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Abstract: Insights into binding mechanism of inhibitors to targets are expected to provide a meaningfully theoretical guidance 
for design and development of effective inhibitors inhibiting of the activity of targets. It is well known that the bromodomain 
(BRD) family has been thought as a promising target utilized for treating various human diseases, such as inflammatory 
disorders, malignant tumors, acute myelogenous leukemia (AML), bone diseases, etc. In this work, we summarize the roles of 
integration of multiple simulation technologies in exploring atomic-level dynamics changes of the BRD family because of 
inhibitor bindings. Molecular dynamics (MD) simulations, binding free energy calculations, calculations of dynamics 
cross-correlation maps (DCCMs), and principal component (PC) analysis are integrated together to uncover binding modes of 
inhibitors to BRDs. The results obtained from binding free energy calculations can measure binding ability of inhibitors to BRDs, 
and explore the main driving forces of the binding of inhibitors to BRDs. The information stemming from PC analysis can reveal 
the changes in conformations, internal dynamics and movement patterns of BRDs due to inhibitor associations. Residue-based 
free energy decomposition method is wielded to unveil contributions of separate residues to inhibitor bindings, and explore the 
decisive factors that affect the bindings of inhibitors to BRDs. 
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1. Introduction 

With fast development of computer technology, multiple 
simulation technologies, such as molecular dynamics (MD) 
simulations, binding free energy predictions, principal 
component (PC) analysis, dynamics cross-correlation maps 
(DCCMs) and residue-based free energy decomposition, are 
play increasing roles in identification of hot spots of 
inhibitor-target bindings and drug design. Increasing 
researchers are applying these simulation technologies to 
probe molecular mechanism with regard to inhibitor-target 
bindings. For example, Wang et al. explored molecular 
mechanisms of inhibitor bindings to bromodomain-containing 
protein 4 (BRD4) using MD simulations and calculations of 
binding free energies, and the results not only demonstrate that 
the associations of inhibitors obviously affect the flexibility, 
conformational changes, motion modes, and internal 
dynamics of BRD4 (1), but also show that residues Gln85, 

Val87, Leu92, Leu94, Cys136 and Ile146 produce the CH-π 

interactions with inhibitors, while the residues Trp81, Pro82, 
Phe83 and Tyr139 form the π-π interactions [1]. Su et al. 
studied the selective mechanism of inhibitors toward BRD4, 
BRD7 and BRD9, and the results show that Ile164 and 
Asn211 in BRD7 and Ile53 and Asn100 in BRD9 play a 
significant role in the selectivity of inhibitor H1B to BRD7 
and BRD9, in addition, several key residues Phe44, Ile53, 
Asn100, Thr104 in BRD9 and Pro82, Lys91, Asn140, Asp144 
in BRD4 also provide significant contributions to binding 
selectivity of inhibitors toward BRD9 and BRD4 [2]. In 
summary, the efficient integration of these simulation 
technologies will be of significance for design of potent 
inhibitors toward targets. Based on this aim, we design a 
procedure for integrating multiple technologies and it is 
shown in Figure 1. To shed light on this procedure, we use the 
BRD family that we are focusing and the AMBER18 as an 
example. In the first module, the structures of BRD coupled 
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with inhibitor can be obtained from the Protein Data Bank 
(PDB) or molecular docking. In the second module, 
conventional MD (cMD) and multiple replica molecular 
dynamics (MRMD) simulations are employed to produce 
structural ensembles that are used to perform statistical 
analyses or post-processing analyses. In the third module, 
post-processing analyses are carried out to probe dynamics 
characteristic, calculate binding free energies and decode 
conformational changes. In the last module, based on the 
information obtained from the third module, molecular 
mechanisms involved in inhibitor-BRD bindings are clarified. 
Although this work doesn’t provide a novel method to study 
inhibitor-BRD bindings, the procedure summarized by us also 
provide certain guidance for the researchers who will apply 
simulation technologies to study inhibitor-target bindings. The 
details for performing integration of multiple simulation 
technologies are clarified as below. 

2. Materials and Methods 

2.1. System Initialization 

The existing crystal structures of inhibitor-target complexes 
can be extracted from the Protein Data Bank (PDB) to obtain 
coordinates of MD simulations. If the crystal structures of 
inhibitor-BRD compounds are unavailable, the designed 
inhibitors can docked into the binding pocket of BRD by using 
the docking softwares, such as PyMOL [3] and Autodock 4.2 
software [4]. The LEAP module in AMBER18 is wielded to 
link missing hydrogen atoms to the corresponding heavy 
atoms [5]. The PROPKA program is used to recognize the 
rational protonation states of the residues at pH = 7.0 [6]. The 
force field parameters for MD simulations of inhibitor stem 
from General Amber force field (GAFF) [7], that of protein 
arise from the Amber ff14SB force field [8] and that of water 
molecules for reflecting solvent environment originate from 
the TIP3P model [9]. Bond-charge correction (BCC) charges 
of atoms are calculated by using the AM1 method and then 
BBC charges are assigned to separate atoms of the inhibitors 
by making use of the ANTECHAMBE program of AMBER18 
[10]. Then the right counterions are added to neutralize the 
charges of each simulated systems. 

 

Figure 1. Scheme of multiple simulation technologies, in which multiple 

simulation technologies play significant roles in decoding molecular 

mechanism of inhibitor-target bindings. 

2.2. Molecular Dynamics Simulations 

The PMEMD module in AMBER18 is used to execute 
energy minimizations and MD simulations [11-13]. A 
two-stage energy optimization is performed on each system to 
eliminate close contacts and highly energetic orientations 
between atoms: (1) to optimize the solvent by constrain solute 
by a rational force constant, (2) to optimization the entire 
system without restriction through the steepest descent 
minimization of 2500 steps and the conjugate gradient 
minimization of 2500 steps. Then, each system is slowly 
heated from 0 to 300 K in 2 ns followed by the system 
equilibration of another 1 ns at 300 K. Finally, each system is 
fully relaxed through 200-ns unconstrained cMD simulations 
at 300 K and 1 atm by using the periodic boundary condition 
and a time step of 2 fs. The length of simulation time can be 
adjusted according to different simulation systems. During 
simulations, a cutoff value of 10 Å is used to treat van der 
Waals and electrostatic interactions. The SHAKE algorithm is 
utilized to limit the expansion and contraction of all covalent 
bonds connecting to hydrogen atoms [14]. The Particle Mesh 
Ewald (PME) method is wielded to calculate long-range 
electrostatic interactions [15]. The Langevin thermostat is 
used to adjust the temperature of each system [16]. 

Compared to a single long cMD simulation, MRMD 
simulations can be obtain better sampling efficiency. The 
different works verify that MRMD simulations obtain more 
rational results in insights into inhibitor-target binding than a 
single long cMD simulation [17-21]. 

3. Results 

3.1. Dynamics Characteristic 

The CPPTRAJ module in AMBER18 is used to calculate 
root mean square deviation (RMSD) which can be utilized to 
evaluate the stability of MD simulations (Figure 2A), while 
the root mean square fluctuation (RMSF) of the �� atoms in 
BRDs computed by utilizing the equilibrated parts of MD 
trajectory is used to explore effect of inhibitor bindings on the 
structural flexibility of BRDs (Figure 2B). In addition, 
molecular surface areas (MSAs) are used to probe the total 
expansion or contraction of BRDs (Figure 3), while the radius 
of gyrations (RGs) are also employed to intuitively observe 
the ductility of BRDs in spatial distribution (Figure 4). 

3.2. The Conformational Changes of Protein 

The dynamics cross-correlation map (DCCM) is an 
effective method to explore internal dynamics of targets 
[22-26]. The cross-correlation coefficient ���, ��  is 
determined by the following equation (1) 

���, �� �
	∆��∙∆���

�	∆��
��	∆��

����/�
              (1) 

where � ⋯ �  indicates an ensemble average over the 
structures recorded in the MD trajectory, ∆��  represents the  
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Figure 2. Structural fluctuation and structural flexibility: (A) 

Root-mean-square deviation (RMSD) of backbone atoms in BRD relative to 

their initial structures as function of simulations time, (B) Root-mean-square 

fluctuation (RMSF) of �� atoms in BRD of the simulated system. 

 

Figure 3. (A) Molecular surface area (MSA) as function of simulations time, 

(B) Frequency distributions of MSA, in which the x-axis shows the MSA and 

the y-axis indicates the frequency distribution of the MSA. 

 

Figure 4. (A) Radius of gyration (Rg) as function of simulations time, (B) 

Frequency distribution of Rg, in which the x-axis indicates the radius of 

gyrations and the y-axis represents frequency distribution.  

deviation between the instantaneous position of the �� atom 
in the ith residue and its average position. The value range of 
���, �) is located between -1 to +1, from which �(�, �) > 0 
indicates a positively correlated motions, while �(�, �) < 0 
indicates an anti-correlated motions. The CPPTRAJ module in 
AMBER18 is used to calculate �(�, �) [27]. The color-coded 
style is usually utilized to reflect the extents of correlated 
movements, in which the red and yellow show strongly 
positive correlated movements (the regions R1 and R3 in 
Figure 5A), while the blue and dark blue represent strongly 
anti-correlated movements (the regions R2 and R4 in Figure 
5A). 

Principal components analysis (PCA) can be used to 
explore the conformational alterations of functional 
significance domains in targets [28, 29]. To perform the PCA, 
firstly a covariance matrix �  is constructed by using the 
coordinates of the Cα atoms recorded at the MD trajectory 
according to the equation (2) as below 

� =< (��−< �� >)(��−< �� >)
� >	 (�, � = 1,2,3,⋯ ,3 ) (2) 

where �� indicates the Cartesian coordinates of the �� atom 
in the ith residue and the symbol   represents the number of 
the �� atoms of BRD. The BRD structure extracted from MD 
trajectory is superimposed on the reference structure to 
eliminate all translations and rotations. Then the average is 
calculated over the structures recorded in the MD trajectory. 
The covariance matrix C in equation (2) is symmetric and can 
be transformed into a diagonal matrix Ʌ of eigenvalues "� 
through an orthogonal transformation matrix T: 
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Figure 5. Correlated motions and free energy landscapes: (A) Dynamics 

cross-correlation map (DCCM) of the Cα atoms in BRD over their average 

positions based on the equilibrium trajectory of MD simulation, (B) 

free-energy landscapes built by employing projections of MD trajectory on the 

first two principal components PC1 and PC2 arising from the diagonalization 

of covariance matrix. 

Ʌ = #���,�#                   (3) 

where the columns are the eigenvectors correlating with 
eigenvalues and the eigenvectors corresponding to the first 
few bigger eigenvalues can better characterize the concerted 
motions of the domains in BRD. Figure 6 shows the 
relationship between the eigenvalues and the eigenvector 
index. Generally, the larger eigenvalues correspond to the 
significantly concerted movements of the domains in BRD, 
while the smaller eigenvalues describe more constrained and 
local fluctuations.  

Free-energy landscapes that are constructed by wielding the 
projections of the MD trajectory on the first two eigenvectors 
as the reaction coordinates can be employed to further explore 
the conformational changes. As indicated in Figure 5B, the 
BRDs span two conformational spaces and fall into two 
energy basins, implying that the conformations of an 
exampled BRD exist in two energy states. 

3.3. Binding Free Energy and Binding Mechanism 

Molecular mechanics/Poisson-Boltzmann surface area 
(MM-PBSA) and MM-GBSA have been widely used to 
estimate binding free energies [30-34]. Hou et al. reported that 
MM-GBSA method exhibits better performance at the rank of  

 

Figure 6. The eigenvalues plotted against the corresponding eigenvector 

indices obtaining from the Cα covariance matrix constructed by using the 

MD trajectory. 

the binding abilities for the systems without metals than 
MM-PBSA method, and their comparisons provide a hint for 
selecting MM-PBSA or MM-GBSA as the efficient tool to 
predict binding free energies of inhibitors to targets [35, 36]. 
Usually, a number of snapshots taken from the equilibrated 
part of MD trajectory are utilized to perform binding free 
energy calculations. In MM-PBSA and MM-GBSA, the 
binding free energies include five terms: electrostatic (∆$%&%) 
interactions and van der Waals (∆$'()) interactions in the gas 
phase, non-polar (∆*+,+-,&) contributions and polar (∆*-,&) 
contributions to solvation free energies, and the entropy 
contribution to inhibitor bindings (−#∆.). The equation can 
be written as the following: 

∆* = ∆$'() + ∆$%&% + ∆*+,+-,& + ∆*-,& − #∆.  (4) 

in which ∆$'()  and ∆$%&%  are calculated by employing 
ff14SB force field and molecular mechanics. The third term 
∆*+,+-,& can be estimated from the equation as follow: 

∆*+,+-,& = 0 × (SASA) + 4         (5) 

where SASA  is the solvent-accessible surface area, the 
empirical constants 0 = 0.0072	kcal/mol ∙ Å>? , while 
4 = 0.0	kcal/mol. The fourth term ∆*-,& can be calculated 
by using the MM-GBSA module in AMBER18. The last term 
−#∆.  is generally computed as the sum of translational, 
rotational, and vibrational entropies by means of classical 
thermodynamics and normal mode analysis. Due to 
computationally expensive calculations of the entropy, only a 
small number of conformations taken from the 
aforementioned snapshots performing binding free energy 
calculations were adopted for estimation of the entropy 
contributions. In addition, to explore the contribution of per 
residue to the binding free energy, the residue-based free 
energy decomposition method is also used to calculate 
interactions of inhibitor with each residue in BRDs. 

SIE method also can provide fast and rational calculation of 
binding free energies [37, 38]. In SIE method, binding free 
energies of inhibitors to targets are calculated as following: 
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∆*@�+( � α 1 B∆$'(C / ∆$D�E�+� / ∆*
F / 0∆G.H�I�J / �  (6) 

where ∆$'(C  and ∆$D  represent van der Waals interactions 
and intermolecular Coulomb interactions in the bound state, 
respectively. ∆*F  is the change in the reaction field energy 
induced by inhibitor binding. The forth term 0∆G.H�I�  is 
related to the change in the molecular surface area upon binding. 
The parameter α  corresponds to the global proportionality 
coefficient related to the loss of conformational entropy upon 
binding. The parameters E�+ , 0 , I and �  indicate the solute 
interior dielectric constant, the molecular surface area coefficient, 
Amber van der Waals radii linear scaling coefficient, and a 
constant, respectively. The values of five parameters are 
α � 0.1048 , E�+ � 2.25 , 0 � 0.0129	kcal/�mol ∙ Å?� , 
I � 1.1 and � � �2.89	kcal/mol, respectively.  

The SIE calculations are performed with the program Sietraj. 
Table 1 shows binding free energies of inhibitors to BRD 
computed with MM-GBSA method and SIE methods, 
separately. 

Table 1. Binding free energies of inhibitor to BRD computed with MM-GBSA 

method and SIE methoda. 

Terms MM-GBSA method Terms SIE method 

∆$%&% -28.05±0.49 ∆$D -11.95±0.39 
∆$'() -46.37±0.21 ∆$'() -45.64±0.41 
∆*-,& 44.16±0.46 ∆*F 16.39±0.37 
∆*+,-,& -4.17±0.02 0∆G.H -8.50±0.05 
�#∆. 22.02±0.38 b -- -- 
c∆*@�+( -12.41 d∆*@�+( -8.10 
e∆*%P- -9.37 ∆*%P-

 -9.37 

aAll values are in kcal/mol. 
bThe data is not available. 
c∆*@�+( � ∆$%&% / ∆$'() / ∆*-,& / ∆*+,-,& � #∆.. 
d∆*@�+( � Q 1 B∆$D�E�+� / ∆$'(C / ∆*F / 0∆G.H�I�J / � 
eThe experimental values were obtained from the experimental R�50 values 
in reference [39] by employing the equation ∆*%P- S T#UVR�50. 

3.4. Decomposition of Binding Affinity into Contributions of 

Individual Residues 

Analysis of residue-based free energy decomposition can 
elucidate the role of a single residue in inhibitor associations. 
To gain a further insight into binding of pivotal residues with 
the inhibitors, the residue-based free energy decomposition 
method is applied to compute the interactions of inhibitors 
with separate residues in BRDs using the snapshots same as 
the calculations of binding free energies (Figure 7A). On the 
basis of Figure 7A, the interactions of four residues with 
inhibitor are stronger than 1 kcal/mol, and these residues are 
Trp81, Val87, Leu92, and Ile146. The geometric positions of 
important residues relative to inhibitors are displayed by using 
the lowest energy structures extracted from the MD 
simulations (Figure 7B). Figure 7B shows that the residues of 
BRDs mainly produce hydrophobic interactions with 
inhibitors, such as CH-π and π-π interactions. The interactions 
of residues with the inhibitors rationally explains internal 
dynamics and conformational changes of BRDs due to 
inhibitor bindings. 

 

Figure 7. Inhibitor-residue interaction spectrum: (A) Interactions of 

inhibitor with separate residues in BRD, (B) Geometric positions of inhibitor 

relative to key residues of BRD involving strong interaction. 

4. Conclusion 

In this work, multiple simulation technologies, such as 
molecular dynamics (MD) simulations, binding free energy 
calculations, calculations of dynamics cross-correlation 
maps (DCCMs), and principal component (PC) analysis are 
integrated together to explore atomic-level dynamics 
changes of the bromodomain (BRD) family because of 
inhibitor bindings. The results obtained from binding free 
energy calculations can measure binding ability of inhibitors 
to BRDs. The information coming from PC analysis can 
reveal the changes in internal dynamics and movement 
patterns of BRDs due to the bindings of inhibitor. 
Residue-based free energy decomposition method is wielded 
to unveil contributions of separate residues to inhibitor 
bindings. Although this work does not provide a novel 
method to study inhibitor-BRD bindings, the procedure 
summarized by us also provide useful helps and certain 
guidance for the researchers who will apply simulation 
technologies to study inhibitor-target bindings. 
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