fca_i and 
Prio_fsc_i the priorities of the fsc and fca flows of the process 
Pi (i = 1, 2… 8), respectively. The priorities of 16 data flows 
are arranged in the following order:  

Prio_fca_1 > Prio_fca_2 > … > Prio_fca_8 > Prio_fsc_1 > 

Prio_fsc_2 > … > Prio_fsc_8. i.e. the controller has a higher 
priority than the sensor and during a sampling period, the 
order of medium access is arranged as P1, P2, …, P8. 

2.6.3. Criteria of the QoC Evaluation  

We will consider the time response for the QoC 
evaluation. 

2.6.4. Stability Analysis  

As we know the lengths of frames of all processes and the 
order of medium access, we can calculate the 
communication time delay of each process. The time delays 
of P1, P2… P8 are 2.4ms, 4.8ms, 7.2ms, 9.6ms, 12ms, 14.4ms, 
16.8ms, 19.2ms respectively. We consider also a time delay 
of 23.55ms. 

The largest eigenvalues of the closed-loop matrix 
corresponding to the time delay τ above are represented in 
Table 1. For the case of non-compensation, the higher the 

delay is, the higher the ( )axm clλ Φ  is, which is logical. For 

the 8 processes, the ( )axm clλ Φ <1, thus our system is stable. 

We see that if the time delay is 23.55ms, 

( )ax 1.009 1m clλ Φ = > , the system will be unstable.  

Table 1. Stability Analysis. 

ττττ (ms) 
( )axm clλ Φ

 
(non-compensation) 

( )axm clλ Φ
 

(compensation) 

2.4 0.000598 0.000597 
4.8 0.000623 0.000597 
7.2 0.000635 0.000597 
9.6 0.000647 0.000597 
12 0.000658 0.000597 
14.4 0.000669 0.000597 
16.8 0.000679 0.000597 
19.2 0.0028 0.000597 
23.55 1.009 0.000597 
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For the case of Compensation, the ( )axm clλ Φ  is equal 

for all time delays. It is due to the fact that we have 
maintained the dominant poles, hence the closed-loop 
matrix has not been changed, thus the eigenvalues of the 
closed-loop matrix have not been changed.  

3. Proposal for Computation and 

Compensation of Time Delays 

3.1. Ideas 

The goal of this subsection is to propose a way to 
calculate the closed-loop communication time delay and we 
compensate this time delay using the pole placement design 
method in order to improve the QoC for CAN-based NCSs. 
We consider the implementation of several process control 
applications on a CAN network. Then we show the interest 
of the proposed method by comparing the QoC in cases of 
time delay compensation and of without time delay 
compensation. 

3.2. Computation of Closed-Loop Communication Time 

Delays 

The computation of closed-loop communication time 
delays is done by the controller in each sampling period. 

Concerning the time delay τsc, as the controller has the 
knowledge of sampling instants tk (k = 0, 1 …), it can easily 
deduce the value of τsc by the time difference between the 
reception instant of  fsc frames and tk.  

Concerning the time delay τca, it cannot be calculated 
because the fca frames have not been transmitted yet. 
However, due to the hypotheses in section 2.6 (i.e. the 
priority of the controller is higher than this of the sensor; 
there is no competition between the controllers; there is no 
data lost), the controller can immediately send its frame. 
Therefore, τca is equal to the duration of a frame 

transmission (Dca).   
The closed-loop time delay will be computed by the 

controller as followed: 

sc ca
Dτ τ= +                 (11) 

3.3. Time Delay Compensation Steps 

The compensation for time delays done by the controller 
in each sampling period has the following steps: 
• Step 1: Identifying expected poles including the 

dominant poles and the other poles [7] which are selected 
equally to the real part of the dominant pole divided α, 
with α = 2 ÷ 10.  

• Step 2: Computing closed-loop communication time 
delay. 

• Step 3: Computing the controller parameters according 
to the time delay value in order to maintain the position 
or the value of the expected poles. 

• Step 4: Computing he control signal based on the new 
control parameters calculated in the previous step.  

3.4. Considering the Implementation of the 8 Process 

Control Applications on CAN Network 

We want to show here the interest of the pole-placement 
design method (which is based on an adaptive controller i.e. 
the parameters of the controller are modified according to 
the communication time delay) in comparison with the case 
where we without time delay compensation (i.e. we have a 
fixed controller).  

The QoC is represented in Table 2 (∆J/J0 %) and Fig. 6 
and Fig. 7.  

Table 2. QoC (∆J/J0 %). 

Process Non-Compensation Compensation 

P1 0.47 0.33 
P2 1.02 0.74 
P3 1.80 1.29 
P4 2.94 2.08 
P5 4.67 3.22 
P6 7.57 4.96 
P7 13.18 7.87 
P8 27.54 13.50 
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Fig 6. Time responses when non-compensation. 
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Fig 7. Time responses when compensation. 

Remind that the priority of the process Pi is higher than 
this of the process Pj. We see in Table 2 for the both cases 
that the QoC follows the order of the priority, it is reasonable 
because the higher the priority is, the lower the time delay is 
and so the better the QoC is.  
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In the both Table 2 and Fig. 6 & 7, we can see the 
improvement of the QoC for the case of compensation 
compared with the case of non-compensation expressed 
through smaller values of ∆J/J0 % and less oscillatory time 
responses 

4. Proposal of a Hybrid Priority Scheme 

for Message Scheduling 

4.1. Limitations of Static Priorities 

Considering static priorities, each node in the network has 
a unique and fixed priority. Hence, the application which has 
data flows of low priorities could not get the desired QoS 
and QoC. For example, we consider a control system with 
two nodes A and B, in which A has higher priority than B. At 
the instant t, both A and B have frames to transmit, B has a 
stronger transmission urgency in order to satisfy the QoS 
requirement (for example the deadline) but B cannot 
transmit its frames before the end of the frame transmission 
of A. That will make the system less efficient. 

Other limitations of static priority can be found when we 
consider time response of process control applications which 
is characterized by two regimes:  transient regime (because 
of an input change or a noise) and permanent regime (system 
is in the steady state). In transient regime, frames must be 
transmitted as soon as possible in order to obtain some QoC 
requirements such as response time, overshoot, rise time (i.e. 
frames have high transmission urgencies). Contrariwise, in 
permanent regime, frames are required to be transmitted 
quickly (i.e. frames have low transmission urgencies).  It is 
clearly noticed that static priority cannot overcome this 
problem. 

4.2. Hybrid Priorities and Related Works 

4.2.1. Idea of Hybrid Priorities 

The idea of hybrid priority results from the limitations of 
static priority presented in the previous section. The idea is 
that frame priorities can vary depending on transmission 
urgency. That can be done by restructuring the ID field into 2 
small fields as represented in Fig. 5. 

Level 2 (m high significant bits) represents transmission 
urgency which is called dynamic priority part with its value 
ID_dyn. The ID_dyn can be changed during system 
operation and several data flows can share the same ID_dyn. 
Level 1 (n-m bits) which is called  static priority part 
represents the uniqueness of data flows as its value ID_sta is 
fixed, unique and specified before system running. The 
uniqueness means that there are no two or more nodes 
having the same ID_sta. The term “hybrid priority” means 
the combination of dynamic priority and static priority. 

The idea of this ID field structure was first introduced in 
[12]. Then other studies [3, 14, 15] also used the similar ID 
field structure. 

The medium access tournament is done firstly by 
comparing Level 2. If there are several data flows having the 

same ID_dyn,  Level 1 will determine the only winner 
allowed to access to the medium. 

Remark: With (n-m) ID_sta bits, we can determine 2n-m 
data flows (or nodes) sharing the network. Therefore, it must 
be careful when we choose the number of ID_sta bits. 

4.2.2. Specifying of the Dynamic Priority 

Specifying dynamic priority part requires, firstly, to 
determine QoC parameter of the process control application 
which gives information on the transmission urgency, and 
secondly, to translate these urgencies into dynamic priorities 
(i.e. computation of dynamic priorities). 

Two main QoC parameters using for representing the 
transmission urgency are steady state error e [3, 14] and 
control signal u [4, 15]. Some other works use the deadline 
[12, 13]. With these parameters, the authors proposed 
different functions for computation of dynamic priorities. 
The principle is that the higher the values of e, u or deadline 
are, the higher the dynamic priorities are. 

Concerning the works using the error e, they used an 
extended ID field of 29 bits (16 bits for ID_dyn and 10 bits 
for ID_sta). The value of e is encoded directly into the 
ID_dyn value. The first limitation is that, we have a wide 
range of error value and this is not bounded (for example 
when the system is unstable, the error is infinite). Mapping 
these error values in a definite number of priority bits is not 
an easy task. The second limitation is that, they assume the 
existence of a master node knowing the current states of all 
controller nodes. Maintaining a global state in the whole 
distributed system can be problematic. 

The works using the control signal u have overcome the 
unbounded value by a saturation value us (if u is higher than 
us, the dynamic priority is maximum). They used a standard 
ID filed of 11 bits (7 bits for ID_dyn and 4 bits for ID_sta). 
So, they can determine a maximum number of 16 data flows 
(or nodes) which is not enough to address all nodes in a 
NCS. 

4.3. Proposal 

4.3.1. Distributed Aspect 

The NCS is totally distributed, i.e. there is not any master 
node. 

4.3.2. ID Field 

We use an extended ID field of 29 bits with 11 bits for 
dynamic priority part, and 11 bits for static priority part. 
That overcomes the limitation concerning number of ID_sta 
bits. 

4.3.3. Control Parameters 

Both the error e and the control signal u are used for 
making the dynamic priority.  

4.3.4. Computation of Dynamic Priorities 

The dynamic priority (noted Prio_dyn) is calculated by 
the controller using functions represented in Fig. 8 and 
equations (20) & (21). Here, we consider that es and us are 
the maximum values of e and u respectively when we 
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consider the initial continuous control system without the 
network. 

Prio_dyn

0

f(e
) o

r f(
u)

Prio_dynmax

( )max max
e u ( )e u

 

Fig 8. Functions of e, u. 
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_ , 0
( )

_ ,

u
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Prio dyn u u


≤ ≤

= 
 >

     (21) 

4.3.5. Encoding Priority into ID Field 

The dynamic priority part consists of 11 bits which is able 
to represent 211 = 2048 priority levels from 0 to 2047. The 
minimum dynamic priority is Prio_dynmin = 0 corresponding 
to the ID_dyn of 11 recessive bits (bit 1). 

The maximum dynamic priority is Prio_dynmax = 2047 
corresponding to the ID_dyn field of 11 dominant bits (bit 0). 
The relation between the ID_dyn and the Prio_dyn is as 
follows:  

_ 2047 _ID dyn Prio dyn= −          (12) 

4.3.6. Implementation of the Hybrid Priority Scheme 

Before we present how the hybrid priority scheme works, 
we should consider the implementation of a process control 
application on the CAN network as represented on Fig. 9. 

We can see how the hybrid priority works. Firstly, 
concerning the static priority part, this priority of each node 
is specified before the system running. The subsection 2.6 
shows that we have to set static priority of the fca flow (noted 
Prio_stafca) higher than that of the fsc flow (noted Prio_stafsc) 
in order to get the best results. Here we will consider this 
conclusion. Secondly, concerning dynamic priority part, its 
implementation is as follows: 
• At the instant tk, the sensor samples the output (yk) and 

gets dynamic priority (Prio_dynk-1) sent from the 
controller in the previous period (i.e. period starting at 
tk-1). After that, the sensor uses this priority 
( 1_

k
Prio dyn − ) to send its frame (containing yk) to the 

controller.

 

Fig 9. Implementations of process control applications on a CAN network. 

Table 3. QoS (τ ms). 

 P1 P2 P3 P4 P5 P6 P7 P8 max minτ τ−
  

Static priority 2.4 4.8 7.2 9.6 12 14.4 16.8 19.2 16.8 

Hybrid priority with e 5.9 7.7 9.2 10.4 13.7 12.3 14.4 10.3 8.5 

Hybrid priority with u 9.5 9.9 11.0 10.4 12 10.2 12.6 12.9 3.4 
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Fig 10. Time responses when non-compensation.. 
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• After receiving the fsc frame sent from the sensor, the 
controller computes the control signal uk and the 
dynamic priority Prio_dynk (by equations (20) & (21)) 
and sends its frame on the network. Then, the actuator 
will get uk and apply it to the controlled plant, while the 
sensor will get Prio_dynk to use in the next sampling 
period (period starting at tk+1).  

Concerning dynamic priority using to send the fca frame 
by the controller, there are two ways: the first one is that the 
controller use the Prio_dynk value which has just been 
computed [15]; and the second one is to use the Prio_dynmax 
[4]. It is evident that the second way ensures that fca frame 
will be sent immediately after the reception of fsc frame 
(computational time delays in the controller is negligible). 
Therefore, comparing to the first way, the second way 
performs a shorter time delay of the closed loop. In this 
paper, we consider the second one, i.e. the controller uses the 
Prio_dynmax to send its frames.  

Noting that, at the instant 0 (t0 = 0), the sensor has no 
information about the dynamic priority from the controller. 
Therefore we consider that the sensor uses, at the first time, 
the Prio_dynmax. 

4.4. Implementation of Process Control Application on 

CAN Network 

4.4.1. Communication Time Delay 

These time delays are network delays in the 
communication between the fsc frame (noted τsc) and the fca 
frame (noted τca). During each sampling period, time delay 
τsc is the time difference between sampling instant and 
reception instant of the fsc frame by the controller; the time 
delay τca is the time elapsed from the ready-to-send instant 
of the fca frame till the reception instant of this frame by the 
actuator. Therefore, communication delay in the sampling 
period is computed as follows: 

sc ca
τ τ τ= +               (13) 

4.4.2. Criteria of the QoS Evaluation 

In order to evaluate the QoS, we calculate first the 
communication time delay τi of the closed loop control system 
in each sampling period starting at ti according to the equation 
(23), then we compute the average value of theses time delays 
during the settling time ts by the following formula: 

1

1 n

i

in
τ τ

=

= ∑               (24) 

Where n is the number of sampling period in the settling 
time.  

The smaller the value τ  is, the better the QoS is. 

4.4.3. Criteria of the QoC Evaluation  

The QoC is considered through the time responses. 

4.4.4. Results  

a. Quality of Service 

We present on the Table 3 the QoS in term of τ of the 8 
processes. 

For static priority scheme, the process with higher priority 
has smaller time delay. We see that P1 has the highest priority so 
its delay is the smallest while P8 has the lowest priority so its 
delay is the biggest. It is logical. 

For the hybrid priority scheme (with e and u), we obtain time 
delays more balanced than these with static priorities. This is 
the result of the predominant role of the parts “dynamic 
priority” compared with the parts “static priority”. 

The QoS balance can be observed by the difference between 
the maximum delay and the minimum delay in each priority 
scheme in the Table 3. We see that these differences are small 
with hybrid priorities (8.5 ms with e and 3.4 ms with u) while 
this value is very big with static priorities (16.8 ms).  
b. Quality of Control  

The QoC is represented in Fig. 10 (time responses). We 
see also the balances of QoC with hybrid priorities 
compared with static priorities. It is logical because balances 
of QoS induce balances of QoC. The conclusions of QoC for 
different priority schemes are similar to those of QoS. 
Precisely, for static priority scheme, the higher the priority is, 
the better the QoC is. And for hybrid priority schemes, the 
QoCs are more balanced than that of the static priority 
scheme.  

5. Co-Design of Compensation for 

Communication Time Delays and the 

Message Scheduling 

5.1. Ideas 

The idea is to combine the frame scheduling scheme 
based on the hybrid priority and the method of compensation 
for communication time delay in order to have a more 
efficient NCSs. However, concerning the close-loop time 
delay compensation, in the sampling period k, we cannot 
consider here that the controller can use the value of the 
close-loop time delay of the sampling period (k-1) because 
now, taking into account for the dynamic priority used by the 
sensor task, the time delay (τsc + τca) changes every period. 
Then the controller must make the delay compensation in 
the sampling period k by knowing the close-loop time delay 
of this sampling period k. We explain now this 
implementation. 

5.2. Principle of the Implementation of the Co-Design 

This principle, relatively to the sampling period starting at 
tk, is represented on Fig. 11 where we indicate the content of 
the fsc and fca frames and the computations done by the 
controller. The process of co-design implementation in each 
cycle starting at tk as follows: 

Sensor sampling state variables x and receive priority 
value sent from the controller in the previous period (period 
starting at tk-1), then use the sensor priority this (Prio_dynk-1) 
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to send a message containing xk to the controller. 
• The controller after receiving the signal from the sensor 

xk, will perform the following steps: 
• The Computations of dynamic priority Prio_dynk based 

on the function f(u) and f(e) (by equations (20) & (21)). 
• Calculations of close-loop communication time delay τ 

and the parameters of the controller according to the 
communication time delay τ, i.e. implementation of the 
compensation for close-loop communication time delay. 

• Calculations of the control signal uk. 
• Send messages including control signal uk and dynamic 

priority Prio_dynk on the network. 
Then the actuator will receive the value uk and apply to 

control plant, while the sensor will get Prio_dynk to use for 
the next period (period starting at tk+1). 

5.3. Performance Evaluation and Summary of Obtained 

Results 

We still consider the implementation of 8 applications (P1, 
P2, …, P8) studied in the previous sections.  

The time responses are represented on Fig. 12. These 
results which are represented graphically on obviously show 
the balanced performances provided by the hybrid priority 
compared with the static priority and by the co-design 
compared with the static priority scheme (compensation). 

From these results, we can say that, if we have a constraint 
of performance which cannot be exceeded (not too small), 
the hybrid priority allows to implement more applications 
than the static one and, extensionally, the bidirectional 
relation co-design allows to implement more applications 
than the static priority scheme (compensation). 

 

Fig 11. Principle of the implementation of the co-design. 
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Fig 12. Time responses when compensation. 

6. Conclusion 

In this paper, we have presented three following points: 
• The first is the implementation of the way to calculate 

the closed-loop communication time delay and we 
compensate this time delay using the pole placement 
design method in order to improve the QoC 
performances provided by static priorities only. 

• The second is the implementation of the hybrid priority 

scheme for the message scheduling in order to improve 
the QoS. The hybrid priority is characterized by, on one 
hand, a static part representing the uniqueness of the flow, 
and on the other hand, a dynamic part that represents the 
urgency of transmission (this dynamic part is expressed 
from a function of the error and control signal). This 
hybrid priority gives, in comparison to the static priority 
case, balanced performances for the different process 
control applications. 

• The final is the implementation of the bidirectional 
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relation QoS and QoC (i.e. co-design) which is the 
combination of the between conpensation for 
communication time delay and the message scheduling 
in order to have a more efficient NCSs design. the 
relation. The results, which are obtained, show the 
interest of the joint action of the hybrid priorities and the 
delay compensation (by the hybrid priorities, we 
introduce the balance aspect compared with the static 
priority; by the delay compensation, we maintain the 
balance aspect while improving the QoC and then we can 
consider the possibility to implement more applications 
than with the static priority scheme (compensation). 

The further work should be the following points: the 
utilization of other compensation methods for time delays (for 
example, maintenance of the phase margin); the consideration 
of other types of controller (PID for example) and the 
consideration of other types of process control applications. 
Still furthermore, the study of this relation might be also 
improved by the consideration of theoretical problems (in 
particulars, stability conditions when the online control law 
parameters change from sampling period to sampling period). 

 

References 

[1] Michael S. Branicky, Vincenzo Liberatore and Stephen M. 
Phillips, “Networked control system co-simulation for 
co-design,” American Control Conference, USA, Vol. 4, June 
2003, pp. 3341-3346. 

[2] Ye-Qiong Song, “Networked Control Systems: From 
independent designs of the network QoS and the control of 
the co-design,” 8th IFAC international Conference on 
Fieldbuses and Networks in Industrial and Embedded 
Systems, Korea, May 2009, pp. 155-162. 

[3] Pau Martí, José Yépez, Manel Velasco, Ricard Villà and 
Josep M. Fuertes, “Managing Quality-of-Control in 
network-based control systems by controller and message 
scheduling co-design,” IEEE Transactions on Industrial 
Electronics, Vol. 51, No. 6, Dec. 2004, pp. 1159-1167. 

[4] Xuan Hung Nguyen and Guy Juanole, “Design of Networked 
Control Systems on the basis of interplays between Quality 
of Control and Quality of Service,” 7th IEEE International 
Symposium on Industrial Embedded Systems, France, June 
2012, pp. 85-93. 

[5] Y.B. Zhao, G.P. Liu and D. Rees, “Integrated predictive 

control and scheduling co-design for networked control 
systems,” IET Control Theory & Applications, Vol. 2, Issue 1, 
Jan. 2008, pp. 7-15. 

[6] Shi-Lu Dai, Hai Lin, and Shuzhi Sam Ge, “Scheduling and 
control co-design for a collection of Networked Control 
Systems with uncertain delays,” IEEE Transactions on 
control systems technology, Vol. 18, No. 1, Jan. 2010, pp. 
66-78. 

[7] Karl J. Åström and B. Wittenmark, “Computer controlled 
systems: theory and design,” 3th Edition, Prentice Hall, 1997. 

[8] Murat Dogruel and Umit Özgüner, “Stability of a Set of 
Matrices-A Control heoretic Approach,” 34th Conference on 
Decision and Control, New Orleans, USA, Vol. 2, Sep. 1995, 
pp. 1324-1329. 

[9] Martin Ohlin, Dan Henrikssonand Anton Cervin, “TrueTime 
1.5 - Reference Manual,” Lund Institute of Technology, 
Sweden, 2007. 

[10] Salem Hasnaoui, Oussema Kallel, Ridha Kbaier, Samir Ben 
Ahmed, “An implementation of a proposed modification of 
CAN protocol on CAN fieldbus controller component for 
supporting a dynamic priority policy,” 38th Annual Meeting 
of the Ind. App., Vol. 1, Oct. 2003, pp. 23-31. 

[11] Guy Juanole, Gerard Mouney, Christophe Calmettes, Marek 
Peca, “Fundamental considerations for implementing control 
systems on a CAN network,” 6th International Conference on 
Fielbus Systems and their Applications, Mexico, Nov. 2005, 
pp. 280-285. 

[12] Khawar M. Zuberi end Kang G. Shin, “Scheduling messages 
on Controller Area Network for real time CIM applications,” 
IEEE Trans. Robot. Autom, Vol. 13, No. 2, Apr. 1997, pp. 
310-314. 

[13] Khawar M. Zuberi and Kang G. Shin, “Design and 
implementation of efficient message scheduling for 
Controller Area Network,” IEEE Transactions on Computers, 
Vol. 49, No. 2, Feb. 2000, pp. 182-188. 

[14] Manel Velasco, Pau Martí, Rosa Castané, Josep Guardia and 
Josep M. Fuertes, “A CAN application profile for control 
optimization in Networked Embedded Systems,” 32nd 
Annual Conference onIEEE Industrial Electronics, Paris, 
Nov. 2006, pp. 4638-4643. 

[15] Guy Juanole and Gérard Mouney, “Networked Control 
Systems: Definition and analysis of a hybrid priority scheme 
for the message scheduling,” 13th IEEE conference on 
Embedded and Real-Time Computing Systems and 
Applications, Korea, Aug. 2007, pp. 267-274. 

 


