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Abstract: The paper presents the growth of vapour bubble in a viscous, superheated liquid. The growth of vapour bubble 

between two-phase density flow in a vertical cylindrical tube under the effect of peristaltic motion of long wavelength and low 

Reynolds number is studied. The mathematical model is formulated by mass, momentum, and heat equations. The analytical 

solution is obtained for temperature and velocity distribution under the effect of different physical parameters. The growth 

process is studied under the affected of density ratio ε and amplitude ratio e. Moreover, the relation between the bubble radius 

R with the density ratio E, and amplitude ratio �are obtained. Theseresults agreement with some previous theoretical efforts. 
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1. Introduction 

The transportation of bio-fluid by continuous wave like 

muscle contraction and relaxation of the wall of 

physiological vessels such as esophagus, stomach, intestines, 

sometimes in ureters, blood vessels and other hollow tubes is 

known as peristaltic transport [1, 2]. Peristaltic force is an 

organic siphon which employs episodie wave-like squeezing 

movement which voyages down a vessel and forces the 

stuffing of the vessel. This mechanism also occurs in many 

applications involving bio-mechanical systems such as finger 

and roller pumps. Heart lung machines blood pump 

machines, dialysis machine and also transport of noxious 

fluid in nuclear industries [3]. In recent years, considerable 

efforts have been usefully devoted to the study of peristaltic 

flow of non-Newtonian fluids because a practical and 

fundamental constitutive relation that can be used for all 

fluids and flow is not available. Hayat et al. [4] investigated 

the effects of different wave forms on the peristaltic flow of 

micropolar fluids through a channel, and reported that the 

maximum pressure against which peristalsis works increases 

with the coupling number but decreases with the micropolar 

parameter. On the other hand, Single bubble growth on a 

solid surface was studied by generating a single bubble on a 

submerged heater. As heat is applied the liquid becomes 

supersaturated locally. This procedure is somewhat different 

to the traditional way to study these phenomena by degassing 

supersaturated liquid through decompression, where a single 

bubble alone cannot be produced. Thermal degassing which 

involves mass transfer but also heat transfer is thus achieved 

(as opposed to decompression degassing which only involves 

mass transfer in theory). To study the bubble generation and 

growth separately from the gravitational effects on them, the 

experiments where performed in microgravity conditions [5, 

6]. The experimental observations were compared to a 

theoretical model [7] derived considering spherical bubbles 

in a uniformly cooled liquid that were heated from the inside. 

The initial stage of growth was shown to agree with a 

parabolic diffusion law, after which a linear growth model 

was more appropriate. The lateral motion of the bubbles 

along the heater as they are first generated was also looked at 

and discussed with respect to the surface of the heaters used 

[8]. Multiple bubble growth and detachment showed 

competition for the dissolved gas available in the 

supersaturated solution amongst bubbles growing closely 

together [9]. The final size of bubbles was shown to be 

smaller than that of a single bubble, and a critical 
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temperature could be found above which any increase in 

temperature did not result in faster bubble growth. 

Karapantsios et al. have argued for the necessity to study the 

characteristics of bubbly flow (multiple bubbles flowing with 

the liquid) in addition to single bubble generation, since it is 

this abundance of bubbles which is at the origin of DCS 

above some threshold. An impedance spectroscopy 

technique, In Vitro Embolic Detector (IVED), was developed 

to detect bubbles in the blood stream by measuring the gas 

fraction. The in vitro phase of this project showed very good 

resolution as well as sensitivity to variations in gas fraction 

and bubble size in bubbly flows [10], and the in vivo phase, 

currently animal testing, is in progress. The results were 

validated through acoustic spectroscopy and electrical 

impedance tomography measurements. An in vitro 

experiment to simulate a realistic bubbly flow in the human 

vena cava was devised to investigate the effect of surfactant 

and electrolyte concentrations on the bubble size distribution 

(measured both by the IVED and electrical impedance 

tomography for validation purposes) to continue the 

improvement of these techniques but sized optically in this 

study [11]. The study found no correlation between the 

bubble size and the radial position of the tube or viscosity of 

the liquid. The size distribution was however found 

dependent on the flow rate and lower for higher surfactant 

and electrolyte concentrations and when both were added 

together this effect was amplified. An assumption throughout 

the paper is that the addition of surfactants will not affect the 

radial distribution of different bubble sizes in the tube, and 

all measurements for sizing were done near the surface of the 

tube. Another limitation of the study is the high bubble count 

needed for sizing. A mathematical study to look at the 

interaction between blood born bubbles and tissue bubbles 

was conducted, assuming that bubbles can form in tissues 

and in the wall of vessels [12, 21]. Once again competition 

for dissolved gas was pointed out. It was also shown that the 

number of tissue bubbles will influence the number of blood 

bubbles, whereas the opposite effect is very unlikely. The 

main variable of interest is obviously perfusion of tissues. 

The phenomenon of competition for dissolved gas among 

growing bubbles was further investigated through numerical 

simulations [13]. A clamping phenomenon was demonstrated 

above a certain density of bubbles per unit tissue, after which 

the washout rate was considerably diminished, going from 

exponential to linear. This finding seems realistic since a 

number of decompression algorithms, the so-called 

exponential linear kinetics models, use a linear washout rate 

with. The theory of the growth of a single vapour bubble in a 

superheated liquid has been considered by several authors. 

The inertia controlled growth was presented by Rayleigh 

[14], who determined the first equation of motion for a 

spherical bubble growth (or collapse). The asymptotic 

solution, presented by Plesset and Zwick [15], considered 

thermal diffusion controlled growth, neglecting liquid inertia, 

and provided a zero-order approximate solution for the 

bubble wall temperature with the assumption of a thin 

thermal boundary layer with error of less than 10% [3]. Their 

solution [16] was in good agreement with the experimental 

data of Degarabedian [18] in moderately superheated water 

up to 6°C. Forster and Zuber [17] were basically in 

agreement with Plesset and Zwick [15]. A new treatment of 

the problem was presented by Scriven [19], who solved the 

energy equation without assuming a thin thermal boundary 

layer, and his asymptotic solution for moderate superheated 

liquid was identical to that of Plesset and Zwick [15]. Mikic 

et al. [20] effectively combined inertial and thermal diffusion 

controlled growth using the Clausius–Clapeyron equation. In 

this study, under the effect of heat transfer growth, the 

growth of a vapour bubble in a viscous, superheated liquid in 

a vertical cylindrical tube is studied. The analytical solution 

is obtained for temperature and velocity distribution under 

the effect of Grashof number �� , heat source parameter �, 

and density ratio �. The analytical solution of the heat and 

momentum equations are used to obtain a relation between 

bubble radius 	  and time 
 , which takes into account the 

effect of some physical parameter. 

2. Analysis 

Consider the axisymmetric of a Newtonian fluid in circular 

cylindrical tube with a sinusoidal wave of small amplitude 

traveling down its wall is shown as in Fig. 1. The wall of the 

tube is given by the equation 

��
, 
� = � + � sin ��� �
 − �
�               (1) 

where �  is the average radius of the original undisturbed 

tube, � is the amplitude of the wave, � is the wavelength and �  is the wave speed. � and 
  are the cylindrical polar 

coordinates with	
 measured a long the axis of the tube and �	 is in the radial direction. Let �  and   be the velocity 

components in the radial and axial directions, 

respectively.The peristaltic bubbly flow of a viscous 

incompressible Newtonian fluid through a vertical tube. 

 

Figure 1. The Problem Sketch. 
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The mathematical model of the physical problem is 

described by the conservation equations of mass, momentum, 

and heat transfer as follows: 

!� ""� ��	�� + "#"$ = 0                                 (2) 

% &� "'"� +  "'"$( = − ")"� + * +!� ""� &� "'"�( − !�, + ","$,- �     (3) 

% &� "#"� +  "#"$( = − ")"$ + * +!� ""� &� "#"�( + ",#"$,- + %./�0 − 01�    (4) 

%	�2 &� "3"� +  "3"$( = 4 &",3"�, + !� "3"� + ",3"$,( + �!	4 "3"�,      (5) 

Where � ,  are the velocity in the direction �  and 
 

respectively, 5 is the pressure, 0 is the temperature, 01 Initial 

temperature of liquid, 61  is the constant heat 

addition/absorption, �2  is the specific heat at constant 

pressure, 4  is the thermal conductivity, �!  is the source or 

sink flow and % is the density of the fluid,. Introducing the 

dimensionless variables as follows: 

�̅ = �� , 
̅ = 
� ,  8 =  � , �9 = ��: , ;̅ = ;��*��, 
<̅ = 0 − 0101 , :̅ = �� , ℎ = 1 + � sin�2?
� , � = ��, 

	@ = ABCD , � = CEFG3HI, , 5� = DBJK � = C,LHK3H , �M = KABJ,       (6) 

where, 	@ is the Reynolds number, : is the wave number, � is 

the amplitude ratio, ��  is the Grashof number, 5�  is the 

Prandtl number,	�M  latent heat, and � is the non-dimensional 

heat source parameter. Substituting by the equation (6) into 

the equations (2-5), we obtain 

!� ""� ��	�� + "#"$ = 0                                    (7) 

	@:N &� "'"� + "'"$( = − ")"� + :� +!� ""� &� "'"�( − '�, + :� ",'"$,-     (8) 

	@: &� "#"� +  "#"$( = − ")"$ + !� ""� &� "#"�( + :� ",#"$, + �<     (9) 

��: &� "O"� +  "O"$( = �M &",O"�, + !� "O"� + :� ",O"$,( + �M�!� "O"�.      (10) 

When the wavelength is large �: ≪ 1� , the Reynolds 

number is quite small �	@ → 0�  and the equations (8-10) 

becomes 

")"� = 0                                   (11) 

")"$ = !� ""� &� "#"�( + ��<                      (12) 

	�M &",O"�, + !� "O"�( + 	�M	�!� "O"� = 0.                   (13) 

The dimensionless volume flow rate in the fixed frame of 

reference is given by 

R = 2S  �T�U1 ,                                (14) 

the corresponding dimensionless boundary conditions are 

"#"� = 0											�
										� = 0                           (15) 

 = −1									�
										� = ℎ                            (16) 

"O"� = V	W									�
										� = 	                      (17) 

< = <1												�
										� = ℎ.                       (18) 

Solving Eq. (13) using the boundary conditions (17-18), 

then 

<��� = VW	 &�U − 1( + !CXY &��!�	 − ℎ� − ��!�	 − �� +C,XY,� �	 − ℎ�� − C,XY,� �	 − ��� + <1(,               (19) 

where, 

W = AZ�[\�B]^BZ�∆OH�3HK] , 

substituting by Eq. (19) into the Eq. (12) and solving Eq. (12) 

with the boundary conditions (15-16), then  ��� =!̀ a2a$ ��� − ℎ�� − �� bVW	 & �Ec	U − �,` ( + !CXY bCXY�,` �	 − ℎ� −
��! &d�,` − �Ec ( +	C,XY,�,` �	 − ℎ�� − C,XY,� &d,�,` − �	d�Ec −

�e!f(g + OH	�,` −hg − 1,                     (20) 

where, 

h = VW	 &^i	U,Nf ( + !CXY &CXYU,` �	 − ℎ� − ��! &dU,` − UEc ( +	C,XY	,U,` �	 − ℎ�� − C,XY,� &d,U,` − �	dUEc − Ue!f( + OH	U,` (, 
The volume flow rate is given by 

R = − a2a$ &Uej ( + k	l	Umcf − ℎ�.                             (21) 

On the basis of continuity Eq. (2), we find that, the 

velocity of cylindrical coordinates of the vapour bubble [22, 

24], can be written as 

 ��, 
� = n	ddo� ,                                         (22) 

where, 	  is the instantaneous bubble radius, 	o  is the 

instantaneous radial velocity of bubble boundary,
 is the time 

of bubble growth, V = 1 − %p %Mq  is the density ratio, and %p, %M are the density of vapour and liquid respectively. 

From the Eq. (22), we can obtain the velocity of vapour 

bubble radius in a vertical cylindrical tube as the form 

	o ��, 
� = !n �!̀ a2a$ �	� − ℎ�� − �� &VW	 &dEc	U − d,` ( +!CXY &CXY�,` �	 − ℎ� −	��! &dE` − dEc ( + C,XY,d,` �	 − ℎ�� +i	C,XY,�jj 	`( + OH	d,` −h( − 1�.                    (23) 
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	�
� = r^`^sU,√u tan x√ur^`^sU,y	n zy	n{|}~Yb √��Hr~e~��,g√ur^`^sU, +
�
 − 
1���,             (24) 

where, 

� = k�lU,f ^j�Ue − jU,, 
3. Discussion and Results 

The physical problem is described by mass, momentum, 

and heat equations (2), (3), (4) and (5) respectively in 

Newtonian fluid throughout the growth process. The problem 

is solved analytically to obtain the velocity and temperature 

distribution of the flow under the effect of some physical 

parameters such as, Grashof number �� , heat source 

parameter � , density ratio V , and amplitude ratio � . The 

growth of vapour bubble of Newtonian fluids in a vertical 

cylindrical tube as shown in Figure 1 with two-phase density 

and it is obtained by relation (24).The physical values are 

calculated by Haar et al. [28] as given by Table 1.In Figure 2, 

the velocity distribution in terms of � for two different values 

of density ratio �V = 0.6, 0.7� , it is clearly, the velocity 

distribution is proportional inversely with the increasing of 

density ratio V. The velocity distribution in terms of	� with 

two different values of heat source parameter ��� = 5, 5.5� 
as shown in Figure 3. It is observed that, the velocity 

distribution decreasing with the increasing of heat source 

parameter � . On the contrary, the velocity distribution in 

terms of �  with two different values of Grasof number ����� = 4.5, 5� as shown in Figure 4. It is observed that, the 

velocity distribution is proportional with increasing the 

Grashof number �� . The behavior of velocity distribution is 

agreement with Ref. [9]. Temperature distribution in terms of � is shown in Figures 5 and 6, it is clearly the temperature 

distribution increasing with the increasing of amplitude ratio ��� = 0.4, 0.6� when the source flow � = 1, and decreasing 

with increasing of amplitude ratio � when sink flow � = −1. 

The velocity of bubble radius 	o  is plotted as a function of 	 

as shown in Figures 7, 8. It is observed the velocity of bubble 

radius decreasing with the increasing of 	  and shifted for 

lower values with increasing the density ratio V�V = 0.6, 0.7� 
and heat source parameter ��� = 5, 5.5�  respectively. In 

Figure 9, the velocity of bubble radius 	o  in terms of 	, it is 

observed that 	o  increasing with the increasing of Grashof 

number ����� = 4.5, 5�. The growth of vapour bubble in a 

superheated liquid in a vertical cylindrical tube is shown in 

Figures 10 and 11, the bubble radius in terms of time 
 with 

two different values of amplitude ratio ��� = 0.6, 0.7�  and 

density ratio V�V = 0.5, 0.7�  respectively. It is clearly the 

bubble radius is proportional inversely with the increasing of 

amplitude ratio �  and density ratio V  and this result is 

agreement with Ref. [10]. 

Table 1. Parameters values used in the present problem. 

Parameter Value Unite Parameter Value Unite %p 0.597 [12] 4./�N 4 0.6857 [28] �/�41 %M 958.3 [12] 4./�N � 0.0535 [28] 4./�� 	1 1 × 10^i � ∆<1 273.15 [29] 41 �2 4240 [12] ��4.41� 01 100 [6] 41 � 533000 �4.    	1o  10^N �/�    	� 10^` �    

 

 

Figure 2. The Velocity distribution in terms of � for the different values of 

density ratio	V�V = 0.6, 0.7�. 
 

 

Figure 3. The Velocity distribution in terms of � for the different values of 

heat source ��� = 5.5,5�. 
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Figure 4. The Velocity distribution in terms of � for the different values of 

Grashof number ����� = 5.5, 5�. 

 

Figure 5. Temperature distribution <��, 
�in terms of�	in case �! = 1for 

different value of amplitude ratio	��� = 0.4, 0.6�. 

 

Figure 6. Temperature distribution <��, 
� in terms of �	in case �! = −1 for 

different values of amplitude ratio ��� = 0.4, 0.6�. 

 
 

Figure 7. The velocity of bubble radius in terms of radius 	 for different 

valuesof density ratioV (V =0.7, 0.6). 

 

Figure 8. The velocity of bubble radius in terms of radius 	 for different 

values of heat source parameter � (� =5, 5.5). 

 
Figure 9. Thevelocity of bubble radius in terms of radius 	 for different 

values of heat Grashof number �� (�� =5, 4.5). 

In the Figures 12, and 13 the growth of vapour bubbles is 

plotted in terms of density ratio V , and amplitude ratio � 

respectively. It is clearly, the radius of vapour bubble 	�
� is 
proportional inversely with density ratio V , and amplitude 

ratio � , this results is agreement with Mohammadein and 

Gouda [ 27]. 

 
 

Figure 10. The radius of vapour bubble in terms of time 
for different values 

of amplitude ratio�	�� = 0.7, 0.6�. 
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Figure 11. The radius of vapour bubble in terms of time 
  For different 

values of density ratioV	�V = 0.7, 0.5�. 

 

Figure 12. The relation between the bubble radius 	 and the density ratio V 
through its range, 0 < V < 1. 

 

Figure 13. The relation between the bubble radius 	 and the amplitude ratio � through its range, 0 < � < 1. 
4. Conclusion 

Growth of a vapour bubble is solved analytically under the 

effect of peristaltic motion long wavelength, low Reynolds 

number, and other physical parameters, taking into account 

the effect of density ratio V, amplitude ratio �.The growth of 

vapour bubble under the effect of peristaltic motion is given 

by Eqs. (24) with two-phase density. The values of physical 

parameters are given by Table (1). The discussion of results 

and figures concluded the following remarks: 

(a) The growth of vapour bubble radius is proportional 

inversely with amplitude ratio, and density ratio V. 
(b) The velocity of vapour bubble is proportional with 

amplitude ratio �, densityratioV, and Grashof number �� . 

(c) The relation between the bubble radius 	 with the density 

ratio V, amplitude ratio �gives better agreements with Ref. 

[27]. The above concluded remarks prove the validity of 

the proposed model, and how to extend the present model 

in more properties of fluid and flow. 
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