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Abstract: Medical diagnosis with optical techniques is favorable due to its safe and painless features. Every tissue type can 

be distinguished by its optical absorption and scattering properties that are related to many physiological changes and 

considered to be very important signs for tissue heath. Characterizing light propagation in the human brain tissues is a vital 

issue in many diagnostic and therapeutic applications. In this work, light propagation in different brain tissues in normal and 

coagulated state was investigated. A Monte-Carlo simulation model was implemented to obtain spatially resolved steady state 

diffuse reflectance profiles of the examined tissues. Furthermore, the diffusion equation was solved to create images presenting 

the optical fluence rate distribution at the tissue surface using the finite element method. The proposed diffuse reflectance 

curves and fluence rate images show different features regarding tissue type and condition that promises to be effective in 

medical diagnosis. 
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1. Introduction 

Light propagation in any biological tissue is described by its 

optical parameters. The primary optical parameters of a tissue 

are the absorption coefficient, scattering coefficient and the 

anisotropy, however, these parameters are highly dependent on 

the wavelength of the illuminating light [1]. The examined tissue 

is excited by an appropriate light then, some detector 

measurements are recorded. Furthermore, for optical parameters 

estimation, a suitable mathematical model is utilized to relate the 

experimental measurements with the unknown optical 

parameters [2]. The possible experimental measurements are the 

diffuse reflectance, the diffuse transmittance and the collimated 

transmittance. The recorded light is called diffuse due to the 

turbid nature of the biological tissues [3]. 

Different mathematical models have been applied to 

represent the propagation of light in biological tissues, these 

models classified into forward and inverse models. In 

forward models, a known optical parameters tissue is 

examined to obtain the detector recordings. While, the 

experimental measurements is introduced to the inverse 

models in order to predict the unknown optical parameters 

[4]. Monte- Carlo simulation [5], diffusion equation [6] and 

adding doubling [3, 7] method are examples of the forward 

models. While, Kubelka-Munk [8], inverse Monte-Carlo [9] 

and invers adding doubling [10] are inverse models. 

Monte-Carlo model is a very common numerical model 

used to simulate the light propagation in turbid multilayer 

media [11] and during photodynamic therapy [12]. This 

model assumes an infinitely narrow pencil beam that is 

perpendicularly incident on a multi-layered scattering 

medium, each layer has different absorption coefficient, 

scattering coefficient and anisotropy [13]. Monte- Carlo 

simulation has been implemented to detect abnormalities in 

tissues at different locations [14] and also to model light 

propagation in Coral tissue [15]. 

The diffusion approximation to the radative transport 

equation is usually applied to illustrate the light propagation 

in biological tissues [16], the diffusion approximation 

simplify the required mathematics assuming some boundary 

conditions to abridge the difficulties in calculations resulting 

from the in-homogeneities of biological tissues [17]. The 

results obtained by the diffusion equation usually compared 

with Monte-Carlo simulation for verifications [18]. 
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Investigating light behaviour and propagation in human 

brain is considered an important subject in many diagnosis 

and therapeutic processes regarding the brain activities and 

physiological changes such as Oxygenation and 

Haemoglobin concentrations [19], this behaviour depends on 

the optical absorption and scattering parameters of examined 

tissue. Optical parameters of variety of mammalian brain 

tissues have been estimated using both ex vivo and in vivo 

measurement techniques [20]. Furthermore, characterizing 

the optical properties of brain tissue with high numerical 

aperture optical coherence tomography has been introduced 

in [21], the obtained optical properties provided unique 

information to differentially identify laminar structures in 

primary visual cortex and various nuclei in the midbrain. 

In this work, Monte-Carlo Model of Light propagation in 

biological tissues ‘MCML’ was implemented to investigate 

some known optical parameters human brain tissues 

including cerebellum, thalamus, gray-matter and white-

matter in normal and coagulated condition. The output of the 

simulation obtain spatially resolved steady state diffuse 

reflectance profiles of the examined tissues. Furthermore, the 

optical parameters were then introduced to the diffusion 

equation to obtain fluence rate distribution images at the 

surface of the sample using finite element method. 

2. Methods 

The Monte-Carlo Model for Light Transport in biological 

tissue has been implemented to simulate the spatially 

resolved steady state diffuse reflectance of different brain 

tissue types, the diffuse reflectance profile is considered a 

figure print for each tissue type. Moreover, diffusion 

approximation of the radative transport equation has been 

employed to create images presenting the fluence rate 

distribution at the tissue surface according to the different 

optical parameters values of each examined sample. 

2.1. Monte-Carlo Modelling for Light Propagation in 

Biological Tissues 

Monte Carlo model simulates the propagation of photon in 

turbid medium basing on the random walk concept. It is a 

numerical approach to the radative transport equation. In the 

model, a photon bundle is tracked over the examined tissue 

till it gets completely absorbed or exits the tissue boundary. 

Monte Carlo simulation can be made through eight main 

steps: (1) launching of the photons, (2) Photon’s step size, (3) 

Moving the photon, (4) Internal Reflection, (5) Photon 

absorption, (6) Photon Scattering, (7) Boundary crossing of a 

photon, (8) Photon Termination  [12]. 

After initializing the photon bundle, each photon moves a 

distance ∆�	where it may be scattered, absorbed, propagated 

without interruption, internally reflected, or exit the tissue 

through reflection and/or transmission. If the photon left the 

tissue boundary, the amount of reflectance or transmittance is 

documented. In case of photon absorption, the absorption 

location is recorded. It is a repetitive process till tracing the 

pre-desired number of photons [13]. 

A typical Monte-Carlo model assumes an infinitely narrow 

photon beam, perpendicularly incident on a multi-layered 

turbid medium. Each layer is defined by its thickness t, 

refractive index n, absorption coefficient µa, scattering 

coefficient µs and anisotropy ց in layersmatrix array. The two 

basic sentences of the simulation are: 

Layersmatrix = [n µa µs ց t];                      (1) 

S=MCML(filename,number_of_photons, Layersmatrix)  (2) 

where, S is a MatLab structure that contains all simulation 

results the simulation input parameters as well. 

The function that used in the simulation process is called 

MCML [22], the previously mentioned five parameters 

regarding the sample have to be known to use the simulation. 

In our simulation problem, the obtained optical parameters 

and thickness of the samples have been introduced to MCML 

assuming matched boundary conditions to obtain the diffuse 

reflectance profile at each case. All simulations were 

implemented under Matlab R2015a environment. 

2.2. Diffusion Equation 

The optical fluence rate distribution at the external surface 

of the tissue sample can be calculated from the diffusion 

equation [1]. 

�Ф���,
�

��


 ��Ф���, �� � �. ���Ф���, �� � ����, ��     (3) 

where the constant � �
�

������̀��
 is the diffusion coefficient 

and �̀ � �1 � "��  is the reduced scattering coefficient, " is 

the anisotropy factor. ����, �� represents the source term and 

Ф���, �� is the fluence rate. 

The diffusion equation was solved using the Finite 

Element “FE” method to obtain fluence rate distribution 

images at the surface of the examined samples. A model of 2 

cm width and 2 cm height square was created. Then, a point 

representing the laser source was located at (0.2, 1) to 

simulate the distant-detector experimental conditions [8]. The 

geometry of the model, and the produced finite element mesh 

is presented in Figure 1. 

 

(a) 
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(b) 

Figure 1. The implemented FE model, (a) geometry, (b) mesh. 

Some known optical parameters tissues from different 

parts of the human brain were investigated [23]. Table 1. 

Illustrates the optical parameters values used in the 

implemented Monte-Carlo simulation and in the diffusion 

equation as well, the all values were calculated at 800 nm 

laser irradiation. 

Table 1. The examined tissues optical parameters. 

Tissue µa (cm-1) µs (cm-1) ցցցց 

cerebellum 0.6 250.3 0.9 

cerebellum coagulated 1.1 458.2 0.89 

thalamus 0.7 158.5 0.89 

thalamus coagulated 1.1 286.0 0.93 

white-matter 0.8 140 0.95 

white-matter coagulated 0.9 170 0.94 

gray-matter 0.2 77.0 0.9 

gray-matter coagulated 0.8 252.7 0.87 

3. Results and Discussion 

From Monte-Carlo simulation output, the spatially 

resolved steady state diffuse reflectance profiles of 

cerebellum, thalamus gray-matter and white-matter in normal 

and coagulated were obtained using the optical parameters 

values presented in Table 1, these profiles are introduced in 

Figure 2. The curves present the diffuse reflectance as a 

function of the distance from the light source r (mm), 

therefore, it is called spatially resolved reflectance. 

As conducted from Figure 2, the four tissue types showed 

observable higher values of the diffuse reflectance in 

coagulated rather than the normal state for cerebellum, 

thalamus and gray matter. However, the opposite occurs in 

normal and coagulated white matter. Though, both the 

normal and coagulated forms of the tissues show an 

exponential shape diffuse reflectance profile with different 

maximum values and very nearby minimum values. 

The profile of the diffuse reflectance in biological tissues 

depends on the incident light wavelength. However, changing 

sample condition can cause many physiological changes 

regarding water and blood contents that typically affect 

absorption and scattering properties of the tissue. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure 2. Spatially resolved steady state diffuse reflectance profiles using 

‘MCML” of, (a) cerebellum,(b) thalamus,(c)white matter,(d)gray matter. 

The same optical parameters values were then utilized in the 

diffusion equation to determine the fluence rate distribution at 

the surface of the examined tissues using finite element 

method. Figure 3 presents the optical fluence rate distribution 

images for each tissue type in normal and coagulated state. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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(g) 

 

(h) 

Figure 3. Optical fluence rate distribution of (a) cerebellum (b) coagulated 

cerebellum (c) thalamus (d) coagulated thalamus (e) white-matter (f) 

coagulated white-matter (g) gray-matter (h) coagulated gray-matter. 

The fluence rate distribution at the surface of the examined 

tissues changes with the tissue type and condition due to the 

change in their optical properties as illustrated in Figure 3. It can 

be observed from the Figure that, the maximum value of log�Ф� 
in normal cerebellum was 5.29 and the minimum value was -

28.5, while in coagulated cerebellum, the maximum value of 

log�Ф� changed to 5.9 and the minimum value was -76.5. In 

normal thalamus the maximum log�Ф�  was 4.38 and the 

minimum value was -12.5, while in coagulated thalamus, 

log�Ф� maximum value was 4.55 and the minimum value was -

17.2. Moreover, the maximum value of log�Ф� in normal gray 

matter was 3.76 while in the coagulated one was 5.08 and the 

minimum value was -5.24 for normal gray matter while the 

values to -17.2 in coagulated one. Finally, in normal white 

matter the maximum value 5.1 and the minimum value was -

21.9 while, in coagulated white matter the maximum value was 

5.15 and the minimum was -21.3. 

The presented fluence rate images show observable 

differences between normal and coagulated cerebellum, 

thalamus and gray matter, however, in white matter the 

differences are not strong but still noticeable, and this can be 

acceptable as the optical parameters values in normal and 

coagulated white matter are very close as provided from 

Table 1. Furthermore, these images can help in differentiating 

the tissue types. 

4. Conclusion 

In conclusion, light propagation in different brain tissues 

in normal and coagulated form have been investigated using 

Monte-Carlo simulation and diffusion equation. With Monte-

Carlo model, spatially resolved steady state diffuse 

reflectance profiles of the examined tissues has been obtained 

showing a maximum reflectance value in the coagulated state 

greater than in the normal state for cerebellum, thalamus and 

gray-matter, while, the opposite was occurred in case of 

while-mater. Images representing the optical fluence 

distribution at the surface of each examined sample have 

been obtained using the finite element solution of the 

diffusion equation. The resultant images provided some 

observable discriminations between normal and coagulated 

samples that make it suitable method for tissue 

characterization and differentiation. The proposed results are 

supposed to help in medical diagnosis and therapeutic 

procedures through many medical applications such as bio-

stimulation and photodynamic therapy. 
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